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Available at: http://www.pmf.ni.ac.rs/filomat

A note on the generalized maximal numerical range of operators

Abderrahim Baghdada, El Hassan Benabdib,∗, Kais Fekic

aDepartment of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad, Marrakesh, Morocco
bDepartment of Mathematics, Laboratory of Mathematics, Statistics and Applications, Faculty of Sciences, Mohammed V University in Rabat,

Morocco
cDepartment of Mathematics, College of Science and Arts, Najran University, Najran 66462, Kingdom of Saudi Arabia

Abstract. This study explores the A-maximal numerical range of operators, represented as WA
max(·), where

A is a positive bounded linear operator on a complex Hilbert spaceH . The research provides new insights
into the properties and characterizations of A-normaloid operators, including an extension of a recent
result by Spitkovsky in [A note on the maximal numerical range, Oper. Matrices 13 (2019), 601–605].
Specifically, it is demonstrated that an A-bounded linear operator T on H is A-normaloid if and only if
WA

max(T) ∩ ∂WA(T) , ∅, where ∂WA(T) denotes the boundary of the A-numerical range of T. Furthermore,
novel A-numerical radius inequalities are introduced that generalize and enhance prior well-known results.

1. Introduction and Preliminaries

The numerical range and radius of a bounded linear operator on a Hilbert space have been extensively
studied in operator theory for many decades. They provide essential geometric and analytic information
about the operator and have a wide range of applications in various areas of mathematics and physics.
Recently, the A-numerical range, which is a natural generalization of the classical numerical range, has
been introduced in [5] for a positive bounded linear operator A on a Hilbert space. The A-numerical range
has been studied extensively, and its supremum modulus is known as the A-numerical radius. For more
details on these concepts, consult the recent book by Bhunia et al. [9].

Despite its importance in operator theory, the A-maximal numerical range has received less attention
in the literature. In this study, we aim to provide new insights into the properties and characterizations of
A-normaloid operators by exploring the A-maximal numerical range. We will introduce novel A-numerical
radius inequalities that generalize and enhance prior well-known results. The results of this study will
contribute to the understanding of the A-maximal numerical range and provide a foundation for further
research in this area.

To achieve the goals of this study, we consider a non-trivial complex Hilbert spaceH with inner product
⟨·, ·⟩ and associated norm ∥ · ∥. We use the notation B(H) to denote the C∗-algebra of all bounded linear
operators onH , with the identity operator denoted by IH or simply I when no confusion arises. Throughout
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this paper, we focus on operators inB(H), and we use the notation T∗, R(T), andN(T) to denote the adjoint,
range, and null space of an operator T, respectively.

The following facts will be useful for the remainder of this article. An operator T is considered positive
if ⟨Tx, x⟩ ≥ 0 for every x ∈ H . We denote the cone of positive (semi-definite) operators as B(H)+, given by

B(H)+ =
{
T ∈ B(H) : ⟨Tx, x⟩ ≥ 0 for all x ∈ H

}
.

Throughout the rest of this article, A ∈ B(H)+ is a nonzero operator that defines a positive semidefinite
sesquilinear form in the following manner:

⟨·, ·⟩A : H ×H −→ C, (x, y) 7−→ ⟨x, y⟩A := ⟨Ax, y⟩ = ⟨A1/2x,A1/2y⟩,

where A1/2 represents the square root of A. We denote by ∥ · ∥A the seminorm induced by ⟨·, ·⟩A which is
given by ∥x∥A =

√
⟨x, x⟩A = ∥A1/2x∥ for every x ∈ H . It can be checked that ∥x∥A = 0 if and only if x ∈ N(A).

So, ∥ · ∥A is a norm onH if and only if A is one-to-one. Furthermore, one may verify that the semi-Hilbert
space (H , ∥ · ∥A) is complete if and only if R(A) is closed in (H , ∥ · ∥). For a given T ∈ B(H), if there exists
c > 0 such that ∥Tx∥A ≤ c∥x∥A for all x ∈ R(A), then it holds:

∥T∥A := sup
x∈R(A),

x,0

∥Tx∥A
∥x∥A

= sup
x∈R(A),
∥x∥A=1

∥Tx∥A < ∞.

If A = I, we get the classical norm of an operator T which will be denoted by ∥T∥. From now on, we denote
BA(H) :=

{
T ∈ B(H) : ∥T∥A < ∞

}
. It is important to note that BA(H) is not generally a subalgebra of B(H)

(see [15]). Further, it is not difficult to check that ∥T∥A = 0 if and only if ATA = 0. Recently, there are many
papers that study operators defined on a semi-Hilbert space (H , ∥ · ∥A). One may see [5–7, 9, 17, 19, 20] and
their references.

Let T ∈ B(H). An operator S ∈ B(H) is called an A-adjoint operator of T if ⟨Tx, y⟩A = ⟨x,Sy⟩A for all
x, y ∈ H (see [1]). Clearly, S is an A-adjoint of T if and only if AS = T∗A, i.e., S is a solution in B(H) of
the equation AX = T∗A. We mention here that this type of operator equations can be studied by using the
following famous theorem due to Douglas (for its proof see [12]).

Theorem 1.1. If T,U ∈ B(H), then the following statements are equivalent:

(1) R(U) ⊆ R(T),

(2) TS = U for some S ∈ B(H),

(3) there exists λ > 0 such that ∥U∗x∥ ≤ λ∥T∗x∥ for all x ∈ H .

If one of these conditions holds, then there exists a unique solution of the operator equation TX = U, denoted by Q,
such that R(Q) ⊆ R(T∗). Such Q is called the reduced solution of TX = U.

Let BA1/2 (H) denote the set of all operators that admit A1/2-adjoints. An application of Theorem 1.1 shows
that

BA1/2 (H) =
{
T ∈ B(H) : there existsλ > 0 such that ∥Tx∥A ≤ λ∥x∥A for all x ∈ H

}
.

If T ∈ BA1/2 (H), then T is said A-bounded. It can be observed that if T ∈ BA1/2 (H), then T(N(A)) ⊆ N(A).
Further, the following property ∥TS∥A ≤ ∥T∥A∥S∥A holds for all T,S ∈ BA1/2 (H). Also, if T ∈ BA1/2 (H), then
the authors of [14] showed that

∥T∥A = sup
{
∥Tx∥A : x ∈ H , ∥x∥A = 1

}
= sup

{
|⟨Tx, y⟩A| : x, y ∈ H , ∥x∥A = ∥y∥A = 1

}
.
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To obtain additional information on the category of A-bounded operators, we suggest that the reader
consult [3, 15, 20] and the sources cited within those works. Note that BA1/2 (H) is a subalgebra of B(H)
which is neither closed nor dense in B(H). Moreover, the following inclusions:

BA1/2 (H) ⊆ BA(H) ⊆ B(H) (1)

hold. It should be noted that typically, the inclusions specified in (1) are strict, which means that there are
elements that belong to one set but not to the other. However, if A is an injective operator, then obviously
BA1/2 (H) = BA(H). Further, if A has a closed range in H , then it can be seen that BA(H) = B(H). So, the
inclusions in (1) remain equalities if A is injective and has a closed range. We refer to [1–3, 15] and the
references therein for an account of results related the theory of semi-Hilbert spaces.

Baklouti et al. introduced the concept of the maximal numerical range induced by a positive operator
A in their publication [5]. To be more precise, the definition is as follows.

Definition 1.2. Let T ∈ BA(H). The A-maximal numerical range of T, denoted by WA
max(T), is defined as

WA
max(T) =

{
λ ∈ C : there exists (xn) ⊆ H , ∥xn∥A = 1, lim

n→+∞
⟨Txn, xn⟩A = λ, and lim

n→+∞
∥Txn∥A = ∥T∥A

}
.

For every T ∈ B(H), it was shown in [5] that WA
max(T) is non-empty, convex and compact subset of C.

Notice that the notion of the maximal numerical range of an operator T ∈ B(H), denoted by Wmax(T) (that
is when A = I; the identity operator), was first introduced by Stampfli in [22], in order to determine the
norm of the inner derivation acting on B(H). Recall that the inner derivation δT associated with T ∈ B(H)
is defined by

δT : B(H) −→ B(H), X 7−→ TX − XT.

For this, in the same paper [22], the author first established the following.

Theorem 1.3. Let T ∈ B(H). Then the following conditions are equivalent:

(1) 0 ∈Wmax(T),

(2) ∥T∥2 + |λ|2 ≤ ∥T + λ∥2 for any λ ∈ C,

(3) ∥T∥ ≤ ∥T + λ∥ for any λ ∈ C.

Here T + λ is denoted to be T + λI for any λ ∈ C.

Corollary 1.4. Let T ∈ B(H). Then there is a unique scalar cT such that

∥T − cT∥
2 + |λ|2 ≤ ∥(T − cT) − λ∥2, for all λ ∈ C.

Moreover, 0 ∈Wmax(T) if and only if cT = 0.

The scalar cT is called the center of mass of T. It is worth noting that this scalar is the only one that satisfies
the following:

∥T − cT∥ = inf
λ∈C
∥T − λ∥.

The scalar ∥T − cT∥ is denoted by d(T) and is called the distance of T to scalars. The author in [22] proved
also that for any T ∈ B(H)

∥δT∥ = 2d(T).

Recall that an operator T ∈ B(H) is said to be normaloid if ω(T) = ∥T∥, where ω(T) is denoted to be the
numerical radius of T which is given by

ω(T) = sup{|λ| : λ ∈W(T)}.

Here W(T) is denoted to be the numerical range of T and it is defined by Toeplitz in [23] as

W(T) := {⟨Tx, x⟩ : x ∈ H with ∥x∥ = 1}.

Equivalent condition is r(T) = ∥T∥, see, [18]. Here, r(T) is the spectral radius of T. Recently, Spitkovsky in
[21] gave the following characterization of a normaloid operator.
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Theorem 1.5. Let T ∈ B(H). Then the following conditions are equivalent:

(1) T is a normaloid operator,

(2) Wmax(T) ∩ ∂W(T) , ∅.

Here ∂L stands for the boundary of a subset L in the complex plane.

Notions of the numerical range and numerical radius are generalized in [5] as follows.

Definition 1.6. Let T ∈ B(H). The A-numerical range and the A-numerical radius of T are respectively given by

WA(T) := {⟨Tx, x⟩A : x ∈ H with ∥x∥A = 1},

and
ωA(T) := sup{|λ| : λ ∈WA(T)}.

It is important to mention that ωA(T) may be equal to +∞ for some T ∈ B(H) (see [15]). However, ωA(·)
defines a seminorm on BA1/2 (H) which is equivalent to ∥T∥A. More precisely, for any T ∈ BA1/2 (H), we have

1
2
∥T∥A ≤ ωA(T) ≤ ∥T∥A , (2)

see [5].
Recently, the concept of A-normaloid operators is introduced by the third author in [15] as follows.

Definition 1.7. An operator T ∈ BA1/2 (H) is said to be A-normaloid if rA(T) = ∥T∥A, where

rA(T) = lim
n→+∞

∥Tn
∥

1
n
A.

Some characterizations of A-normaloid operators are proved in [15]. In particular, we have the following
proposition.

Proposition 1.8 ([15]). Let T ∈ BA1/2 (H). Then the following assertions are equivalent:

(1) T is A-normaloid,

(2) ∥Tn
∥A = ∥T∥nA for all positive integer n,

(3) ωA(T) = ∥T∥A,

(4) there exists a sequence (xn) ⊆ H such that ∥xn∥A = 1, lim
n→+∞

∥Txn∥A = ∥T∥A and lim
n→+∞

|⟨Txn, xn⟩A| = ωA(T).

The purpose of our work is to provide new characterizations of A-normaloid operators. Our approach is to
study the operator range R(A1/2) equipped with its canonical Hilbertian structure, denoted by R(A1/2), and
utilizing the connection between A-bounded operators and operators acting on the Hilbert space R(A1/2).
We extend Theorem 1.5 to the context of semi-Hilbert spaces and establish several new properties related to
the A-maximal numerical range of A-bounded operators. Our primary objective is to generalize Theorem
1.3 for T ∈ BA1/2 (H), and we also provide a sufficient and necessary condition for the A-center of mass of
an operator T ∈ BA1/2 (H) to belong to WA

max(T). Additionally, we investigate other properties of A-bounded
operators.

For the remainder of this paper, we will use the notation ΓA(T) to denote the set defined as:

ΓA(T) :=
{
z ∈ C : |z| = ∥T∥A

}
.
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2. Main Results

In this section, we present our main results, beginning with a theorem that provides another useful
characterization of A-normaloid operators. We use the notation L to denote the closure of any subset L in
the complex plane.

Theorem 2.1. Let T ∈ BA1/2 (H). Then the following conditions are equivalent:

(1) T is A-normaloid,

(2) ΓA(T) ∩WA(T) , ∅.

Proof. (1) ⇒ (2): Assume that T is A-normaloid. Then by Proposition 1.8 we have ωA(T) = ∥T∥A. So, there
exists a sequence (zn) ⊆ WA(T) such that lim

n→+∞
|zn| = ∥T∥A. By the compactness of WA(T) we can, taking

a subsequence of (zn) if needed, assume that (zn) converges to some z ∈ WA(T). Therefore, |z| = ∥T∥A, so
z ∈ ΓA(T) ∩WA(T).
(2) ⇒ (1): Let z ∈ ΓA(T) ∩ WA(T). We have ωA(T) ≥ |z| = ∥T∥A. From Inequalities (2), we deduce that
ωA(T) = ∥T∥A. That is, T is A-normaloid.

Our next objective is to generalize Theorems 1.3 and 1.5 for T ∈ BA1/2 (H). To achieve this, we need to recall
some facts from [3]. Let X = H/N(A) be the quotient space of H by N(A). It can be observed that ⟨·, ·⟩A
induces on X the following inner product:

[x, y] = ⟨x, y⟩A = ⟨Ax, y⟩,

for every x, y ∈ X. We note that (X, [·, ·]) is not complete unless R(A) is a closed subspace in H . However,
de Branges et al. proved in [11] (see also [16]) that the completion of X under the inner product [·, ·] is
isomorphic to the Hilbert space R(A1/2) endowed with the following inner product:

(A1/2x,A1/2y) := ⟨Px,Py⟩, ∀ x, y ∈ H ,

where P stands for the orthogonal projection ofH onto the closure of R(A).
Starting now, we will use the shorthand notation R(A1/2) for the Hilbert space

(
R(A1/2), (·, ·)

)
. Moreover, the

norm induced by (·, ·) on R(A1/2) will be denoted by ∥ · ∥R(A1/2). It is important to highlight that R(A) is dense
in R(A1/2) (as shown in [15]). As R(A) ⊆ R(A1/2), we observe that

(Ax,Ay) = (A1/2A1/2x,A1/2A1/2y) = ⟨PA1/2x,PA1/2y⟩ = ⟨x, y⟩A, (3)

for any x, y ∈ H and so

∥Ax∥R(A1/2) = ∥x∥A, for any x ∈ H . (4)

To learn more about the Hilbert space R(A1/2), we refer the interested reader to [3].
Let us consider now the operator ZA defined by:

ZA : H −→ R(A1/2), x 7−→ ZAx = Ax.

Further, the following useful proposition is stated in [3].

Proposition 2.2. Let T ∈ B(H). Then T ∈ BA1/2 (H) if and only if there exists a unique T̂ ∈ B(R(A1/2)) such that
ZAT = T̂ZA.

Before we move on, it is important to state the following lemmas. The proof of the first one can be found
in [15].
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Lemma 2.3. Let T ∈ BA1/2 (H). Then

(1) ∥T∥A = ∥T̂∥B(R(A1/2)).

(2) ωA(T) = ω(T̂).

Lemma 2.4. Let T ∈ BA1/2 (H). Then

WA
max(T) =Wmax(T̂),

where T̂ is the operator given by Proposition 2.2.

Proof. We have ZAT = T̂ZA, that is, ATx = T̂Ax for all x ∈ H . Now, let λ ∈ WA
max(T), then there exists

(xn) ⊆ H such that ∥xn∥A = 1,

lim
n→+∞

⟨Txn, xn⟩A = λ, and lim
n→+∞

∥Txn∥A = ∥T∥A.

Set yn = Axn ∈ R(A1/2). By using (3) together with (4), we have ∥yn∥R(A1/2) = ∥xn∥A = 1 and

⟨Txn, xn⟩A = (ATxn,Axn) = (T̂yn, yn).

Again, by (4), we infer that
∥Txn∥A = ∥ATxn∥R(A1/2) = ∥T̂yn∥R(A1/2).

On the other hand, by Lemma 2.3 we have ∥T∥A = ∥T̂∥B(R(A1/2)). This implies that λ ∈ Wmax(T̂) and so
WA

max(T) ⊆Wmax(T̂). Conversely, let λ ∈Wmax(T̂), then there exists (yn) ⊆ R(A1/2) such that ∥yn∥R(A1/2) = 1,

lim
n→+∞

(T̂yn, yn) = λ, and lim
n→+∞

∥T̂yn∥R(A1/2) = ∥T̂∥B(R(A1/2)) = ∥T∥A.

Since (yn) ⊆ R(A1/2) for all n, there exists (xn) ⊆ H such that yn = A1/2xn. So, ∥A1/2xn∥R(A1/2) = 1,

lim
n→+∞

(T̂A1/2xn,A1/2xn) = λ and lim
n→+∞

∥T̂A1/2xn∥R(A1/2) = ∥T∥A. (5)

On the other hand, since R(A) is dense in R(A1/2), then for any n ∈N, there exists (xn,k) ⊆ H such that

lim
k→+∞

∥Axn,k − A1/2xn∥R(A1/2) = 0.

This gives

lim
k→+∞

∥Axn,k∥R(A1/2) = 1. (6)

Moreover, by (5) we have

lim
n,k→+∞

(T̂Axn,k,Axn,k) = λ and lim
n,k→+∞

∥T̂Axn,k∥R(A1/2) = ∥T∥A.

Let zk =
xpk,qk

∥Axpk ,qk∥R(A1/2)
, where (pk) and (qk) are suitable strictly increasing sequences. So, by using (6), we

obtain
lim

k→+∞
(T̂Azk,Azk) = λ and lim

k→+∞
∥T̂Azk∥R(A1/2) = ∥T∥A.

On the other hand, we have

(T̂Azk,Azk) = (ATzk,Azk) and ∥T̂Azk∥R(A1/2) = ∥ATzk∥R(A1/2).

So, by applying (3) together with (4), we infer that

lim
k→+∞

⟨Tzk, zk⟩A = λ and lim
k→+∞

∥Tzk∥A = ∥T∥A.

Furthermore, ∥Azk∥R(A1/2) = ∥zk∥A = 1. So, we deduce that λ ∈WA
max(T). Hence the proof is complete.
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At this point, we have the ability to demonstrate the following three theorems. Although the first theorem
has already been established in [5], we can derive the same outcome directly from Lemma 2.4 and [22,
Lemma 2].

Theorem 2.5. Let T ∈ BA1/2 (H). Then WA
max(T) is convex.

Theorem 2.6. Let T ∈ BA1/2 (H). Then the following conditions are equivalent:

(1) 0 ∈WA
max(T).

(2) ∥T∥2A + |λ|
2
≤ ∥T + λ∥2A for any λ ∈ C.

(3) ∥T∥A ≤ ∥T + λ∥A for any λ ∈ C.

Proof. To begin with, it is important to note that Theorem 1.3 enables us to establish the equivalence between
the following statements:

(i) 0 ∈Wmax(T̂).

(ii) ∥T̂∥2
B(R(A1/2))

+ |λ|2 ≤ ∥T̂ + λ∥2
B(R(A1/2))

for any λ ∈ C.

(iii) ∥T̂∥B(R(A1/2)) ≤ ∥T̂ + λ∥B(R(A1/2)) for any λ ∈ C.

On the other hand, by Lemma 2.4, we have WA
max(T) = Wmax(T̂). Moreover, by Lemma 2.3, we have

∥T∥A = ∥T̂∥B(R(A1/2)). Also, notice that T + λ ∈ BA1/2 (H) for any λ ∈ C since BA1/2 (H) is a subalgebra
of B(H). Then from Proposition 2.2, for any λ ∈ C there exists a unique T̂ + λ ∈ B(R(A1/2)) such that
ZA(T + λ) = T̂ + λZA. So, all what remains to prove is that ∥T + λ∥A = ∥T̂ + λ∥B(R(A1/2)) for any λ ∈ C. But the
above equality follows by applying Lemma 2.3 (1) together with the fact that T̂ + λ = T̂ + λ (see [16]).

In order to formulate the third theorem, which extends Theorem 1.5 to A-bounded operators, we need to
introduce the following lemma.

Lemma 2.7. Let T ∈ BA1/2 (H). Then

ΓA(T) ∩WA
max(T) = ΓA(T) ∩WA(T).

Proof. Since WA
max(T) ⊆ WA(T) then the first inclusion holds. Now, let λ ∈ ΓA(T) ∩WA(T). Then λ = ∥T∥A

and there exists a sequence (λn) ⊆ WA(T) such that λ = lim
n→+∞

λn. So, there is a sequence (xn) ⊆ H such that
∥xn∥A = 1 and λn = ⟨Txn, xn⟩A for all n. By applying the Cauchy-Schwarz inequality, we get

|⟨Txn, xn⟩A| = |⟨A1/2Txn,A1/2xn⟩|

≤ ∥Txn∥A∥xn∥A

= ∥Txn∥A

≤ ∥T∥A.

So, lim
n→+∞

∥Txn∥A = ∥T∥A. Hence λ ∈ ΓA(T) ∩WA
max(T).

One of the main results of this article can now be presented. The interior of any subset L in the complex

plane will be denoted by
◦

L.

Theorem 2.8. Let T ∈ BA1/2 (H). Then the following statements are equivalent:

(1) T is an A-normaloid operator,
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(2) WA
max(T) ∩ ∂WA(T) , ∅.

Proof. (1)⇒ (2): Assume that T is an A-normaloid operator. Then by applying Theorem 2.1 together with
Lemma 2.7, we get

ΓA(T) ∩WA(T) = ΓA(T) ∩WA
max(T) , ∅.

So, there exists z ∈ ΓA(T) ∩WA(T). Thus z must lie on the boundary of WA(T). Since z is also in WA
max(T),

WA
max(T) ∩ ∂WA(T) , ∅ as required.

(2)⇒ (1): Assume that WA
max(T)∩ ∂WA(T) , ∅. Notice that in view of Lemma 2.3 we have T is A-normaloid

if and only if T̂ is a normaloid operator on the Hilbert space R(A1/2). So, in order to prove (1), it suffices to
show that

Wmax(T̂) ∩ ∂W(T̂) , ∅.

It was shown in [15] that W(T̂) = WA(T). Hence ∂W(T̂) = ∂WA(T). It is well known that if C is a convex

subset in the complex plane, then
◦

C=
◦

C. Thus ∂C = C\
◦

C= C\
◦

C= ∂C. Therefore, since both of W(T̂) and

WA(T) are convex, the equality ∂W(T̂) = ∂WA(T) implies ∂W(T̂) = ∂WA(T). Moreover, WA
max(T) = Wmax(T̂)

by Lemma 2.4. We deduce that Wmax(T̂) ∩ ∂W(T̂) , ∅. This completes the proof.

Remark 2.9. The authors in [10] provided a characterization of normaloid operators in terms of their numerical
radius. Specifically, an operator T ∈ B(H) is normaloid if and only if its numerical radius ω(T) equals its maximal
numerical radius ωmax(T), where ωmax(T) is defined as

ωmax(T) := sup
{
|λ| : λ ∈Wmax(T)

}
.

Using Lemmas 2.3 and 2.4, we can obtain an analogous characterization of A-normaloid operators. It is worth noting
that this characterization was also established by the third author in [15], but our approach here differs from that used
in [15].

Theorem 2.10. Let T ∈ BA1/2 (H). Then the following statements are equivalent:

(1) T is an A-normaloid operator,

(2) ωA(T) = ωA
max(T),

where ωA
max(T) is the A-maximal numerical radius defined by

ωA
max(T) := sup

{
|λ| : λ ∈WA

max(T)
}
.

On the other hand, similarly to the argument presented in the proof of Theorem 2.6 and with the aid of
Corollary 1.4, we can deduce the following corollary.

Corollary 2.11. Let T ∈ BA1/2 (H). Then there is a unique scalar cA(T) such that

∥T − cA(T)∥2A + |λ|
2
≤ ∥(T − cA(T)) − λ∥2A, for all λ ∈ C. (7)

Moreover, 0 ∈WA
max(T) if and only if cA(T) = 0.

Note that cA(T) = cT̂; the center of mass of T̂. We call cA(T) the A-center of mass of T and we denote
dA(T) = ∥T − cA(T)∥A that we call the A-distance of T to scalars. Clearly, cA(T) is the unique scalar satisfying

dA(T) = inf
λ∈C
∥T − λ∥A .

The theorem below gives a formula for dA(T), where T ∈ BA1/2 (H).



A. Baghdad et al. / Filomat 38:17 (2024), 6299–6310 6307

Theorem 2.12. Let T ∈ BA1/2 (H). Then

d2
A(T) = sup

∥x∥A=1

{
∥Tx∥2A − |⟨Tx, x⟩A|2

}
.

Proof. For any x ∈ H with ∥x∥A = 1, we have

d2
A(T) = ∥T − cA(T)∥2A ≥ ∥(T − cA(T))x∥2A

= ∥Tx∥2A + |cA(T)|2 − 2Re(cA(T)⟨Tx, x⟩A)

≥ ∥Tx∥2A − |⟨Tx, x⟩A|2 + |cA(T) − ⟨Tx, x⟩A)|2

≥ ∥Tx∥2A − |⟨Tx, x⟩A|2 .

Whence
d2

A(T) ≥ sup
∥x∥A=1

{
∥Tx∥2A − |⟨Tx, x⟩A|2

}
.

Conversely,
∥T − cA(T)∥A = inf

λ∈C
∥T − λ∥A = inf

λ∈C
∥(T − cA(T)) − λ∥A .

Then ∥T − cA(T)∥A ≤ ∥(T − cA(T)) − λ∥A for any λ ∈ C. Since T − cA(T) ∈ BA1/2 (H), from Theorem 2.6 we get
0 ∈WA

max(T − cA(T)). So, there exists a sequence (xn) ⊆ H with ∥xn∥A = 1 such that

lim
n→+∞

⟨(T − cA(T))xn, xn⟩A = 0 and lim
n→+∞

∥(T − cA(T))xn∥A = ∥T − cA(T)∥A .

Then lim
n→+∞

⟨Txn, xn⟩A = cA(T) and

∥T − cA(T)∥2A = lim
n→+∞

∥(T − cA(T))xn∥
2
A

= lim
n→+∞

∥Txn∥
2
A − |⟨Txn, xn⟩A|

2 + |cA(T) − ⟨Txn, xn⟩A)|2

= lim
n→+∞

∥Txn∥
2
A − |⟨Txn, xn⟩A|

2

≤ sup
∥x∥A=1

{
∥Tx∥2A − |⟨Tx, x⟩A|2

}
.

Consequently,
d2

A(T) = sup
∥x∥A=1

{
∥Tx∥2A − |⟨Tx, x⟩A|2

}
.

The proof is complete.

Remark 2.13. Let T ∈ BA1/2 (H), there is a sequence (xn) ⊆ H with ∥xn∥A = 1 such that lim
n→+∞

⟨Txn, xn⟩A = cA(T),

we derive that cA(T) ∈ WA(T). However, cA(T) need not be contained in WA
max(T). Indeed, in C2 let A =

[
1 0
0 1

]
and T =

[
3 0
0 1

]
. According to [8], the A-center of mass of T is cA(T) = 2, while WA

max(T) = {3} (see [4]).

The following corollary gives a sufficient and necessary condition to have cA(T) ∈WA
max(T).

Corollary 2.14 (Pythagorean Relation). Let T ∈ BA1/2 (H). Then the following statements are equivalent:

(1) cA(T) ∈WA
max(T),

(2) d2
A(T) + |cA(T)|2 = ∥T∥2A.
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Proof. (1)⇒ (2): Assume that cA(T) ∈WA
max(T). There is a sequence (xn) ⊆ H with ∥xn∥A = 1 such that

lim
n→+∞

⟨Txn, xn⟩A = cA(T) and lim
n→+∞

∥Txn∥A = ∥T∥A .

As above, we have

∥T − cA(T)∥2A ≥ lim
n→+∞

∥(T − cA(T))xn∥
2
A

= lim
n→+∞

∥Txn∥
2
A − |⟨Txn, xn⟩A|

2

= ∥T∥2A − |cA(T)|2 .

Hence

∥T − cA(T)∥2A + |cA(T)|2 ≥ ∥T∥2A .

Taking λ = −cA(T) in (7), we obtain

∥T − cA(T)∥2A + |cA(T)|2 ≤ ∥T∥2A . (8)

Hence
∥T − cA(T)∥2A + |cA(T)|2 = ∥T∥2A .

(2)⇒ (1): Assume that d2
A(T)+ |cA(T)|2 = ∥T∥2A. From the proof of Theorem 2.12, there is a sequence (xn) ⊆ H

with ∥xn∥A = 1 such that lim
n→+∞

⟨Txn, xn⟩A = cA(T) and

d2
A(T) = ∥T − cA(T)∥2A = lim

n→+∞
∥Txn∥

2
A − |⟨Txn, xn⟩A|

2

= lim
n→+∞

∥Txn∥
2
A − |cA(T)|2 .

Remembering the hypothesis, we infer that lim
n→+∞

∥Txn∥A = ∥T∥A. Consequently, cA(T) ∈WA
max(T).

Remark 2.15. Let T ∈ BA1/2 (H). From Remark 2.13, cA(T) ∈ WA(T). So, |cA(T)| ≤ ωA(T). We know that
WA

max(T) ⊆WA(T), the following question arises: what about |cA(T)| and ωA
max(T)?

For any T ∈ BA1/2 (H), define
mA

max(T) := inf
{
|λ| : λ ∈WA

max(T)
}
.

The following answers the previous question.

Theorem 2.16. Let T ∈ BA1/2 (H). Then
|cA(T)| ≤ mA

max(T).

In particular,
|cA(T)| ≤ ωA

max(T).

Proof. By an argument of compactness, there exists α ∈ WA
max(T) such that |α| = mA

max(T). Hence there is a
sequence (xn) ⊆ H with ∥xn∥A = 1 satisfying

α = lim
n→+∞

⟨Txn, xn⟩A and lim
n→+∞

∥Txn∥A = ∥T∥A .

Therefore, we have

∥T − cA(T)∥2A ≥ ∥(T − cA(T))xn∥
2
A

= ∥Txn∥
2
A + |cA(T)|2 − 2Re(cA(T)⟨Txn, xn⟩A)

≥ ∥Txn∥
2
A + |cA(T)|2 − 2 |cA(T)| |⟨Txn, xn⟩A| .
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It results that

∥T − cA(T)∥2A ≥ ∥T∥
2
A + |cA(T)|2 − 2 |cA(T)|mA

max(T) (9)

= ∥T∥2A − (mA
max(T))2 + (mA

max(T) − |cA(T)|)2.

Thus
∥T − cA(T)∥2A + (mA

max(T))2
≥ ∥T∥2A + (mA

max(T) − |cA(T)|)2.

We see that

∥T − cA(T)∥2A + (mA
max(T))2

≥ ∥T∥2A (10)

and from (8), we get mA
max(T) ≥ |cA(T)|.

Remark 2.17. In [13], it is proved that

∥T∥2 ≤ d2(T) + ω2(T) (11)

for any T ∈ B(H). From (10), we have

∥T∥2A ≤ d2
A(T) + (mA

max(T))2
≤ d2

A(T) + ω2
A(T). (12)

Note that (12) is a refinement of (11) if we take A = I. Moreover, (9) yields:

∥T∥2A + |cA(T)|2 ≤ d2
A(T) + 2 |cA(T)|mA

max(T).

Then
2 ∥T∥A |cA(T)| ≤ d2

A(T) + 2 |cA(T)|mA
max(T).

Consequently, if cA(T) , 0 (i.e., 0 <WA
max(T)), then

∥T∥A ≤ mA
max(T) +

1
2

d2
A(T)

|cA(T)|
. (13)

Therefore, if cA(T) , 0, we get from (12) and (13)

∥T∥A ≤ min
(d2

A(T) + (mA
max(T))2

)1/2
, mA

max(T) +
1
2

d2
A(T)

|cA(T)|

 .
Note that if cA(T) = 0, then ∥T∥A = dA(T).
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