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Abstract. This study explores the A-maximal numerical range of operators, represented as W4 (-), where
A is a positive bounded linear operator on a complex Hilbert space . The research provides new insights
into the properties and characterizations of A-normaloid operators, including an extension of a recent
result by Spitkovsky in [A note on the maximal numerical range, Oper. Matrices 13 (2019), 601-605].
Specifically, it is demonstrated that an A-bounded linear operator T on H is A-normaloid if and only if
WA (T) N OW(T) # 0, where dW,(T) denotes the boundary of the A-numerical range of T. Furthermore,

novel A-numerical radius inequalities are introduced that generalize and enhance prior well-known results.

1. Introduction and Preliminaries

The numerical range and radius of a bounded linear operator on a Hilbert space have been extensively
studied in operator theory for many decades. They provide essential geometric and analytic information
about the operator and have a wide range of applications in various areas of mathematics and physics.
Recently, the A-numerical range, which is a natural generalization of the classical numerical range, has
been introduced in [5] for a positive bounded linear operator A on a Hilbert space. The A-numerical range
has been studied extensively, and its supremum modulus is known as the A-numerical radius. For more
details on these concepts, consult the recent book by Bhunia et al. [9].

Despite its importance in operator theory, the A-maximal numerical range has received less attention
in the literature. In this study, we aim to provide new insights into the properties and characterizations of
A-normaloid operators by exploring the A-maximal numerical range. We will introduce novel A-numerical
radius inequalities that generalize and enhance prior well-known results. The results of this study will
contribute to the understanding of the A-maximal numerical range and provide a foundation for further
research in this area.

To achieve the goals of this study, we consider a non-trivial complex Hilbert space H with inner product
(-,-) and associated norm || - ||. We use the notation B(H) to denote the C*-algebra of all bounded linear
operators on H, with the identity operator denoted by Iy, or simply I when no confusion arises. Throughout
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this paper, we focus on operators in B(#), and we use the notation T*, R(T), and N(T) to denote the adjoint,
range, and null space of an operator T, respectively.

The following facts will be useful for the remainder of this article. An operator T is considered positive
if (Tx, x) > 0 for every x € H. We denote the cone of positive (semi-definite) operators as B(H)*, given by

B(H)* = {T € B(H) : (Tx,x) 2 0 forall x € H.

Throughout the rest of this article, A € B(H)* is a nonzero operator that defines a positive semidefinite
sesquilinear form in the following manner:

(94 HxH — C, (x, y) — (X, ]/>A = (Ax, ]/> — <A1/2x,A1/2y),

where A2 represents the square root of A. We denote by || - ||4 the seminorm induced by (-,-), which is
given by |lx|l4 = /(x,x)4 = |A2x]| for every x € H. It can be checked that ||x||4 = 0 if and only if x € N(A).
So, || - |4 is a norm on H if and only if A is one-to-one. Furthermore, one may verify that the semi-Hilbert
space (H, | - Il4) is complete if and only if R(A) is closed in (H, || - ||). For a given T € B(H), if there exists

¢ > 0 such that ||Tx||4 < c|lx]|4 for all x € R(A), then it holds:

ITx]|4
[[Tlla :== sup —IIxII = sup |[Tx|la < co.
xeR(A), A eR@),
x#0 [Ixlla=1

If A = I, we get the classical norm of an operator T which will be denoted by ||T||. From now on, we denote
BA(H) :={T € B(H) : ||ITlla < co}. It is important to note that B4(#) is not generally a subalgebra of B(H)
(see [15]). Further, it is not difficult to check that ||T||4 = 0 if and only if ATA = 0. Recently, there are many
papers that study operators defined on a semi-Hilbert space (H, || - [|4). One may see [5-7, 9, 17, 19, 20] and
their references.

Let T € B(H). An operator S € B(H) is called an A-adjoint operator of T if (Tx,y), = (x,Sy), for all
x,y € H (see [1]). Clearly, S is an A-adjoint of T if and only if AS = T*A, i.e,, S is a solution in B(H) of
the equation AX = T*A. We mention here that this type of operator equations can be studied by using the
following famous theorem due to Douglas (for its proof see [12]).

Theorem 1.1. If T, U € B(H), then the following statements are equivalent:
1) RU) < R(T),
(2) TS = U for some S € B(H),
(3) there exists A > 0 such that ||[U*x|| < A||T*x|| for all x € H.

If one of these conditions holds, then there exists a unique solution of the operator equation TX = U, denoted by Q,
such that R(Q) € R(T*). Such Q is called the reduced solution of TX = U.

Let B y12(H) denote the set of all operators that admit A'/2-adjoints. An application of Theorem 1.1 shows
that

Byi2(H) = {T € B(H) : there exists A > 0 such that ||Tx||4 < Allx]|4 for allx € H}.

If T € Bgiz(H), then T is said A-bounded. It can be observed that if T € B,12(H), then T(N(A)) € N(A).
Further, the following property ||TS||la < [IT]|allS|la holds for all T, S € B4i2(H). Also, if T € Byi2(H), then
the authors of [14] showed that
ITlla =sup{lITxlla : x € H, |lxlla =1}
= sup {KTx, yal : x,y € H, lIxlla = llylla = 1}.
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To obtain additional information on the category of A-bounded operators, we suggest that the reader
consult [3, 15, 20] and the sources cited within those works. Note that B412(H) is a subalgebra of B(H)
which is neither closed nor dense in B(H). Moreover, the following inclusions:

B12(H) € BA(H) € B(H) 1)

hold. It should be noted that typically, the inclusions specified in (1) are strict, which means that there are
elements that belong to one set but not to the other. However, if A is an injective operator, then obviously
B2 (H) = BA(H). Further, if A has a closed range in H, then it can be seen that BA(H) = B(H). So, the
inclusions in (1) remain equalities if A is injective and has a closed range. We refer to [1-3, 15] and the
references therein for an account of results related the theory of semi-Hilbert spaces.

Baklouti et al. introduced the concept of the maximal numerical range induced by a positive operator
A in their publication [5]. To be more precise, the definition is as follows.

Definition 1.2. Let T € BA(H). The A-maximal numerical range of T, denoted by W4, (T), is defined as
WA (T) = {A € C : there exists (x,) € H , Ilxulla = 1, lim (Tx,, %04 = A, and lim [|Txla = [l
n—+00 n—-+oo

For every T € B(H), it was shown in [5] that W4, (T) is non-empty, convex and compact subset of C.
Notice that the notion of the maximal numerical range of an operator T € B(H), denoted by Wax(T) (that
is when A = I; the identity operator), was first introduced by Stampfli in [22], in order to determine the
norm of the inner derivation acting on B(H). Recall that the inner derivation d7 associated with T € IB(H)
is defined by

Or : B(H) — B(H), X — TX - XT.

For this, in the same paper [22], the author first established the following.
Theorem 1.3. Let T € B(H). Then the following conditions are equivalent:

(1) 0 € Winax(T),

() ITI? + AP < |IT + Al for any A € C,

) TN < IT + All for any A € C.
Here T + A is denoted to be T + Al for any A € C.
Corollary 1.4. Let T € B(H). Then there is a unique scalar cy such that

IT = crl* + AP < (T = cr) = AlI?, forall A € C.

Moreover, 0 € Winax(T) if and only if cr = 0.

The scalar cr is called the center of mass of T. It is worth noting that this scalar is the only one that satisfies
the following:
IT = crll = inf ||IT = All.
AeC

The scalar ||T — cr|| is denoted by d(T) and is called the distance of T to scalars. The author in [22] proved
also that for any T € B(H)
67|l = 2d(T).

Recall that an operator T € B(H) is said to be normaloid if w(T) = ||T||, where w(T) is denoted to be the
numerical radius of T which is given by

w(T) =sup{lA| : A € W(T)}.
Here W(T) is denoted to be the numerical range of T and it is defined by Toeplitz in [23] as
W(T) := {Tx,x): x € H with ||x|| = 1}.

Equivalent condition is r(T) = ||T]|, see, [18]. Here, r(T) is the spectral radius of T. Recently, Spitkovsky in
[21] gave the following characterization of a normaloid operator.
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Theorem 1.5. Let T € B(H). Then the following conditions are equivalent:

(1) T is a normaloid operator,

(2) Wmax(T) N IW(T) # 0.
Here JL stands for the boundary of a subset L in the complex plane.
Notions of the numerical range and numerical radius are generalized in [5] as follows.
Definition 1.6. Let T € B(H). The A-numerical range and the A-numerical radius of T are respectively given by

WA(T) := {Tx,x)a : x € H with ||x||a = 1},

and
wA(T) :=sup{A] : A € Wa(T)}.
It is important to mention that w(T) may be equal to +co for some T € B(H) (see [15]). However, wa(-)

defines a seminorm on B 412(H) which is equivalent to ||T|| 4. More precisely, for any T € Bi2(H), we have

1
5 ITlla < @a(T) <[Tlla, ()

see [5].
Recently, the concept of A-normaloid operators is introduced by the third author in [15] as follows.

Definition 1.7. An operator T € B 412(H) is said to be A-normaloid if ra(T) = ||T||a, where
ra(T) = Tim [Tl

Some characterizations of A-normaloid operators are proved in [15]. In particular, we have the following
proposition.
Proposition 1.8 ([15]). Let T € B4u2(H). Then the following assertions are equivalent:

(1) T is A-normaloid,

(2) IT™"la = IITII} for all positive integer n,

() wa(T) =ITlla,

(4) there exists a sequence (x,) C H such that ||x,|la = 1, lirp | Tx,lla = T4 and lirP KTx,, x,04] = wa(T).
n—+oo n—+oo

The purpose of our work is to provide new characterizations of A-normaloid operators. Our approach is to
study the operator range R(A'/?) equipped with its canonical Hilbertian structure, denoted by R(A'/?), and
utilizing the connection between A-bounded operators and operators acting on the Hilbert space R(A'/?).
We extend Theorem 1.5 to the context of semi-Hilbert spaces and establish several new properties related to
the A-maximal numerical range of A-bounded operators. Our primary objective is to generalize Theorem
1.3 for T € B4i2(H), and we also provide a sufficient and necessary condition for the A-center of mass of
an operator T € B 412(H) to belong to W4, (T). Additionally, we investigate other properties of A-bounded
operators.
For the remainder of this paper, we will use the notation I'4(T) to denote the set defined as:

Ta(T) = {z € C : |2 = ITlla}.
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2. Main Results

In this section, we present our main results, beginning with a theorem that provides another useful

characterization of A-normaloid operators. We use the notation L to denote the closure of any subset L in
the complex plane.

Theorem 2.1. Let T € B412(H). Then the following conditions are equivalent:
(1) T is A-normaloid,
(2) TA(T)NWu(T) # 0.

Proof. (1) = (2): Assume that T is A-normaloid. Then by Proposition 1.8 we have wa(T) = ||T||a. So, there

exists a sequence (z,) € Wa(T) such that lirP |zu| = |IT||a. By the compactness of W4(T) we can, taking
n—+00
a subsequence of (z,) if needed, assume that (z,) converges to some z € W4(T). Therefore, |z| = ||T]|4, so

z € Tu(T) N Wu(T).
(2) = (1): Let z € Ta(T) N Wa(T). We have wa(T) = |z| = ||Tll4. From Inequalities (2), we deduce that
waA(T) =|IT||4. Thatis, T is A-normaloid. O

Our next objective is to generalize Theorems 1.3 and 1.5 for T € B12(H). To achieve this, we need to recall
some facts from [3]. Let X = H/N(A) be the quotient space of H by N(A). It can be observed that (-, )4
induces on X the following inner product:

[x,y] = (x, p)a = (Ax, ),

for every x, 7 € X. We note that (X, [+, -]) is not complete unless R(A) is a closed subspace in H. However,
de Branges et al. proved in [11] (see also [16]) that the completion of X under the inner product [, ] is
isomorphic to the Hilbert space R(A/?) endowed with the following inner product:

(A'2x, AV?y) == (Px,Py), Vx,y € H,

where P stands for the orthogonal projection of H onto the closure of R(A).

Starting now, we will use the shorthand notation R(A'/2) for the Hilbert space (R(Al/ 2, (, -)). Moreover, the
norm induced by (-, -) on R(A"/?) will be denoted by || - |lg(a12). It is important to highlight that R(A) is dense
in R(A/?) (as shown in [15]). As R(A) € R(A'/?), we observe that

(Ax, Ay) = (A2 AV?x, AV2AV2y) = (PAY?x, PAV?y) = (x, y)a, 3
for any x, y € H and so
lAxllga12) = lIxlla, forany x € H. 4)

To learn more about the Hilbert space R(A'/?), we refer the interested reader to [3].
Let us consider now the operator Z4 defined by:

Za: H — RAY?), x —> Zax = Ax.
Further, the following useful proposition is stated in [3].

Proposition 2.2. Let T € B(H). Then T € Buz(H) if and only if there exists a unique T € B(R(AY2)) such that
ZaT =TZ4.

Before we move on, it is important to state the following lemmas. The proof of the first one can be found
in [15].
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Lemma 2.3. Let T € B12(H). Then
(1) I1Tlla = I Tilperearey)-
2) wa(T) = w(D).
Lemma 2.4. Let T € Bi12(H). Then
WAL(T) = Winax(D),

where T is the operator given by Proposition 2.2.

Proof. We have Z,T = TZ 4, that is, ATx = TAx for all x € H. Now, let A € WA (T), then there exists
(x,) € H such that ||x,|la = 1,

lim (Tx,,x,)4 = A, and  lim ||Txlla = [|T]|a-
n—+o0o n—+oo
Set y, = Ax, € R(A?). By using (3) together with (4), we have |[y,llgaiz) = [IXalla = 1 and

(T, Xu)a = (ATxn, Axy) = (TYu, ).
Again, by (4), we infer that
ITxnlla = AT Xullgear2) = ITYnllrear2)-

On the other hand, by Lemma 2.3 we have ||T|| A = ”T”]B('R a1y, This implies that A € Wmax(i:) and so
WA (T) € Winax(T). Conversely, let A € Wi (T), then there exists (v,) € R(AY/2) such that Ynllraizy = 1,

nlirpm(Tyn, Yn) = A, and nl_iglm ||Tyn||7z(A1/2) = ||T||]B(7<(A1/2)) =ITl|a-
Since (y,) C R(A'/?) for all n, there exists (x,) C H such that y, = AY?x,. So, |AY*x,llgaiz) = 1,

lim (TAY2x,, AY?x,) = A and hm ||TA1/2xn||R(A1/z) = ||T]|a. (5)

n—+0o
On the other hand, since R(A) is dense in R(A'/?), then for any 1 € IN, there exists (x,,x) € H such that

lim [|Ax, = A" xullgcarey = 0.

k—+
This gives
kgfflw A kllgarzy = 1. (6)

Moreover, by (5) we have

lim (TAxn ke Axp ) = A and I%im |ITAxn,k||R(A1/2) =|IT||a-
n,Kk—+00

n,k—+oco

xlﬂquk

Letzp = ——m—MM—
1AXp, g llRea12)

, where (pr) and (gx) are suitable strictly increasing sequences. So, by using (6), we
obtain R
1_1)I+Iloo(TAZk, Azp) = A and kl_lglo ITAzkllgcar2y = IT|a-
On the other hand, we have
(TAzi, Az) = (ATz, Az) and [TAzillgeaey = IATzelkgoare).
So, by applying (3) together with (4), we infer that

lim (Tzy, zk)a = Aand  lim [|Tz|a = ||T]|a.
k—+c0 k—+oo

Furthermore, ||Azkllga12) = llzklla = 1. So, we deduce that A € W, (T). Hence the proof is complete. [J

max
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At this point, we have the ability to demonstrate the following three theorems. Although the first theorem
has already been established in [5], we can derive the same outcome directly from Lemma 2.4 and [22,
Lemma 2].

Theorem 2.5. Let T € Byi2(H). Then W4, (T) is convex.

Theorem 2.6. Let T € B412(H). Then the following conditions are equivalent:
(1) 0 € Wia(T)-
) ITIE +IAP < IT + A3, forany A € C.
) ITlla < IIT + Alla forany A € C.

Proof. Tobegin with, it is important to note that Theorem 1.3 enables us to establish the equivalence between
the following statements:

(i) 0 € Winax(T).

(ii) [T + AR <|IT + A2 for any A € C.

B(R(A!/2)) B(R(A2))

(111) ”T”]B(R(Al/z)) < ||T + /\”]B('R(Al/z)) for any AeC.

On the other hand, by Lemma 2.4, we have maX(T) max(/7:). Moreover, by Lemma 2.3, we have
ITla = II?IIB(R(Al/z)). Also, notice that T + A € Bai2(H) for any A € C since Bai2(H) is a subalgebra
of B(H). Then from Proposition 2.2, for any A € C there exists a unique T+Ae€ B(R(A'?)) such that
ZuT+AN) =T+ /\ZA So, all what remains to prove is that ||T + A4 = ||T + /\IIJB(R a1ny for any A € C. But the
above equality follows by applying Lemma 2.3 (1) together with the fact that T+A=T+A(see[16]). O

In order to formulate the third theorem, which extends Theorem 1.5 to A-bounded operators, we need to
introduce the following lemma.

Lemma 2.7. Let T € B12(H). Then
TA(T) N Wigo(T) = Ta(T) N Wa(T).

Proof. Since W4, (T) € W4(T) then the first inclusion holds. Now, let A € T4(T) N W4(T). Then A = ||T||4
and there exists a sequence (A,) € Wa(T) such that A = lim A,. So, there is a sequence (x,) € H such that

n—+oo

llxnlla =1 and A, = (Txy, x4)4 for all n. By applying the Cauchy-Schwarz inequality, we get

KT, X)al = KAV Tx,, A2,
< ITxnllallxnlla
= |ITxnlla
< ITlla.

So, hm [ITxulla = IT|la- Hence A € To(T) N maX(T) O

One of the main results of this article can now be presented. The interior of any subset L in the complex
plane will be denoted by L
Theorem 2.8. Let T € B 12(H). Then the following statements are equivalent:

(1) T is an A-normaloid operator,
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(2) WAL(T) N IWA(T) # 0.

Proof. (1) = (2): Assume that T is an A-normaloid operator. Then by applying Theorem 2.1 together with
Lemma 2.7, we get

T4(T) N Wa(T) = T4(T) N Wit (T) # 0.

So, there exists z € T4(T) N Wa(T). Thus z must lie on the boundary of W4(T). Since z is also in W4, (T),
WA (T) N IWA(T) # 0 as required.

(2) = (1): Assume that W4 (T) N dW(T) # 0. Notice that in view of Lemma 2.3 we have T is A-normaloid
if and only if T is a normaloid operator on the Hilbert space R(A'/2). So, in order to prove (1), it suffices to
show that

ax

Winax(T) N OW(T) # 0.

It was shown in [15] that W(T) = Wu(T). Hence 8W(T) = dW4(T). It is well known that if C is a convex

o

subset in the complex plane, then (sza Thus dC = C\ E]= E\ C= dC. Therefore, since both of W(”T\) and
W(T) are convex, the equality BW(T) = dWu(T) implies BW(T) = dWa(T). Moreover, WA (T) = Wmax(f)
by Lemma 2.4. We deduce that Wi« (T) N dW(T) # 0. This completes the proof. [

Remark 2.9. The authors in [10] provided a characterization of normaloid operators in terms of their numerical
radius. Specifically, an operator T € B(H) is normaloid if and only if its numerical radius w(T) equals its maximal
numerical radius wmax(T), where wmax(T) is defined as

Omax(T) 1= sup {[A] 1 A € Winax(T)}.

Using Lemmas 2.3 and 2.4, we can obtain an analogous characterization of A-normaloid operators. It is worth noting
that this characterization was also established by the third author in [15], but our approach here differs from that used
in [15].

Theorem 2.10. Let T € B12(H). Then the following statements are equivalent:
(1) T is an A-normaloid operatot,

(2) wa(T) = wpax(T),

max

where wi . (T) is the A-maximal numerical radius defined by

Wh(T) = sup{IAl: A € WA (D).

On the other hand, similarly to the argument presented in the proof of Theorem 2.6 and with the aid of
Corollary 1.4, we can deduce the following corollary.

Corollary 2.11. Let T € B12(H). Then there is a unique scalar ca(T) such that
IT = ca(DI + AP < (T = ca(T) = All3, forall A € C. 7)
Moreover, 0 € WA (T) if and only if ca(T) = 0.

Note that ca(T) = c5; the center of mass of T. We call cA(T) the A-center of mass of T and we denote

da(T) = |IT = ca(T)ll 4 that we call the A-distance of T to scalars. Clearly, c4(T) is the unique scalar satisfying

da(T) = inf |IT = Alls -

The theorem below gives a formula for da(T), where T € B 412(H).
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Theorem 2.12. Let T € Byiz(H). Then

d4(T) = sup {ITxIl} — KTx, x)al}.

[lxll4=1

Proof. For any x € H with ||x||4 = 1, we have

d5(T) = IIT = ca(DI; = (T = ca(D)xll;
= ITxIl; + lea(D)I* — 2Re(ca(T){Tx, x)4)
> || Tl = KTx, x)al® + lea(T) = (Tx, x)4)F°
> (|5 — KT, x)al* .

Whence
d(T) > sup {ITxIl} — KTx, x)al}

llxlla=1

Conversely,
IT = ca(Dlly = inf IT = Alls = inf (T = ca(T)) = All4 -
AeC AeC

Then ||T — ca(T)ll4 < I(T = ca(T)) — All, for any A € C. Since T — ca(T) € B4i2(H), from Theorem 2.6 we get
0 € WA_ (T — ca(T)). So, there exists a sequence (x,) C H with ||x,|l, = 1 such that

Tim (T = ca(M)n, xda =0 and  lim (T = ca(M)xally = IT = ca(Dl,

Then lirP (Txyn, xu)4 = ca(T) and

IT —ca(DIfi = lim (T~ ca(M)xaly
= m Tl = KT, %4 + lea(T) = (T, 2,))P
= lim [ITxlfy = KT, x0)al”
< sup {2l - KTx, x)al}.
[Ixll4=1
Consequently,

d(T) = sup {ITxIl} — KTx, x)al}.

llxlla=1

The proof is complete. [

Remark 2.13. Let T € B4i2(H), there is a sequence (x,) € H with ||x,ll4 = 1 such that liIP (Txy, x104 = ca(T),
n—+00

we derive that co(T) € Wa(T). However, c4(T) need not be contained in W4 (T). Indeed, in C? let A = [(1) (1)]

3

and T = [0

(1)] According to [8], the A-center of mass of T is ca(T) = 2, while W4, (T) = {3} (see [4]).

The following corollary gives a sufficient and necessary condition to have c4(T) € W4 (T).
Corollary 2.14 (Pythagorean Relation). Let T € B12(H). Then the following statements are equivalent:
(1) ca(T) € Wian(T),
(2) d4(T) + lea(T)P = ITII.
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Proof. (1) = (2): Assume that c4(T) € W4 (T). There is a sequence (x,) € H with ||x,|l, = 1 such that

lim (Txy, xp)a = ca(T) and L {[[Tx,lls = [IT]l4 -
n—+00 n—+oo

As above, we have
IT = ca(DI > lim (T~ ca(T)xal;
= lim ([T} = KT, x4l
= IITI = lea(T)P.
Hence
IT = ca(T)IG + lea(DF = IITIF -
Taking A = —c4(T) in (7), we obtain
IT = ca(T)IG + lea(DF < ITIF - ®)

Hence
IT = ca(DI + lea(DP = ITI -

(2) = (1): Assume that di(T) +lea(D)P? = ||T||§‘. From the proof of Theorem 2.12, there is a sequence (x,,) € H
with ||x,]|4 = 1 such that lirp (Txy, x494 = ca(T) and
n—+oo
d3(T) = IIT = ca(DI; = m [ Txalfy — KTxu, xu)al®

= lim ||[Tx,|3 = lea(T).
n—+oo

Remembering the hypothesis, we infer that lirP ITx,ll4 = |ITll4. Consequently, c4(T) € wa (7). O
n—+00

Remark 2.15. Let T € Byi2(H). From Remark 2.13, co(T) € Wa(T). So, lca(T)| £ wa(T). We know that
WA (T) € Wa(T), the following question arises: what about |c4(T)| and w? . (T)?
For any T € B12(H), define
Mo (T) = inf{|A] : A € WA (T)}.
The following answers the previous question.

Theorem 2.16. Let T € By (H). Then
lca(T)] < 117y (T).

In particular,
lea(T)| < Wipax(T).

Proof. By an argument of compactness, there exists a € W2, (T) such that |a| = mZ, (T). Hence there is a
sequence (x,) € H with ||x,||4 = 1 satisfying

a= Hm (Txy,x,)a and  Hm [Txlla =[Tls-

n—+oo
Therefore, we have
IT = ca(DIE = (T = ca(D)xall;
= |ITxull} + lea(T)P = 2Re(ca(T)(Txu, Xu)a)
> ITxul3 + lea(T) = 2lca(T) KT X, X1 ) 4l
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It results that

IT = ca(DIE = ITIA + lea(T)P = 2 lca(T) | mihan(T)
=TI = (e (T))? + (M (T) = lea(T)])?.

Thus

IT = ca(DIE + (o (T))? 2 ITIG + (ma(T) = lea(T))>.

We see that
IT = ca(DI + (e (T))* 2 ITIEG
and from (8), we get m4_ (T) > |ca(T)|. O
Remark 2.17. In [13], it is proved that
ITI? < d*(T) + w*(T)
forany T € B(H). From (10), we have
ITIEy < d5(T) + (10 (T))* < d5(T) + w (D).

Note that (12) is a refinement of (11) if we take A = 1. Moreover, (9) yields:

ITIE + lea(T)P < d3(T) + 2lea(T)| mimax(T).

max

Then
2|[Tlla lea(T)] < d5(T) + 2 [ea(T)| mig o (T)-

Consequently, if ca(T) # 0 (i.e., 0 ¢ WA, (T)), then
1 d5(D)

Tlg < mf (T) + = .
Tl ax(T) 3 enlD)]

Therefore, if ca(T) # 0, we get from (12) and (13)

Note that if cA(T) = 0, then ||Tl|4 = da(T).
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