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Applications of Z,7Z,[u]Z,[u*]-additive cyclic codes in the construction
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Abstract. Let Z, = {0,1}, R = Z, + uZ,, where u> = 0 and R, = Z, + uZ, + - -- + "' Z,, where u* = 0.

In this article, we study Z,RR:-additive cyclic, additive dual codes and their structural properties. The
additive cyclic codes are characterized as R,:[y]-submodules of the ring

Spy oy = Zolyl/ P — 1y x Rlyl/yP2 — 1) x Ryl /<y - 1).

The extended Gray map is represented by W : Zgl xRz x R — Zg”zﬁ 25 and is utilized to construct
the binary codes with good parameters. The minimal generating polynomials and smallest spanning sets of
the above specified codes are obtained. We also establish the relationship between the minimal generating
polynomials of additive cyclic codes and their duals. Further, we provide some examples that support our
main results. Finally, the optimal binary codes are determined in Table.

1. Introduction

In recent years, cyclic codes are the most investigated class of codes. For instance, [17] and [25] both
explored the algebraic structure and the generators of cyclic codes over Z,». Double cyclic codes over
different rings are a relatively new idea in the literature of algebraic coding theory. A double cyclic code
is one in which the set of coordinates may be divided into two subsets, each of which has its coordinates
shifted cyclically such that the code remains invariant. Keep in mind that we acquire a cyclic code if one
of these sets of coordinates is empty. Some examples of double cyclic codes over the rings Z, and Z, have
been evaluated in [14, 23].

In 1973, additive codes were first defined by Delsarte [18, 19] in terms of association schemes. Generally,
an additive code is defined as a subgroup of the underlying abelian group. In the special case of a binary
Hamming scheme, when the underlying abelian group is of order 2", the structure for the abelian groups
are those which are of the form Zgl X ZZZ with By + 2, = n. Therefore, the subgroup C of Zgl X Zgz is the

only additive code in a binary Hamming scheme. Borges et al. [16] developed the study Z,Z4-additive
cyclic codes.
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In 2015, Z,7;[u]-additive codes were introduced by Aydogdu et al. [7] as generalization of Z,Z,-
additive codes and they determined the Z,Z,[u]-additive cyclic codes and also defined a mixed code
consisting of the binary part and non-binary part from the ring Z, + uZ,, where 1?2 = 0. The Z,Z4-additive
codes were further generalized to Z,Z,-additive codes by Aydogdu et al. [11]. Later on, Aydogdu et al.
[12] generalized Z,Z,-additive codes and Z,Z:-additive codes to Z,Zs-additive codes. In 2018, Borges
et al. [15] described the structural properties of Z,Z,:-additive codes and obtained Z,,-Z,-additive cyclic
codes. Note that in Z,Z4-additive codes and Z,Z--additive codes, Z, is considered as Z4-algebra and
Zys-algebra, respectively. Also in Z,Z,[u]-additive codes, Z; is known as a Z;[u]-algebra and Z,, is a
Z,s-algebra in Z,,Z -additive codes. In 2018, J. Gao et al. [20] gave the structural properties of additive
cyclic codes over Z,Z,[u], where u* = 0. They also found the minimal generating sets of additive cyclic
codes. Moreover, they determined the relationship of generators between the additive codes and their dual
codes.

In 2019, Minjia Shi et al. [29] described Z,Z5[u, v]-additive cyclic codes, where u? = v* = 0, uv = vy,
which was the generalization of previously introduced Z,Z,-additive cyclic codes. Recently, Mahmoudi
et al. [28] gave the structures of Zy(Zs + uZy + u*Zy), (Zo + uZs)(Z> + uZy + u*Z,), where u®> = 0,
Zo(Zy + uZy + vZs), u*> = v* = uv = vu = 0 and (Zy + uZy))(Zy + uZy + u*Z,), where u> = v> =uv = uv = 0
and determined additive codes, dual additive codes and found singleton bound.

In 2018, Wu et al. [30] given the concept of Z,Z4Zs-additive cyclic codes and obtained their generator
polynomials along with their duals. They studied the structure of separable and non-separable Z,7Z,,7Zs-
additive cyclic codes. In 2019, Aydogdu et al. [10] introduced the algebraic structure of Z,Z,Zg-cyclic
codes and studied the generator polynomials and minimal generating sets of this family of codes. Dinh
et al. [22] discussed the structural properties of IF;RS-cyclic codes, where R = F, + ulF;, u> = 1 and
S = F, + uF, + vF, + uvlFy, u* = v = 1, uv = vu. Further, they applied these codes in the construction of
quantum error-correcting codes. Later, Dinh et al. [21] studied IF,RS-cyclic codes and constructed several
optimal and near-optimal codes, where R = IF, + ulF,, u?> = 0 and S = IF, + ulF, + u?F,, u® = 0. Also, they
presented some examples of optimal and near-optimal codes.

Motivated by aforementioned work, we consider two rings R = Z, + uZ,, where > = 0and Ry =
Zy + uZy + - + u"1Z,, where 1 = 0 with characteristic 2. R, is a local ring and the maximal ideal is
principal. In this article, we determine Z,RR,-additive cyclic codes and their duals. We also find the
optimal binary images from Z,RR,:-additive codes. It is to be noted that the additive code of length

(B1, B2, B3) is the subgroup of the commutative group Zg] x NP2 x %ufﬁS. The Z,RR -additive code is a linear
code over Z, if ; = 0 and B3 = 0, over R if 1 = 0 and B3 = 0 and over R, if f1 = 0 and B, = 0. Clearly, we
observe that it is the generalization of linear code over Z,, R and R,:. Furthermore, we obtain the generator
polynomials and minimal spanning sets for Z,RR -additive cyclic codes. Also, the relationship between
the generators of C and its dual are established. Finally, these codes are classified as R,:[y]-submodules of
the ring Sg, g,5, = Za[y]/{y"" = 1) x R[yl/ <y — 1) X Rye[yl/ P - 1).

This paper is organized as follows: In Section 2, we define some basic notions, Gray maps and the
extensions of Gray maps. Section 3 contains the cyclic structures of the rings R = Z; + uZ,, where u> =
and Ry = Zy + uZs + --- + u¥"'Z,, where 1 = 0. In Section 4, we study Z,RR,-additive cyclic codes and
find the minimal generating sets when , is odd and f3 is even(or odd). In Section 5, we define the duality
of Z,R R s-additive cyclic codes and their results. Section 6 contains some examples and a table of binary
optimal codes from Z,RR,:-additive cyclic codes. The last section concludes the article.

2. Preliminaries

Let R = Zp + uZs, u*> = 0and Ry = Zp + uZy + -+ + u*"1Z,, u* = 0 be two rings with characteristic 2.
Any element z € R can be written as z = ag + ua; +--- + g, for all a; € Z,, where 0 < i < k—1. An
element z = ag + ua; + - - + u*'ar_; € R,¢ is a unit if and only if ap is unit. Let

ZoRR: =1{(c, ¢, )| ceZy ¢ €eR, ¢ Ryl

Define three maps 61 : Ry — Zp, 6, : Ry — R and 63 : R — Z, such that

O1(ag + uay + -+ + ua)) = ay, Oalag + ua; + --- + u¥lg) = ap + uay and
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Os(ag + uay) = @y, respectively. Clearly, 01, 6> and 03 are well-defined onto ring homomorphisms. Let thﬂ
be a Bi-tuples of Z,, RP2 be a Bo-tuples of R and iRux'B3 be a Bz-tuples of R, where 81, f> and 3 are positive
integers. Lety = (y,y,y) € Zgl x RP2 x R, be a vector, where y = (yo, y1,..., Yp-1), ¥ = Yor Yoo -s 3/;32—1)
and y" = (yal ]/’1',---/]/;3_1)- For any z = ap + ua; + --- + g, € Ry, the Re-scalar multiplication on
Z/; x RP2 x NP is defined as follows:

zy = (61(2)yo, - - -, Ql(z)yﬁl_llez(z)yb, ey Gz(z)y}gz_llzyg, .. .,zygg_l) c Zf; X RP2 x R, (1)

where 01(z)y;, Qg(z)y;. and zy, are performed mod2 forall 0<i < f1-1,0 < j<p—1and 0 < £ < B3 — 1. The

structure Zgl X R x R forms an R,e-module under the usual addition and multiplication defined in (1).
Let

Sp, oy = Zalyl/ P = 1) X RIY1/ WP = 1) X Ruelyl/ (v - 1)
Define a map
©: 75 xR X RGP — Sy,

d = (flglh) — d(y) = (fWlgW)Ih(y)),

where (flglh) = (fo, f1,. -, fe-1l90, 91, - - -, ggo-1lho, h1, - . ., ps—1),

f(y) = fO + fl]/ R fﬁl—lyﬁlil, g(y) =go+qy+---+ gﬁz_lyﬁzfl and

h(y) = ho+hy+---+hg, 1y~ Forany £(y) = bo+bry+---+ 6y € Ryulyland d(y) = (FW)lgW)Ih(y)) € S, pop.s
define the R [y]-scalar multiplication

€(y) - d(y) = (01(EW) fWIO2(LWNgWIEYR(Y)), ()
where 0:1(€(y)) = 61(o) + 01(L1)y + -+ + 62(€,)y" and

02(t(y)) = 02(to) + O2(t1)y + - -+ + 62(6,)y". Then Sg, 4, 5, forms an R,:[y]-module under the usual addition
and scalar multiplication of polynomials defined in (2).

Definition 2.1. A non-empty subset C of Zgl X R X R P is called an Z,RR e-additive code if C is a subgroup of
Zﬁl X RP2 x R P, that is, C is isomorphic to

% 2m m kn (k=1)n n
7, X 2" XL XL, X2y 7 X X2,
for some positive integers {1, my, my, 1, Mo, . .., Ng.
Definition 2.2. A non-empty subset C of Z? X N2 x R is called an Z,RR e-additive cyclic code if

(1) Cis an additive code.

(i) For any codeword z = (ag, ay, ... ,a,gl_llbo, by,... ,bﬁz_llco, C1,.. .,c/;3_1) € C its cyclic shift
T(z) = (ag,-1,40,-..,ap-2|bg,-1,bo, ..., bg,—2Icp;-1, o, - - -, Cp;-2) € C.

Let us define Gray maps as follows:
P1: R — Z3 3)
such that ¢1(e + uf) = (f,e + f) foralle, f € Z, and

(PZ : ERuf — Zg (4)
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0 + (000---00)
1 +> (100---00)
u +— (110---00)

> (111---11),
—
k

and for any (ag + uay + - - + u¥1a;_1) € R such that
y i

ba(ao +uay + -+ + g _q) = (agPa(1) + a1pa(u) + - -+ + ar_1 o2 (1))

forall ap,a1,...,ak-1 € Z,. Using (3) and (4), we can define another Gray map
W:ZyxRX Ry — Zy X 72X 7% (5)
as W(clc'|c") = (c, 1(c’), pa(c”)). An extension of the map W is defined by
W, 70 ) R X R P s (6)
such that Wi(y = (yly'ly") = (v, $1(y), ¢2(y)), where
Y = 0 Y1 Yol Vs Yo alWor Vi o Ypon) € 25 X R R,

Definition 2.3. Lety = (yly/|y") € Z&' x R x R, where y € Z5', y' € W and y'€ R, Then the Gray weight
of y is defined as

we(y) = wa(y) + wa(@r(Y)) + wr($2(y ),

where wyr denotes the Hamming weight.
Definition 2.4. Lety,z € Zgl X RP2 X R P2, Then the Gray distance between y and z is defined as

da(y, z) = we(y — 2) = du((YP1(¥ )2y ), Ep1(2)P2(z))).

3. Structure of cyclic codes over R and R,

In this section, we discuss the structural properties of R and R,:. Further, we obtain generating sets
of these structures for different lengths. The generating sets of R and R, will be used in the subsequent
sections.

Lemma 3.1. A code C of length B, over R is cyclic code if and only if C is an R-submodule of Rg, = R[yl/(y —1).

Lemma 3.2. [27, Theorem 12.13] If for any f(y), g(y) € Rly], where g(y) has unit as its leading coefficient, then
f) = 9Way) + r(y),

for some q(y), r(y) € Ryl, where r(y) = 0 or deg(r(y)) < deg(g(v)).

Proof. The proof is directly followed by [27, Theorem 12.13]. [T
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Let C; be a cyclic code in Rg,. We can define a map 63 : R — Z; by 03(a + ub) = a. Clearly, 1 is a ring
homomorphism in R. The extension of 03 can be expressed by

m:Ci— Ryl/(y” - 1)

such that ny(ag + a1y + - - - + ag,1y*™) = O3(ag) + O3(a1)y + - - - + O3(ag,—1)y**~'. Now, we can easily obtain the
kernel of 1; as

ker(m) = {ub(y) | b(y) € Zalyl/(y* - 1) = ubi(y)),

where bﬂy)l(yﬁ2 — 1)(mod2). Since the image of 1 is also an ideal in Z5[y]/ (yﬁz — 1)}, a binary cyclic code is
generated by f(y) with f(y)|y”* — 1. Hence, C1 = (f(y) + up(y), ub1(y)), for some binary polynomial p(y) and

bi(lp(y) y;?y_)l. Obviously, uf(y) € ker(n1). This implies that b1 (y)|f(v).

Now, we state the following known lemmas which are essential in describing the proofs of various
results in the subsequent sections:

Lemma 3.3. [1] Let Cy be a cyclic code in Rg, = ‘.R[y]/(y/32 -1).
(1) If B2 is odd, then R, is principal ideal ring and
C1 = {f(y), ubi(y)) = {f(y) + ub1(y)),
where f(y), bi(y) € Zalyl/<y* — 1) and biy|f(W)I(y> - 1).
(2) If B2 is not odd, then

(i) C1={f(y) +up(y)), where f(y)l(yﬁ2 —1)(mod?2) and f(y) + up(y)l(yﬁ2 -1)inR.

(i) C1 = (f(y) + up(y), ubi(y)), where f(y), b1(y) and p(y) are binary polynomials such that
yﬁz—l

biWIf WY - D(mod2), bi(y)lp(y) 75 and deg(bi(y)) > deg(p(y)).

Lemma 3.4. [32] Let C; be a cyclic code in Ryig, = Ry [yl/(yPs — 1).
(1) If Bs is odd, then Ry, is principal ideal ring and

k

Co = (g(y) + uar(y) + Par(y) + - - + " lar_q),

where ax(Y)lar-2(y) - - - a2 (Wla (WIgWI(Y> - 1).
(2) If B3 is not odd, then

(i) Ca =<{g(y) +up1(y) + - + " py_1), where g(y)|(y* — 1)(mod2) and
g(y) + up1(y) + - + e |(yP — 1) over Ry, deg(pi(y)) < deg(pi1(y)) forall2 <i<k-1. OR

(i) Co = {g(y) + up1(y) + - - + " pp_y, ¥ ay 1), where ar_1(y)|g(y)I(y* — 1)(mod2) and
gy) + upr(y) + -+ + - pe|(yP — 1) over Ry, deg(pi(y)) < deg(piei(y)) forall2 <i<k-1. OR

(iii)

gy +upi(y) + - + 1y,
ua (y) + uqi(y) + - + ”k_1¢7k72,
uﬂz(y) +eee 4+ uk_llk—3/ ceey uk_Zak—Z + uk_ltll ’
k-1

us g1

where a1 (lax-2(y)| -+l WIgI(y — 1)(mod2) and ar (y)ps, (1) o5

B3 — B3 — . .
(I3, W) o s (W) s over Ry, where 1<i<k — 1,1 < ip <k — 2 deg(pi(y)) < deg(pi-1(y))
forall2 <i<k-1.
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4. Z,RN-additive cyclic codes

In this section, we obtain a set of generators for Z,RR -additive cyclic codes as R[y]-submodules
of Sg, g, 5,- Here, C will always denote an Z,RR,:-additive cyclic code. Since C and R[y]/ (yP> — 1) are
R,e[y]-submodules of Sg, g, g,, we define a map

n: C— ERuf[y]/<yﬁ3 - 1>/

by n(f(Mlg)lh(y)) = h(y). Clearly, n is a module homomorphism whose image is R,:[y]-submodule in
R [y]/{y* — 1) and ker(n)) is a submodule of C. Further, n)(C) can easily be identified as an ideal in the ring
R [y]/(y* — 1). Firstly, we assume that B3 is odd. Since 7(C) is an ideal in R [y]/(y* - 1),

k

N(C) = (h(y) + uar(y) + w?ar(y) + -+ u " ag_)

with a;(y) | h(y) | (%> — 1)(mod2), fori =1,2,...,k — 1. Let us define
ker(n) = {(f()lgW)I0) € CIf(y) € Zalyl/ Y™ - 1), 9(y) € RIyl/y> - 1)},

] =1fW), 9W) € Zalyl/<y™ = 1) x RIy1/<y* = DIFWIgW)I0) € ker(n)).

It is clear that | is an ideal in the ring Z,[y]/ (yPr — 1) X R[y]/{(y** — 1) and hence a cyclic code. There-
fore, by the well-known result on generators of binary cyclic codes, we have | = (f(v),g(v)). Now,
for any element (f1(y)lg1(y)I0) € ker(n), we get (fi(y),91(y)) € J = {f(y),9(y)) and it can be written
as (i(y), ;1(y) = m(y)(f(), 9(y)) for some polynomial m;(y) € R[yl/(y* - 1). Thus, (fi(y), 71(y),0) =
(B3(m1(v)) f(y), m1(y)g9(y), 0). This implies that ker(n) is a submodule of C generated by an element of the
form (f(y), 9(y), 0), where f(y)I(y** — 1)(mod2) and g(y)|(y** — 1)(mod2). By the first isomorphism theorem
for rings, we have

C
ker(m)

fe—

= (W(y) +um(y) + uzaz(y) +-o+u 1ak_1>.

This implies that any Z,RR,:-additive cyclic code can be generated as a R,:[y]-submodule of Sg, 4,4, by
(LWI0I0), (f2(y)lg(y) + up1(y)I0) and

(LWIGWIgWY) +uar(y) + war(y) + - + 1 aq).
Hence, any element in ¢(y) € C can be expressed as

cy) = di(y) X (LyI0I0) + da(y) X (L2()g(y) + up1()I0) +
ds(y) X (FWIWlg(y) + uar(y) + uPax(y) + - - + 1 lay),
where d1(y), d2(y) and d3(y) are polynomials in the ring R,:[y]. Similarly, if B3 is even, then

C -~ h(y) + up1(y) +--- + uk_lpk—l, uay (y) + uqu(y) +--t uk_lmc—z,
ker(1) uar(y) + -+ uk s, 2a ) + uF M, ey :

Definition 4.1. A subset C C Sg, g, g, is called an ZyRR,-additive cyclic code if and only if C is a subgroup of
S, a5 and for all

diy) = (fWIgw)lh(y))
= (fO 4o+ fﬁl—lyﬁl_”go 4o+ gﬂz—lyﬁ2_1|h0 4o+ hﬁ3_1yﬁ3_1) c C,
we have
y-d(y) =

fprm1 + o+ fom2y™ T Ngpor + -+ gpo2y® Mg,y + - + hg0yP ) € C.
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Theorem 4.2. A code C is an Z,RR-additive cyclic code if and only if C is a R [y]-submodule of Sg, , ;-

Proof. Let C be an Z,RNR ¢-additive cyclic code. Then we have to show that for any d(y) € C and I(y) €

Relyl, (y)d(y) € C. Assume that d(y) = (f(WIg()lh(y)) € C, where f(y) = (fo + iy + - + fﬁl_lyﬁl‘l),
9gy) = (go + gy + - + ggy?P 1) and h(y) = (ho + Iy + - - - + hg,1y*~'). The multiplication

yody) = (fp1+ foy+-+ fo2yP Ngp1 + g0y + - + gpaay
thoy + -+ hg,yP ™)

represents the cyclic shift T(d(y)) of d(y). Since C is Z,RR - additive cyclic code, y'd(y) € C for all i € N. Tt
follows that I(y) - d(y) € C. This implies that C is R,«[y]- submodule of Sg, 4, s,- The Converse part is directly
followed by Definition 4.1. [J

Theorem 4.3. Let

c = < (AWI0I0), (2(Wg(y) + up1(y)I0), >
(WG WIA(Y) + uar(y) + wPay(y) + - - + ' ar

be an ZyRR ¢-additive cyclic code. Then deg(fi(y)) < deg(f1), where i = 2,3 and deg({1(y)) < deg(g(y)).
Proof. Suppose that deg(fi(y)) > deg(fi(y)). For i = 2, using division algorithm

L) = AWa) +1(y),
for some polynomial q(y), (y) € Rg, and either r(y) = 0 or deg(r(y)) < deg(f1(y)), w get

Cc = (LWI00), (i()a(y) + r(WIg(y) + up1(y)I0),
(BWIEW)I(Y) + uar(y) + u?ar(y) + -+ ula) [
Since (f1(y)9()I010) € (q(y)(f1()I0|0)). Hence

c - < (i), 0), (W)lg(y) + upr(Y)0), >
(BWIGWIA(Y) + uar(y) + wPar(y) + - - + " ay) [

This implies that deg(f(y)) < deg(f1). Similarly, other cases can be easily proved. O

Theorem 4.4. Let

c - < (AM)I00), (LWlg(y) + ubi(y)[0), >
(BWIGW)I(Y) + uar(y) + v?az(y) + - + 1 a1 ()

be an Z,RR,-additive cyclic code of length (B1, B2, B3), where B and B3 are odd integers. If my(y) = GED - ond

~ gy)+ubi(y)
P3—
M) = T then fi) | mo(y)fo(y) and g(y) + ubi () | mi(y)6 ().

Proof. Let n(m,(y)(f2(y)lg(y) + ub1(y)|0)) = n(my(y) f2(y)I0[0). It gives that
(my(y) f2(1)|0]0) € ker(n) and hence fi(y) | my(y) f2(y). Similarly, we consider that

N (HBOIEWIY) + uay(y) + - + 1 ax1)) = nma(y) o) lmu(y) & (1)I0)),
we get (my,(y) () lm(v) €1 (y)0)) € ker(n). Therefore, g(y) + ubi(y) | my(y)ea(y). O

Theorem 4.5. Let

c - < (AM)I00), (LWlg(y) + ubi(y)[0), >
(BWIGW)IY) + uar(y) + u?ax(y) + - + a1 ()
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be an ZyRR ¢-additive cyclic code of length (B1, B2, Ba), where By and Bs are odd integers and by (y)lg(y)|(y** — 1),

1Y) | a2(y) | mees) |-+ 1 ao(y) | aa(y) | h(y) | (¥ = 1). Let t1(y) = ged{myby, y*2 — 1}, t2(y) = y:z(;)l,
Mg, (Y) = ;j((yy)) and m,,(y) = %g), wherei=2,3,...,k=1.If
B1—deg(f1(y)-1 ‘
ss = U ooy
i=0
pr—deglg)-1
o= U W Rwlw +unloy
i=0
deg(g(y))—deg(bi(y)-1
S5 = U v o Amm b))
i=0
pa-degh(y)-1
Sy = U ' - (BWIGWIY) + uar(y) + uPax(y) + - + 1 a1 ()
i=0
deg(h(y)-degm¥)-1
S5 = U m@) AW a @) (y)ua (y) +
i=0
way(y) + -+ a ()
deg(a1(y)—deg(a(y)-1
S = U @m0 s@may)me, )G )l
i=0
my(y)a, (V) (@Pax(y) + - - + W ()
deg(ax-2(y))—deg(@r-1(y))-1 ,
Skez = {y' - (mp(yY)Mr-1(v) f5)lmu(y)Mi-1 () &1 (y)m|

i=0
(Y My (U aa (),
where Mi_1(y) = mg, (y) - - - my,_, (y) for k > 1, then
S=51USUS3US5,US5USsU---U Spy3
is a minimal generating set for the code C and

|C| = 2P1~deg(f1)p2f>—deg(g)—deg(b1) Hkps—deg(h)—deg(a1)~deg(;)—~deg(ar-1)

Proof. Let c(y) € C be a codeword and ¢;(y) € Ry[y], 1 <i < 3. Then

cy) = a@) - LII0) +c2(y) - (L(WIg(y) + ubi(y)I0)
+e3(y) - (BWIGWIY) + uai(y) + wax(y) + - + 1 a (y))
= (011 AI0I0) + c2(y) - (f2(W)lg(y) + ub1(y)I0)
+e3(y) - (BWIGWIY) +ua(y) + wPax(y) + - + 1" a (y)).
If deg(9(c1(y))) < B1 — deg(f1) — 1, then (f1(y)|0|0) € span(S;). Otherwise, by division algorithm, we have
O(1(y) = LD, (y) + e1(y), where deg(e1) < f1 — deg(f1) — 1. Therefore,

Ay
WP -0)
O (AI0I0) = (( AT di(y) + e1(y))(f1(¥))I010)

(e1(y) L(I0I0) = ex()(f1()(0[0).
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This implies that (8(c1(y))(fi(y)),0) € span(S1). Now, we have to show that c2(y) - (f2(y)lg(y) + ub1/0) €
span(S;US, U S3) C span(S). Suppose that m,; divides c2(y), that is, c2(y) = da(y)m,(y) +e2(y), where ex(y) = 0
or deg(ex(y)) < deg(m,(y)) — 1, we get
c2(y) - (2(W)lg(y) + ubi(y)I0)
= (d2(y)my(y) + e2(y) - (f2(Y)lg(y) + ubi(y)0)
= da(y)(my(y) f2(Ylumy ()b ()I0) + e2(y)(L2(WI9(y) + ubi(y)I0)-

Cleraly, e>(y)(f2()lg(y) + ub1(y)|0) € span(S,). It remains to show that

da(y)(my(y) fo(y)lurmy (y)br(Y)I0) € span(Sy U Ss).

Since t1(y) | m,(y)b1(y), we obtain m,(y)b1(y) = r1(y)t:1(y). Hence, m,(y)b1(y)t2(y)=0. By division algorithm,
we have dy(y) = d,(y)t2(y) + €,(y), where ¢,(y) = 0 or
deg(e'z(y)) < deg(t2(y)) — 1. The expression da(v)(m,(y) f2(y)lum,(y)b1(y)|0) can be written as follows

da(y)(my(y) fo(y)lum,(y)b1(y)10)
(dy(N)t2(y) + ex(y)(mg(y) f2(y)lum g (y)br (1)0)
dy () (t2(y)mg () f2 (W) lut2(y)m g (y)br (Y)10) + e, (y) (114(y) fo ()t y(y)br (1)]0).

dy (1) (E2(y)mg () Lo(YI0I0) + &5 (y) (1 () (Yl (y)br ()10).
This implies that d'z(tzmngIOIO) € span(Sy). Since (m, fo[um,b1(y)|0) € span(Ss),

c2(y) - (f2(y)lg(y) + ub1]0) € span(S; U S U S3).

Next, we need to show that
cs(y) - (WG @)I(y) + uar(y) + - - + 1 a_1(y)) € span(Sy U - -+ U Siy3) C span(S).
Applying division algorithm, we get
cs(y) = da(y)m(y) + es(y),

where e3(y) = 0 or deg(es(y))< deg(m;(y)) — 1. Therefore,
k1

c3(y) - (BWNEW)I(Y) + uar(y) + w?ax(y) + - + a1 (y))
= (ds()mu(y) + es(v)) - (BWIOWIAY) + uar(y) + Par(y) + - + 1 a1 ()
= ds(y)(mn(y) W) lmuWlm(y) (war (y) + Par(y) + - + 1 a1 (1))
+es( (WG WIY) + uar(y) + u?ar(y) + - + a1 ().

Obviously, es() (W6 (WIh(Y) + uai(y) + u?ax(y) + - " 'ar_1(y)) € span(Ss). Again, using the division
algorithm, we have

d3(y) = ma, (y)da(y) + ea(y),
where deg(es(y)) < deg(m,, (v)) or e4(y) = 0. Putting the value of d3(y) in the expression

ds () () Wl ) ma(y) (ar (y) + 1Pas(y) + -+ + 1 aga (1)),
we get

ds () (mu(y) fslmu(W) el (y) (uar (y) + wPar(y) + - - + v a1 ()
= (ma, (Y)da(y) + ea(y))(mn(y) f3 () (y)er (Y)mn(y) (ua ()
+ulay(y) + - + U a1 (1))
= da(mp(y)ma, ) W) mp(y)ma, (V) () ma, () Pax(y) + - - + 1" a1 (1))
+(ea() mu(y) 5 mu e (W)lm(y) way(y) + u?az(y) + - + 1" a1 (1))
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It is observed that

(s (W) Wmu (W) (W) (y) (uar (y) + uPar(y) + - - + 1" a1 (y))) € span(Ss).
Continuing in the same process, we get

c(y) - (HWIGW)IY) +uar(y) + - - + uF a1 (1) € span(S4 U -+ - U Sgy3) € span(S).
Finally, c¢(y) € span(S). Hence, S = S1 U S, U S3 U 54U S5 U Sg U - - - U Spy3 is the minimal spanning set for C
and IC| = oBi1—deg(f1)2,—deg(g)—deg(b1) pkps—deg()—deg(a)—deg(az)——deg(ar-1)

0
Corollary 4.6. Let
C = ( (AWIGWIY) +ua(y) + w2a(y) + -+ ac(y) )

be an Z,RR s-additive cyclic code of length (B1, 2, B3), where o and B3 are odd integers and by(y)lg(y)I(yP> — 1),
a1 (Y) | ak-2(y) | ax=s (W) |- T ax(y) | m(y) | h(y) | (7 = 1). Let ti(y) = ged{my(n)bi(y), v — 1}, tay) = jtf(y)l,

My, (y) = h(y (y) == i y) ,wherei=2,3,..., k-1 1If
ps—deg(h(y)-1
S1 = U ' - (AWIEWII(Y) + uar (y) + Pay(y) + - + g ()
i=0
deg(h(y)-deg(m(y)-1
Sy = U {y' - (mu(y) LI (y) e () lmn(y) (uar (y) +
i=0
wWay(y) + -+ a ()L
deg(a1(y)—deg(ax(y)-1 '
S3 = U {y' - (ma(y)ma, () () lmn(y)ma, ()]
i=0
m(Y)ma, (V) (@Paz(y) + - + a1 (),
deg(ak—2(y))—deg(ar-1(y))-1 '
Sk = U ' (m(YMia () AW (Y) M1 (y) E (y )|

i=0
my ()M (W1 e (),

where My_1(y) = ma (y) -+ My, (y) fork > 1, then S = S U S, U S3 U --- U Sy is a minimal generating set for the

code C and
|C| — zkﬁg—deg(h)—deg(u1)—deg(az)—v--—deg(uk,l).

Theorem 4.7. Let

(i)I0I0), (fa(»)lg(y) + ub1(y)I0),
c = < (BWIGW)IIY) + upi(y) + WPpa(y) + - + " pa(y)),
(fallWluar(y) + 2qi(y) + - + " qea(y)), -,
(fert DIl (DI 2az(y) + 1 1)), ez a1 (y)
be an ZyRNR ¢-additive cyclic code of length (B1, B2, B3), where B, and B3 are odd and even integers, respectively. Also, let

Biw) | 9) | (P2 = 1), aia (W) Laa(y) |+ Lan(y) L R(y) | (9 = 1), mg(y) = b, b () = gedimy(n)bs (), y2 11,
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b(y) = St mi(y) = G5t m(y) = gedim(yp (), ., mhpk v yﬁs 1 () = S (y) = S,
mi(y) = ged{ma, (DA W), ., Mo, (WGr2(v), ¥ = 1}, 1in(y) = St Let
pr-deg(ily)-1
si = U WGy
i=0
pr-deg(g(y)-1
$ = J W hwiy) +unmo);
i=0
deg(g(y)—deg(bi(y)-1
Sy = U mAmum b)),
i=0
p3—deg(h(y))-1 4
S = | W (BWIE@IRG) + upi ) + 1P2pa(y) + - + 1 Py
i=0
deg(m(y))-1 ‘
$s = | W @ A@Im@E@m) wp () +
i=0
Wpa(y) + -+ u W)
deg(h(y)-deg(m(y)-1
S5 = U - (@e)ua @) +ay) + -+ ugea@);
i=0
deg(mi(y))-1 .
S5 = | W @@, ), D@0 y) + -+ 1 g )

i=0

deg(ax—(y)—deg(ar-1(y)-1 '
Sauez = U ' oW a2 @),

i=0

then S = 51U Sp U S3 U -+ U Sopys is a minimal spanning set for the code C.
Proof. Let c(y) € C be a codeword and ¢;(y) € Rye[y], 1 <i <k + 2. Then

cy) = a) - (AWI0I0) + ca(y) - (2()lg(y) + ubi(y)I0)
+63(y) - (BWIOWIY) + up1(y) + 1pa(y) + - + u pra(y))
+ea(y) - (W) uar(y) + Pqu(y) + - + 1 qea(y))
+-o 4 et (V) - fern @I W 2ay(y) + 1 1(y))
+0ri2() - eI aea ()
= (B1(cr)AWI0I0) + c2(y) - (f2()Ig(y) + ubi(y)I0)
+e3(y) - (BWIOWIIY) + up1(y) +1Ppa(y) + - - + u pea(y))
+es(y) - (aWa(Y)uar(y) + 1P2q1(y) + - - + 1" ga(y))
+oo =+ 1Y) - e Il (I 2ax(y) + ' Hy))
+0ri2() - e () @ ().

If deg(0(c1(y))) < p1 — deg(fi(y)) — 1, then (f1(y)I0I0) € span(S;1). Otherwise, by division algorithm, we have
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B(c1(y) = (ijlT;)l)dl(y) + e1(y), where deg(e1(y)) < f1 — deg(fi(y)) — 1. Therefore,

P =1)
OC)AwIo) = ( A0 d1 + e1)(f1(y))[010)

(e1(f1(1))I0I0) = ex(f1()10[0).
This implies that (6(c1)(f1(y)), 0) € span(S1). Now, we have to show that

c2(y) - (2()lg(y) + ubq|0) € span(S; U S, U S3) C span(S).

Suppose that m,(y) divides c2(y), that is,

e (y) = da(y)my(y) + ex(y),

where e;(y) = 0 or deg(e2(y)) < deg(m,(y)) — 1, we get

a2 (y) - (LWlgy) + ubi(I0) = (d2(y)my(y) + e2(y) - (f2()lg(y) + ubi(y)|0)
da(y)(mg(y) f2(ylumy(y)b1(y)I0)
+e2(y)(f2(W)lg(y) + ubi(y)10).

Cleraly, e>(y)(f2l9(y) + ub1(y)|0) € span(S,). It remains to show that

da(y)(my(y) fa(y), umg(y)b1(y)I0) € span(Sy U Ss).

Since t1(y) | m,(y)b1(y), we obtain m,(y)b1(y) = r1(y)t1(y). Hence, m,(y)b1(y)t2(y) = 0. By division algorithm,
we have
da(y) = d3(y)ta(y) + es(y),

where e3(y) = 0 or deg(es(y)) < deg(t2(y)) — 1. The expression d(y)(m,(y) f2(y)|umy(y)b1(y)|0) can be written
as

dx(y)(my(y) fo(y)lumy(y)b1(y)10)
(d3(1)t2(y) + es(y)(my(y) fo(y)lumy(y)b1(y)|0)
d3(y)(E2(y)my(y) f2(Y)lut2(y)mg(y)br1(YI0) + e3(y)(my(y) f2(y)lumg(y)br (1)I0).
= d3(y)(t2(y)my(y) 2()I0I0) + e3(y)(mg(y) f2(y)lumg(y)b1 (y)I0).

The above expression shows that ds(tm, f2|0|0) € span(S;) and
(mgy f2, umgby(y)|0) € span(S3). Therefore,

e (y) - (2(Wg(y) + ubi|0) € span(S1 U S, U S3).
Next, we show that
c3(y) - (WIGWI(Y) + upi(y) + - + 1 pea(y)) € span(S, U S4 U Ss) C span(S).
Applying division algorithm, we get
e3(y) = da(y)ma(y) + ea(y),
where e4(y) = 0 or deg(es(y)) < deg(my(y)) — 1. Therefore,

() - (FWIGW)IY) + up1(y) + uPpa(y) + -+ + 1 prca ()

(day)mn(y) + es(y)) - (BEWIEWIY) + up1(y) + 1Ppa(y) + -+ + 1 pea(y))
da(y)(mn(y) )W) () m () wpr (y) + 12pa(y) + - + ' peca ()
+es((HWIOWIIY) + upr(y) + 1Ppa(y) + - + 1 pea ().



M. Ashraf et al. / Filomat 38:17 (2024), 6271-6290 6283

Obviously, es(y)(f3(W)|€ (y)Ih(y) + up1(y) + u?pa(y) + - - - + u¥ 1 pr_1(y)) € span(Ss). Again, using the division
algorithm, we have

da(y) = m(y)ds(y) + es(y),
where deg(es(y)) < deg(r1(y)) or es(y) = 0. Putting the value of d4(y) in the expression
da(y) () W) m(DE @) mn(y) upr (y) + 1Ppa(y) + - - + u pea(y)),
we get

4 (y)m () W mu(v) e (v)lma(y) (upr () + 1Ppa(y) + - - + 1" peaa(y)))
= (f(y)ds(y) + es(v) m (@) SOImE ) () upr(y) + - + 1 peay))
= ds(m ()W) f>@)lm(y)i(y) e (W) lm(y)iy) ups (y) + - - + 1 pea ()
+es () () W m (D E @) m(y)upr (y) + - + 1 prea ()
= ds(mu(y)i(y) f3(y)lmu(y)ri(y) 61 (y)I0)
+(es(y)) (mn(y) 5 e (lmn (W) upr (y) + - - + 1 pea ().
It is observed that ds(m, (y)m(y) f3(y) lm(y)i(y) €1 (y)10) € span(Sz) and
(es(v)) (mn(y) fsWmu (W) e (Wl (y) upr (y) + -+ + 1 pea () € span(Ss).

This implies that

) - (WG W)Ih(Y) + upi(y) + - + 5 o1 () € span(S, U S4 U Ss) € span(S).

Following the same process, it is required to show that

k2 () - FeraI)F a1 () € span(Sz U Soxss).
Now, we assume that c.2(y) = dokss3(Y)ar-1(y) + e2+3(y),

cre2(y) - eI a1 (y))
= (dass A1) + €3 (®)) - G a1 ()
= Aoz (W) @1 firr a1l (y)10) + exrs(y) - Gl a1 (y))

Clearly, do+3(y)(ak-1(Y) frra(Wlar-1(1)lk(y)10) € span(Sz) and
e2+3(Y) - frrz (" ak_1(y)) € Sarss. This implies that

cke2() * Gzl a_1(y)) € span(Sy U Spxys).
c(y) € span(S). Finally, we reach the required conclusion. And hence
S=51US U- - USyss
is the minimal spanning set for C. [
From Theorem 4.6, the following results follow immediately.
Corollary 4.8. Let C = {(f1(y)(y)I0I0)) be an ZoRR :-additive cyclic code of length (B1, B2, B3) and fi(y) | yP = 1. If

pr—deg(fi(y)-1

si= |J W-wooy,

i=0

then Sy forms a minimal spanning set for C with |C| = 2F1=des(hv),
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Corollary 4.9. Let C = ((f1()1010), (f2lg(y) + ub1(y)I0)) be an ZrRR -additive cyclic code of length (B1, B2, B3),
where B, is an odd integer and g(y) + uby(y)) | yf> — 1. If

B1—deg(f1(y)-1

si = U WGy
i=0
pr—deg(g(y)-1
= |J W awisy) +ubmo);
i=0
deg(g(y)—deg(bi(y)-1
Sy = U W mhmum b)),
i=0

then Sy U Sy U S; forms a minimal spanning set for C with |C| = 2(F1~des(iy)22f2—deg(g1(y))-deg(br(v)),
Corollary 4.10. Let

c = < (f1(11010), (L2(x)lg(y) + ubi(y)I0), >
(LW + upi(y) + 1Ppa(y) + - - + 1 preaa ()

be an ZyRR ¢-additive cyclic code of length (B1, B2, B3), where B, and B3 are odd and even integers, respectively. Also, let
o1

bi) | 9W) | (V% = 1), axa () L ax2() |-+~ Lar() [A) | (v = 1), mg(y) = L7 1Y) = gedimy (n)bi(y), v -1},

h(y) = yfT;)l mi(y) = %}1 m(y) = ged{mu(y)p1(y), - ., mu(Y)pe-1(y), > = 1}, 1in(y) = yﬁ(;)l Let

pr—deg(fi(y))-1

si = U Gy
i=0
pr-deggy)-1
$ = |J W (Wl + ubi)0));
i=0
deg(g(y)—deg(bi(y)-1
Sy = U W i Amum b)),
i=0
Bs—deg(h(y)-1 4
S = U W (B + upi () + 12pa ) + - + 1 pa )l
i=0
deg(m(y))-1 .
S5 = ' - ) W) E Wln(y) upr () +

i=0
o) + -+ u )
then S = 51U Sp U S3 U S4 U Ss is a minimal spanning set for the code C.

5. De2luality of Z,RR-additive cyclic codes

In this section, we give the relationship between the generator polynomial of C and its dual code. Let
f(y) € Rulyl and deg(f(y)) = t. Then its reciprocal polynomial can be defined as f*(y) = y*U/® f(7).
To study the dual of Z,RR,:-additive cyclic codes, we need to define a new inner product on Zgl X RP2 x
R, as
pi-1 p2—1 -1
z1°z, = W Z i, +u Z bjb; + Z o) (mod2), )
j=0 k=0

i=0
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where Z] = (ﬂo, at, ... ,El}gl_1|b0, bl, ey b‘gz_1|C0, Cl,... /Cﬁg—l) and
zy = (ay,a,-- "aﬁ1—1|b0’ by,..., bﬁz_llco, Cpreee /053—1)'

Definition 5.1. Let C be any ZyRR ¢-additive cyclic code. Then the dual code of C with respect to the inner product
defined in 7 is defined as

Ct =z, € Z)' x W2 x RP| 21 - 2, = 0 for all z; € C).
Theorem 5.2. Let C be any Z,RR s-additive cyclic code. Then C* is also cyclic.
Proof. Let C be any Z,RR s-additive cyclic code and
Zp = (ab,a;,...,a/ﬁl_llbro, b;,...,blgz_llcé), cll,...,c;gs_l) e Ct.

We have to prove that z; - T(z;) = 0. Since C is cyclic, we have Tf(z1) also in C, where ¢ = lem(B1, 2, B3)-
Now, we can write
0 = Tf_l(Zl) < 2o
= (ﬂl, sy aﬁl—ll ﬂ0|b1, ceey bﬁz—ll b0|C1r sy Cﬁ3—l/ CO) : (a;)r a/ll sy alﬁl_1|bé)/ b/ll sy b;gz_ll
CosCrre--rCpq)
= ykl (alaé) + aza; +e- 4 aoakl_l) + u(blbb + bzl/1 +---+ bob;grl) + (clc;) + czc/1
+-e + CoCy )
= Mk71 (ﬂoagl_l + ﬂlﬂé) + e+ aﬁl_la}gl_z) + M(bobéz_l + blbé) + -0+ bﬁz—lb/ﬁz—Z) +
(coc;,y1 + clc;) + 4 053_10/3_2)
= z1-T(zp).
This implies that T(z;) € C*. Hence, C* is Z,RNR -additive cyclic code. [

Assume that w,(y) = Y.75' ' is a polynomial. Now, let m = lem{B, B2, 83} and
fy) = FWIF WIF W), 8y) = GWlg WIg ) € Spy p.,p5- Define a map

Ryelyl
y"-1)

C: Sﬁl/ﬂZ/ﬁS X Sﬂl,ﬁzlﬁs B

such that
CEW, 8) = uf(pwx )y 8Dy (y)
+uf (Y (Y8 )
+f Wog Py D" ).
Now, we state the relevant lemmas that will be used to demonstrate the continuing results.

Lemma 5.3. Let ny,n, € IN. Then
ynr=1= " = Do (y™).

Proof. Letx™ —1=(x—1)(x""1+x272 4.+ x+ 1)=(x — 1)wy, (x). Putting x=y", we get the desired result. [

Lemma 5.4. [21, Lemma 6.5] Let f,g € Zgl X R x NP with associated polynomials
fw) = FWOIF DI W), 8W) = (9 W)Ig” (v)) € Sp, o, Then fis orthogonal to g and all its shifts if and only if

C(f(y), g(y) = 0.
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Theorem 5.5. Let f(y) = (fWIf WIf 1)), &) = @WIg W)lg" (v)) € Sy g, stich that L(f(y), g(y)) = 0.
() If f(y) =00r g (y)=0and f'(y) = 0or g'(y) = 0, then f(y)g"(y) = 0 mod(y* —1).
(ii) If f(y) = 0 or g(y) = 0and f*(y) = 0or g'(y) = O, then f (y)g™(y) = 0 mod(y** —1).
(iii) If f(y) = 0 or g(y) = 0and f'(y) = 0 or g (y) = O, then f " (y)g"*(y) = 0 mod(y* - 1).

Proof. (i) Suppose that either ' (y) =0 or g'(y) = 0and f (y) = 0 or g (y) = 0. Then we need to show that
fW)g*(y) = 0 mod(y* — 1). Since

0 C((y). 8(v)
fWwg )y g (y)mod(y™ ~ 1)

This implies that there exist a polynomial h(y) € Z,[y] such that
fwp )y 7SOy (y) = h(y)mod(y™ - 1)

= h(yy" -1).
By Proposition 5.1, y" — 1 = (yf1 — 1)a)ﬁ(yﬁ1), we get
fwy"e @) = K" -1
fWg'(y) = 0mody” 1)

Similarly, we can prove other cases. []

Theorem 5.6. Let

c = < (f1(1010), (2(x)lg(y) + ubi(y)I0), >
(WG WIA(Y) + uar(y) + wPar(y) + - - + a1 (y))

be an ZyRR ¢-additive cyclic code of length (B1, B2, B3), where By and Bs are odd integers and by (y)lg(y)|(y** — 1),
a1 (Y) L a2 () |-+~ Taa(y) | an(y) T h(y) | (v = 1). If

Lo <  (AWI0I0), (2WIF(y) + ubi()0), >
(BWIAW)IAY) + ui(y) + u?G2(y) + - - + 131 (y))

is a dual of C, then
() fi" (y) ged(A), (), () = MW - 1),

y ¢ 1 hy)e - 7 +
(i) A Ay () + ubi) = By 1)

Proof. (i) Since (fi()I010), (f2(1)lg(y)+ubi(y)I0), (W (W) +uar(y)+ - -+u " ax_1(y)) € Cand (f1(y)I0I0) €
C*, by Lemma 5.2, we get

(ALW)I0I0), (f1()I0[0)) = O,
C(f2()lg(y) + ubi(y)I0), (f1(1)[0]0)) = 0

and

CBWIEWIY) +uar(y) + -+ + 1 a1 (y), (A(»)I0/0)) = 0.

Using Theorem 5.1, we obtain fi(y)f;(y) = 0, (1) f;(y) = 0 and f3(y)f;(y) = 0. It is obvious that
fi() ged(AW), f2(), f5(y)) = 0 mod(y — 1). This implies that there exists a polynomial h1(y) € Z[y]

such that )
() ged(Ai(W), o), () = ()Y = 1).
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(i) We know that
(AW)I0I0), (L W)Ig(y) + ubiIO), (WG WIAY) + uar(y) + - - + 1 aa(y) € C

Then any element c(y) € C can be expressed as

LW HW)GY)

W = S hw), A, W), a0

‘u AW ()i (y)
ged(f1(y), 2(y), f3(y), 1(v))

e AW LW (y)
ged(fi(v), 2(), 5(v), G (y)

AW HWG(Y)

" 5ed ), 2, o), G T

AWLWEWY) S heWG)

ged(A(), L), (W), G(y)  ged(fA(w), L), (), t(v)

AWGW) ufs(y)ay) + " () (y)) AW A1) (Y)

X (£2()lg(y) + ubi(y)I0)

) X (WG WIY) +uay + -+ + uF )

= (Ol

+(0]uk 1

h(y))

= h .
O 5cd (i), 2, A 6 3ed(hm), W), ), L)
This implies that
W) T RWAMEW) . - - )
(O R, gt + b o) = 0,

where Wi(y) = AWGW)WfW)g(y) + v f(y)ei(y)) and
W(y) = ged(f1(y), L2(y), 5(y), (1(y)h(y)). By Theorem 5.1, we get

AWEWEEWIW) + v H)G )
ged(fi(y), oY), f5(v), (u(y))
This means that there exists a polynomial h;(y) € R[y] such that

AWGWWfs)ay) + 1 LG y))
ged(fi(y), L), W), (1(y)

(g(y) + ubi(y))" = 0.

~(G(y) + ubi () = ()™ ~ 1)

O

6. Examples & Table

In this section, we discuss some examples of additive cyclic codes of different lengths. Also, the generator
polynomials and the minimal spanning sets are determined.

Example 6.1. Let C be a ZyRR,-additive cyclic code of length (3,3,5). Then Cisa

R,-submodule of S355 = Zs[yl/<y® — 1) X Ryl/{y® — 1) x Ru[yl/{y® — 1). By Theorem 4.5, suppose that fi(y) =
=L AW =L9y) =i =y-1 ) =y+1 4@y =y +y+Lhy) =y-1 ay) =ay) =y-1=a(y).
If

S1 = {(y+1000), y- (v + 100}
S = (A +w)(y+ 1), y- (A1 +u)y + DOk

3
S = U+ +y+ U+ DA +u+u? +1)),

i=0

then S1 U Sy U S3 forms a minimal spanning set for C.
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Example 6.2. Let C be a Z,RR,-additive cyclic code of length (2,3,4). Then Cis a
Ry-submodule of Sa54 = Zo[yl/{y* — 1) X Ryl/{y® — 1) x Ru[yl/{y* = 1). By Theorem 4.6, Suppose that fi(y) =
L) =6y =L =6 =y+1L 9y =0y =y-1 0@y = f’z(y) = fg(y) yry+l, h(y) (v +1),

a(y) = (y+ 1% my) = y+1, p1(y) =py) = q(y) = 1, my(y) = N) =y+1 my) = h(y) =y+1
ma, (y) = ) (y) =(y+ 1)%, Mg, (y) = g2(y) =(y+ 1)°. If
S1 = {(h)IoI0)L;

Sy = {(Wlg(y) + ubi(y)10), y(2(W)lg(y) + ubi(y)[0)};
Sz = (W) + upi(y) + up2(y)};

Sy = Fe (mu(y) s mu () e (9)lm(y) (upr (y) + wpa(y));

c-ic

Ss = Y- (aWIG@)luar(y) + g ()

i

=l
[}

So = (JW' (a0 fs@)lma OGP, (V)31 1))
i=0

S7 = A(WIGWIa )},

then S1 U 55U S3 U 54U S5 U S¢ U Sy forms a minimal spanning set for C.

Table: Optimal binary images from Z,RR,:-additive cyclic codes.

k| (B1,B2 B3) Generators Binary Image
4| (1,13 W =y-1 LWy =094 =bi(y) =y -
) =6y =0,hy) =y -1, [15, 6, 6]

a(y) =a(y) =as(y) =y —
5| (1,1,3) Aly) =y - 1, Ry =0,9) =bi(y) =y -
hy) =y -1=a(y) = az(y) = as(y), [18,2,12]
fy) =(y) =1,a4(y) =
5| (1,1,3) Ay =y-1, o(y) =0, 9(y) = bl(]/)
Ay =ty)=0,hy)=y -1= al(y), [18, 4, 8]
a2(y)) = a3(y) = as(y) =
3| (1,16 AW =y-1 Ly =0,9(y) =bi(y) =y -
f3(y)=0/ fl(y) :0/ l2(y) = 1/ h(]/) :]/6—1/ [211 7/ 8]
W) =v+yr+y+1Lamly)=y*+1
A =1 ) =1Ly =1
50 233 | A=y -1 AW =091 =b) =
h(y) = yz +y+1=a1(y) = ax(y) = a3(y) = as(y), [23,5,11]
)=ty =1
4| (2,35 AW =y -1, L) =0,9(y) =bi(y) =
hy) =my) =my) =y -1, [28, 4, 13]
Ay =t =Lay=y'+y+y+y+1
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k| (B1, P2, B3)

Generators

Binary Image

31 (1,56

AW =y-1 L =049y =y -1=b(y),
fy)=0,0(y) =0,hy) = y° -1,
) =1,Ly) =+ +y¥*+y+1,
) =v’+v¥+y+1Lmly) =y*+1,
S =LLy =y +r+y+y+1

[29,7,12]

3 (9,54

AW =y -1, A6y =091 =y —-1="b(y),
LW =0,6(y)=0hy) =y -1,
AW =y +°+ P vy +1,
L) =y +y+y¥+y+1,
my) =y -Laoly) =y-1,
=y +yP+y+y’+y+1,
Ly =y*+y+y¥*+y+1

[31, 3,17]

4| 217

A =v"-1, 6y =091 =by)=y-1,
By =101 =0,hy) =y -1,
ny) =my)=ay) =y +y*+1

[32,12,10]

i 21,7

A=y -1 AW =0,90p) =y =y-1,
Ay =10y =11y =y -1,
m(y)=my)=a@y) =y +y*+y+1

(32,9, 14]

31 (1,7,6)

AW =y-1, LW =091 =y -1=bh(y),
fy) =0, 6(y) = 0, h(y) = y* - 1,
i =Lhy=v+y+y+yPP+y*+y+1,
ny) =+ +y+1Lamly)=y*+1,
W =1Ly =Y+ +y+yPP+y+y+1

[33,7, 14]

5/ 1LL7)

fiw=y-1,£W)=0,9)=b(y)=y-1,
W =146y =1Lhy) =aly) =y -1,
my) =as(y) =as(y) = P> + 1> + 1

[38, 12, 14]

50 1,7

A=y -1, LW =09 =0y =y-1,
W) =061 =0,hy) =a(y) =y -1,
my) =) =a@) =+ +y+1

[39,9, 16]

5/ (1LL9)

i =y-1,Ly) =094 =b(y) =y-1,
=160 =1Lhy)=am@y) =y -1,

W) =)=y -Lay) =y +P+y+PP+y+1

[48, 2, 32]

7. CONCLUSION

6289

In this article, we have described the structures of rings R = Z, + uZ,, where > = 0 and
Ry = Zo + uZy + - - + u¥"17Z,, where u* = 0 with characteristic 2. The characterization of Z,RR,:-additive
cyclic codes and their duality have been presented. The structural attributes of Z,RR:-additive codes have
been studied. We have also established the relationship between the minimal generating polynomials of
additive cyclic codes and their duals. Furthermore, the minimal generating sets for even and odd lengths
of Z,RR,s-additive cyclic codes have been determined. We have also obtained optimal binary images from
ZyR N s-additive cyclic codes that have a number of advantages over linear codes, including the fact that
they are more efficient. In future work, it would be an interesting problem to generalize this over the ring
Z2Z5[u?]Z,[u*], where u® = 0 and u¥ = 0, respectively.
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