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Abstract. In this article, a class of fractional stochastic differential equations (FSDEs) with time-delays and
non-instantaneous impulses is investigated. With the help of the Krasnoselskii’s fixed point theorem and
contraction mapping principle, we derive the existence and uniqueness of the solutions to the purposed
system. Subsequently, by virtue of the stochastic analysis techniques and generalized Gronwall inequality,

the Ulam-Hyers stability (U-Hs) of the addressed system is established. At last, we present an example to
illustrate the theoretical results.

1. Introduction

Fractional differential equations (FDEs) are widely applied in all aspects of applied mathematics in light
of its good memory, and a large number of scholars have made great contributions to this subject. For
example, in Physics [12], Biology [24], and Engineering [29]. For a systematic knowledge of the fractional
differential equations, the reader can see [22, 23, 38] and references therein.

In recent years, many experts have gained a strong interest in fractional impulsive differential equations
(FIDESs), it’s due to the sudden change of the state of the system at some moments. The pulses were
classified as instantaneous and non-instantaneous impulses based on the duration of the mutation or
perturbed process. Up to now, some scholars have studied such equations and obtained many interesting
results. See also [8-10, 16, 17, 21, 25, 26, 30, 31, 35] and the references therein.

Moreover, we find articles about FIDEs, a huge amount of papers focus on solving the fixed moment
impulsive problem. However, in real phenomena, mutations do not always occur at fixed points, normally
at random points. The solution of the stochastic FIDEs is a stochastic process, which is fundamentally
different from deterministic FIDEs. Currently, some properties [1, 3, 5, 11, 13, 19, 36] of solutions of FSDEs
with instantaneous impulses are studied. However, there are few relevant properties of the solutions of
fractional stochastic differential systems involving non-instantaneous impulses. Therefore, the research on
this topic has great research prospects.
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The research of the existence of fractional differential system solutions is an eternal topic [24, 6, 9, 16,
17,19, 21,27, 35, 37]. In literature [37], the equations in the following form are investigated thoroughly:

oDIT(t) = a(t, TH),teU=[0TLt#t;,j=12...m,
AT |y, = (T(E), j=1,2,...,m, (1.1)
7(0) = 7o,

where €D/, is the Caputo differential derivative, 4 € (0,1), and 0 : U x R — R is appropriate continuous
function to be specified later. I; : R — R(j = 1,2,...,m) are appropriate functions, and 0 = f; < t; <... <
tw <twm =T, letU; = (tj, tj+1],j =1,2,...,m,and U = [0,t1], and AT |;=, = Ij(T(t]T)), where T(t]T) and
T(t]f) represent the left and right limits of 77(t) at ¢;. The existence results of the solutions were obtained by
the authors through using the Krasnoselskii’s fixed point theorem. Indeed, instantaneous impulses cannot
describe certain dynamics of the evolving process. For instance, when treating uremic patients in pharmacy
dynamics, the natural accumulation of toxins in the body and the dialysis process can be approximated as
a non-instantaneous impulse process.

We notice that Luo et al. studied the following Hyers-Ulam stability of solutions for the FDEs with
time-varying delays and non-instantaneous impulses in [17]:

CDIT () = AT (t) + BT (t — t(t)) + o(t, T (1), T(t — 1(t)),
tel0,H]U (sj,tm],j =1,2,...,p,
T = ¢ (70, T (7)), te(tis].i=12....p, (12)
T(s}“)z']’(s]?):?’(tj), i=L12,...,p
T(t) = x(), te[-1,0]

where C]Dg+ is the Caputo differential derivative, 0 < g < 1, U = [-1, T], let two increasing finite sequences
of {t;} and {s;} satisfy the relation sp = 0 < t; <81 <fp <= <s, <spy1 =T, fort € U, 0 < 1(f) < 7,
A and B are bounded operators defined on R. Let 0 : UX R X R — R is a continuous function and
¢; : UXR X R — R be continuous non-instantaneous impulsive functions. Let x(t) € C([-7,0], R) and
llx]l == sup{lx(f)| : =7 <t < 0}. By utilizing the Krasnoselskii’s fixed point theorem, the authors derived the
existence conclusions for the solutions of the consider system.

Luo and Zhu [19] investigated the following stochastic FDEs with instantaneous impulses:

C]Dgﬂ'(t) =AT(t)+o(t, T (), T (t-h))

AW (t) B |
T,teU-[O,T],t#t,, (13)
()= 7(6) BT ()= 12

T =o¢t), tel-h0]

+ @, T (), T (t—-h)

where Cng+ is the Caputo differential derivative, % <g<1 AeR"xR" h € R* denotes the delay,

o: UXR"XR"™ - R™, ¢ : UXR" X R™ — R™¢ are continuous functions, W(t) is a d-dimensional standard
Wiener process, and 7 (f) is a R"-valued random variable represented as 7 (t) = (71(t), T2(t), .. LT,
T(t}f) and T(t;') are the left and right limits of 77(¢) at time ¢;, respectively. 7 (¢) is left continuous at t = ¢},

letO0 =1ty <t; <ty <--- <ty <ty =T and ¢(t) is history function satisfying ]E(|(po|2) < o0, where ¢g = ¢(0).
The authors obtained the existence conclusions of the solutions by using contraction mapping principle
and some assumptions.

It is well known that the stability analysis of the solutions is crucial in differential systems. Nevertheless,
the analysis of the U-Hs is one of the most interesting themes for fractional systems, see [3, 4, 6, 11, 14,
15,17, 18, 27, 28, 32]. In detail, in [15, 17, 18], the authors employed the generalized Grinwall’s inequality
to obtain U-Hs of FDEs. In [11] the authors derived the U-Hs of the Riemann-Liouville fractional neutral
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functional stochastic differential equation with impulses based on assumptions. In [14, 32], the authors
made a thorough inquiry of Ulam-Hyers-Mittag-Leffler stability of fractional delay differential system, by
virtue of the Picard operator method and the Grinwall’s inequality, obtained the stability results of the
considered system. In [28], the U-Hs of the fractional functional differential equations were explored by the
authors, and according to the Banach contraction principle, deriving the U-Hs criterion of this equation.

Inspired by the previous analyses, in this paper, let two increasing finite sequences of {#;} and {si} satisfy
the relation tg =sp =0 < t; <51 <ty <--- <5y < tyy1 = T, m € IN. We shall discuss the following FSDEs
with time-varying delays and non-instantaneous impulses:

C]D(‘;z(v) = Az(v) + 0(v, z(v), z(v — h(v)))
+p(v,2(0), 2(v — h(O) 52, v e[0,H]U (s, tsal k=1,2,...,m,

z(v) = ¢x (U,z(v),z(t;)), veE(ty,skl, k=1,2,...,m, (1.4)
z(s}j):z(s};):z(sk), k=1,2,...,m,
z(v) = ¢P(v), v € [-h,0],

where C]Df;(-) is the Caputo differential derivative, & € (3,1], A € R? X R?, K = [0,T], for v € [-h,T],
0<h@ <h Leto: KxR'XR! - R? p : KX R! xR - R™" are continuous measurable functions
and ¢ € C(K X R? x R?,R?) be non-instantaneous impulsive functions, and z(v) is a R?-valued random
variable denoted as z(v) = (z1(0),22(0), . .., z4(v))T, W(v) is a n-dimensional standard Wiener process on a

complete probability space (Q2, ¥, P), let history function ¢(v) € C([-h, 0], R?) satisfying E(”qb()“z) < oo (here
E(-) denotes the expectation operator) and z(0) = ¢(0) = ¢o.

Remark 1.1. Ifty = s, k=1,2,...,m, then the system (1.4) degenerates into an instantaneous impulsive stochastic
differential equation. Under the circumstances, at any point of instantaneous impulse t; the amount of jump of the
solution z(v) is provided by Ay = ¢px(v, z(v), z(t,))-

Compared with [9, 17, 19, 34, 37], the contributions of this paper are primarily embodied in the following
two respects:

(1) In the literature [17, 34, 37], authors discussed the existence and stability of the Caputo type FDEs
without random effects, while the system (1.4) has random term. The existence of random effects can more
veritably reflect the objective process of change along with it is more generally model.

(2) On account of diverse systems, although the methods employed in the derivation of existence are
similar to [17]. But there exist distinctions in the proving process. We utilize the techniques of stochastic
analysis to deal with the stochastic part of the system under consideration.

The structure of the article is organized as follows: In Section 2, we shall introduce certain useful
definitions, lemmas and theorems for our considerations. In Section 3, we establish the existence and
uniqueness results for the purposed Eq. (1.4). Subsequently, in Section 4, the U-Hs result of the consider
system is discussed. As an application, we give an illustrative example in Section 5.

2. Preliminaries and solution representation

For any v € [-h,T], let L? (QQ) := L?(Q, ¥, P) represent the space of all #,-measurable together with
mean square integrable functions z : Q — RY with |lz(0)ll. := VE|z(0)|? = Zil E|zi(v)]2. The matrix

norm is defined as [|A|| = \/Auax(ATA). A process z : [-h, T] — L2 (Q) is referred to as be F,-adapted if
z(v) € L2 (Q).

Definition 2.1. ([16, 19]) Mittag-Leffler function with two parameter is given by the series:

R
M, (C) = ; T+ v)’
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where C € C, R(C) > 0 and I'(C) is the gamma function defined as

r'Q) = f ) e v v,
0

R(C) > 0. In particular, if v =1, two parameter will reduce to one parameter function, in other words, M,1(C) =
M,(0).
u

Definition 2.2. ([30]) The Riemann-Liouville fractional integral operator of order & > 0 of a continuous function
o : R* — R%is given by

(]Iéa) (v) = 1"(5) f (v —5)"o(s)ds, ©v>0.

Definition 2.3. ([19, 30]) The Laplace transform of a function o(C) is defined as

LIo(O)] = 01(0) = fo e<o(0dl, CeC,

Moreover, Convolution formula of two functions is given by

C
p(C) *a(C) = a(C) * p(C) = fo o(C—v)p(v)dv,

where p(C) and o(C) are two piecewise continuous functions.

Definition 2.4. ([30]) The Caputo fractional derivative of order £ > 0,n —1 < & < n(n € IN") is defined as

(ClDéa) (v) = f (v —5)" 16 (s)ds.

F(n &)
Furthermore, when 0 < & < 1, we obtain

& Cyé -

I;."Dj.0(v) = o(v) — 0(0).
Remark 2.5. ([19]) Laplace transformation of the Caputo fractional differential operator is

n-1
L{°D;.0(0);s} = s*LIo(@)] - ) s f90), (n-1<&<n).
i=0

Lemma 2.6. ([30]) Let C be complex plane, for any yu > 0,v > 0 and B € C* then
LI "My, (B#)] = s ("I B)", R(s) > JAIIY,
holds, where I denotes the identity matrix and IR(s) represents the real part of the complex numbers.

Lemma 2.7. ([20]) (Jensen’s Inequality) Let p € N and ¢y, ¢, - - - , ¢, be nonnegative real numbers, then

[ch] <pF 1Zp:c, fork>1.

i=1 i=

Lemma 2.8. ([17]) (Generalized Gronwall inequality) Assume that B > 0, ¢ € R, 9(v) is a non-negative locally
integrable function on [c, U), Y(v) is a nondecreasing, non-negative continuous function defined on [c, U), n(v) is a
non-negative locally integrable function on [c, U) satisfying the inequality

n() < 3(v) + Y(v) fv(v - s)ﬁ_ln(s)ds,
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then k
Y()I'
Nn() < 3(v) + f Z ( (;J()ﬁg))

Furthermore, if 9(v) is a nondecreasing function on [c, U), then

n() < SEM; (Y@T(B)@ - o),
where Mg(-) is the Mittag-Leffler function defined by Definition 2.1.

—s)19(¢s)|ds, Vi e e, U).

Lemma 2.9. ([9]) Let 0 : ] = R be continuous function and 0 < & < 1. A function z € C(J,R) is a solution of the
fractional integral equation

U S AR R S
z(v) = zp F(E)f(;(b s) o(s)ds+r(5)£(v s)-"a(s)ds,

if and only if z is a solution of the following fractional Cauchy problems

“Di.2(0) = 0(0), ve]
z(b) = zp,b > 0.

In this paper, we define the space as follows:
:= PC([-h, T],L*(Q)) = { :[=h,T] = L2(Q) : z € C((k, tra1], L2(Q)),k = 0,1,--- ,m, and there exist
(t*) and z( )w1thz(tk) = z( ) k=1,2,---,m, z(v) = ¢p(v),v € [-h, 0]}, and || - ||y defined by

Izllu = sup (Elz@)IP) < o0,z € U
ve[-h,T]

Clearly, (U || - lly) is a Banach space.

Lemma 2.10. An F-adapted and R%-valued stochastic process z(v), v € [~h, T}, is a solution of system (1.4) is
equivalent to z(v) is the solution of the following integral system:

(P(v)l v € [_h/ 0] ’
Po+ [, (v = ) Mg £ (A(0 = 5 ) Adho + (5, 2(5), 2(5 — h(s)))]ds
+ [y (@ = 9" Mg e(Av = 5)5)ps, 2(5), 2(s = (s))AW(s), v € [0, 1],
¢k(v,2(v),z(t)), veE (tx, sk, k=1,2,...,m
2(0) = { Pilse 2(50), () + [ (0 = 9)* Mg s (A0 — 5))[Agpg (2.1)
+0(s,2(5), 2(s — h(s)lds + [ (0 = $)* "M e(A(@ — 5)°)
p(s,2(5), 2(s — h(s))AW(S) — [ (sk = )* Mg £ (A(sk — 5)*)[ Ao
+0(s,2(5), 2(5 = h(s)))lds — [ (sk — 5) Mg £ (A(sk — 5)°)
P(Sz Z(S), Z(S - h(S)))dW(S), vE Uzlzl (Sk/ tk+1] .

Proof. When —h < v < 0, from the problem (1.4), we can easily verify z(v) = ¢(v), for v € (-, 0).
Assume z satisfies system (1.4). When v € [0, 1], we consider

C]Déz(v) =Az(v) + 0(v, z(v), z(v — h(v)))
+ plo,2(0), 20 ~ o) o2,
with  z(0) =¢o.

€0, t], (22)

By employing Laplace transformation in both sides of equation (2.2) with respect to v, we get

S‘:L[Z(Z))] — 55_1[2(0)] = AL[z(v)] + A(s) + X(s),
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where L[z(v)], A(s) and Z(s) denotes the Laplace transformation of z(v), (v, z(v), z(v—h(v))) and p(v, z(v), z(v -

h(v))) d%v) , respectively. Therefore
L[z(v)] = (s°1 — A) 157 z(0)] + (s°T — A)LA(s) + (s°T — A)~1X(s).
From the observation of Lemma 2.6 and Definition 2.3, equation (2.2) is equivalent to
L[z(v)] =(s°T = A)~'s°L[z(0)] + (s°T — A)TA(s) + (s°1 — A)71E(s)
=L[z(0)] + (s°T — A)"HL[Az(0)] + A(s)) + (s°1 — A) L X(s)

=L[z(0)] + L[0v* "M £ (Av")[(L[Az(0)] + A(s))
+ L[v* " M £ (Av®)] Z(s).

2.3)

The convolution theorem of the Laplace transform applied to equation (2.3) gives the form

L[z(0)] =L[z(0)] + v°" M £(Av®) * [Az(0) + 0(v, 2(v), 2(v — h(v)))]
dW(v)

+0° 7 Mg (Av%) # p(0, 2(0), 2(0 = (o)) —

Subsequently, taking inverse Laplace transformation, we get
z(v) =2(0) + fo v(v = 8)* " Mee(Av = 5)°)p(s, 2(5), 2(s = h(s))AW(s)
+ fo U(U = 8)* " Mg (A(v — 5)°)[A2(0) + 0 (s, 2(5), 2(5 — (s)))lds,
when v € (t1, 1], 2(v) = ¢1(v, 2(v), z(t])). In addition, when v € (s, f2], we consider
C]D(‘iz(v) =Az(v) + 0(v, z(v), z(v — h(v)))

+p(0,2(0), 20 - ) D, v e 51,12,

with  z(s1) =p1(s1, z(s1), z(£))-

By Lemma 2.9 and using the above procedure, we obtain
z(v) =P1(s1,z(s1), 2(87)) + fo v(v —5)"" M £(A(v - 5)°)[Az(0)
+0(s,z(s), z(s — h(s)))lds + fo v(v =) Mg (A(v - 5)°)
p(s,z(s), z(s — h(s)))dW(s) — fo ’ (51 = 9)* Mg s(A(s1 —5)°)[Az(0)

(529,26 - N~ [ 61 =9 Mgt - )
pls,26), 265 = HEAWE),
when v € (2, 5], 2(v) = ¢2(v, 2(0), 2(t5)). When v € (sy, £5], we consider
CIDE. 2(0) =Az(v) + 0(0, 2(0), 2(0 — h(v)))
+ plo,2(0), 20 - ) T2, v (s 1],
with  2(62) =062, 262),2(67).
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By Lemma 2.9 and using the above procedure, we get
2(0) =gnlez 22,20 + | (0- 9 M £ (Ao - 9)9)[AZ(0)
- als, 269, 26 = s + [ (0= 9 Mo (A - 9))
pls 26, 26 = HENAWGE) - [ (52— 95 M (A2 — 99)A20)

+ 0(s, z(s), z(s — h(s)))]ds — f (s2 = 8)* "M ¢ (A(s2 — 5)°)
0
p(s,2(s), z(s — h(s)))dW(s),
In general, proceeding like this, when v € (s, tx+1], we consider

C]Df;z(v) =Az(v) + 0(v, z(v), z(v — h(0)))
+ p(v,2(v), (v — h@)))%/ U € (Sk, teenl,
with  z(sg) =(Pk(Sk, z(Sx), Z(t];))

By Lemma 2.9 and using the above procedure, we have
z(0) =Pi(sk, 2(sk), z(t;)) + fo U(U —5)" "M (A(v - 5)°)[Az(0)
+0(s, z(s), z(s — h(s)))lds + f(; v(v —5)" Mg g(Av - 5)°)
p(s,z(s), z(s — h(s))dW(s) — fo Sk(sk —5)""" Mg, s(Ask = 5)°)[Az(0)

+ (s, 2(5), 25 — h(&)ds - fo (5= 95 Meg(Ask - 9)5)
(s, 2(5), (s — h(s))AW(s),

Conversely, by proceeding the steps the proof is similar. Hence, the proof of the Lemma 2.10 is completed.
O

Lemma 2.11. ([33]) Let u>v>0and 0 <a <1, we can get
put=vt < (u=-v).

Definition 2.12. Equation (1.4) is Ulam-Hyers stable with respect to ¢ if there exists a constant N > 0, such that
for each € > 0 and x € U of the following inequality:

E|IDj. x(0) = Ax(v) = 0(0, x(0), X(v = h(0)))

=p(©, (), X0 = HE)GAIF < e, 0 €011V U (e teal,

m (2.4
E”X(U) - (Pk(vr X(U), X(t]:))”2 <g vE kL—Jl (tk/ Sk] ’
Ellx(@) - p@)IP < ¢, v € [-h,0],
and there is a solution z € U of system (1.4), satisfies

Ellx(@) - z@)I* < Ne, VveKk
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Remark 2.13. A function x(v) satisfies (2.4) if and only if there exist functions H(v), G(v) and a sequence Ii(v) such
that E|H()|* < t¢, EIG)I* < ;e and E|(0)|* < }e forallk=1,2,...,m,v € [-h,T] and

DS, x(v) = Ax(v) + 0(v, X(0), X(v — h(0)))
+p(v, X(0), x(v = h(©)) 22 + H(v), ve[0,4]1U U (5%, bl
m (2.5)
x(©) = ¢x (0, x(0), x(t)) + Ik(o), ve U (sl
X(@) = $(0) + G(v), v e [-h,0],

Theorem 2.14. ([7]) (Krasnoselskii’s fixed point theorem) Let § be a nonempty and closed convex subset of a Banach
spaceY. Let B, D be operators such that

(a) Bx + Dy € 5 whenever x,y € 5,
(b) B is continuous and compact,
(c) D is a contraction mapping.

Then there exists z € S such that z = Bz + Dz.

3. Existence and uniqueness of solutions

In this section, we derive the existence and uniqueness of the solutions to the consider system (1.4)
based on the Krasnoselskii’s fixed point theorem and contraction mapping principle.

In order that our work to proceed smoothly, we make the following assumptions:
o (Ap) For g, p in system (1.4), for all 91,9, 93,94 € U and v € [-h, T], there exists a positive continuous
function I(v) satisfying

”G(U/ ‘91/ ‘92) - O-(’U/ ‘93/ ‘94)”2 \4 ||P(U/ ‘91/ ‘92) - P(Ur ‘93/ ‘94)”2
< I()(|191 = 831 + 1192 — 84lP),
where sup [(v) = Aand o(v,0,0) = p(v,0,0)=0,k=1,2,...,m.
ve[-h,T]

¢ (A1) For impulsive functions ¢x(v)(k = 1,2,...,m) and for all 91,95, 93,94 € U, there is a positive
sequence Ay such that

llpr(D, 91, 82) = Pi(v, 93, S)IF < k(191 = 931 + 1192 — 841P),

and for all 91, 9, € U, [|px(v, 91, )|I? < di holds, where d is a positive constant.
o (Ap) History function ¢ satisfy Lipschitz condition. Namely, for all v1, v, € [, 0], there exists a positive
constant L such that

llp(1) = p@)I* < Lifvr = vl

In this paper, we suppose that
A=max{A; : k=1,2,...,m},

and
M; = max [M 14?)5 .
1= max, M ,¢(Ao%)|

Theorem 3.1. Suppose that assumptions (Ag) — (A2) hold, A € (0, %) and foreachk =1,2,...,m, then system (1.4)
has at least one solution in B, := {z € U : ||zllu < q} € U provided that

g > max (S, Sy, lillu} 3.1)
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holds, where
4((2& = 1) + |AIPMET?)Ibollu
(& —1) = 8A(T + )T M2’

1:

and
7(2& — 1)dy + 1411 AIPMET%|pollu

(28 —1) = 28A(T + 1)T%-1M2

) =

Proof. For a positive number g, it is easy to verify that B, is a closed, convex and bounded set of U. Define
the operators Q) on B, as

(Qz)(v)
o), vel-h0],
¢o + f (0 —8) Mg £ (A(v — )5)[ Ao + 0(s, z(5), z(s — h(s)))]ds
+ fo (0 —9)"IMg £ (A(v — 9)%)p(s, z(s), z(s —h(s)))dW(s),v € [0, 1],
Pr(0,2(v), z(t)), v €t sl k=1,2,.
=1 Prlsi 25, 2(8) + [ (@ - Mo (Ao — s)é)[AdJo
+0(s,z(8), z(s — h(s)))]ds + fov(v —8)5 Mg £ (A(v — 5)°)
p(s,z(s), z(s — h(s)))dW(s) — fOSk(Sk —5)* Mg s (Alsk — 5))[Adpo
+0(s, z(s), z(s — h(s)))]ds — fOSk(Sk —8)* " Mg ,e(A(sk — 5)°)
o(s,z(s), z(s — h(s)))dW(s), v € (sx,tkral, k=1,2,...,m

(3.2)

We have divided the proof into 4 steps:
Step 1: We shall show that Q maps B, into B,. For this, let z € B,.
Case 1. For any v € [-h, 0], from (3.1) and (3.2), yields

1Qzllu = ENQ2)@)I = Ellol? = lI¢llu-

Case 2. For v € [0,#1], by means of the Lemma 2.7, Holder inequality, Itd’s isometry and Assumption
(Ag), we consider

ElQz)@)I?
2

14
< 4E||¢oll* + 4E H f (© = 9)* Mg (A — 5)°)Adpods
0

2
+4E

f (0= 5 M (Ao - )05, 2(5), 2(5 — h(s))ds
0

2
+4E

fo (0= 8)"" Mee(Av = 5)*)p(s, 2(5), 2(5 = h(s)))dW(s)

ATI|AIPMlIgpol 0!
28-1

< 4lcpoll® +
+4M;T f v(v = ) 2(G)ElIzG)IP + Ellz(s — h(s)I)ds
0

+4M7 f U(U = )X (S)(Ellz(s)IP + Ellz(s = h(s))IP)ds

IAIPM2T2Y BAMZ(T + 1)
< 4|1+ ——— |lpoll +

2 - 26 -1 g
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Taking supremum norm in both sides of the above inequality, by virtue of (3.1), we get

||A||2M%T25 SAM%(T + 1)712‘5_1
1Qz]|ly < 4 1+2£—_1 ||¢0||Ll+ 28— 1 g=9

Case 3. Forv € (t,s¢], k=1,2,...,m. By (A1) and (3.1), we obtain
1922]|u = llpx(v, 2(v), z(E ) lu < di < 4.

Case 4. For v € (s, tk1l, k = 1,2,...,m. By virtue of the Lemma 2.7, Cauchy-Schwarz inequality, It6’s
isometry and Assumption (Ag) — (A1), we consider

14T||A||2M%||¢O”2z)25,—1 28A(T + 1)M%02§—1q

E||(Q 2 <7d
I(Q2)()II" <7d + 21 + 21
14||A||2M%||¢0||2T2‘5 28A(T + l)M%Tzé‘1
<7di + +
28 -1 28 -1

Taking supremum norm in both sides of the above inequality, by virtue of (3.1), we have

14]|APMET? 28A(T + )MET?!
lIpollur +

Qz||y <7d + ————— <q.
IQally <7de + —2— e R

Hence, for any v € [-h, T], we can figure out that
19zl < g.

Consequently, Q maps B, into B,.
Now, define the operators = and [T as follows

0 v e[-h0],

- B ¢,, ve|[0,t],
(‘—‘Z)(v) - ¢2(U, Z(U), Z(t]:)), D E (tk/ Skl] ,k = 1,2, e, m,

Prlse, 2(s), 2(t), v € (s, tra] k= 1,2,...,m.
and
(I1z)(v)
¢(v), vel-h0],
fov(v —5)* T Mg,e(A(v = 5)*)[Ado + a(s, 2(s), z(s — h(s)))]ds
+ fov(v = 8) "M £ (A(v — 8)%)p(s, 2(5), 2(s — h(s)))dW(s),v € [0, 1],
0, vel(t,slk=12,...,m,
= fov(v = 8) Mg £ (A(v — 8)9)[Ao + (s, z(s), (s — h(s)))]ds
+ [ @ = 8 M £(A(v — 9)*)p(s, 2(5), 2(s — (s)))dW(s)
— 5k = 95 I (Alsk — )90 (s, 2(5), 2(s — h(s)))
+Apolds — [ (s — )5 Me e(Ask — 5)°)
p(s,z(s),z(s = h(s)))AW(s), v € (s, tkr1], k=1,2,...,m.

Obviously, we can know that Q) = = + 1.
Step 2: = is a contracting map on B;. For this, let z € B,.
Case 1. For any v € [, 0], for each z1,z, € B;, we obtain

I1Ez1 — Ezlly = 0.
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Case 2. For any v € [0, t1], for each z1, z, € By, one can get
121 — Ezo|lu = 0.

Case 3. For any v € (f,s¢], k = 1,2,...,m, for each z1, 2, € By, and by (A1), we have

1221 — Ezallu < 2Akllz1 — 22llu < 2Allz1 — 22llu-
Case 4. For any v € (s, tr41], k =1,2,...,m, for each z1, z; € By, and by (A1), we get

1221 — Ezollu < 2Akllz1 — z2llu < 2Allz1 — 22llu-

Hence, for any v € [-h, T], we can conclude that
IE21 — Ezollu < 2A||z1 — 22llu-

Since, 0 < A < %, which implies that = is a contracting operator.

Step 3: Obviously, from the step 1 we can figure out that [T is uniformly bounded on B,. Next, we prove
that IT is continuous. For this let {z,} be a sequence in B, satisfying z, — z (n — +o0) in U.

Case 1. For any v € [}, 0], one can obtain

1z, = Ilz|ly = 0.

Case 2. For any v € [0,#], with the help of the Lemma 2.7, Holder inequality, It6’s isometry and
Assumption (Ap), we consider

E||(ITz,)(0) — (IT2)(0)|?

<F H f (0 - 9 M (A - ) [005, 20(5), 2a(s — H(s))
0

2
—0(s,z(s),z(s — h(s)))lds|| +2E ‘

f (0 - 9 Mes(Ao - )
0

2

[p(5,20(5),2as = () = p(s,2(6), 2(s — HE)IAW(S)
DAMAT +1) f ' (0- 92 2(Ellzn(s) - )P
0
+ Ellza(s = h(s) - 2(5 — h(s)IP)ds

<AAMY(T + D)llzn - zllu fo (v —s)*72ds

<4AM§(T +1)T21

sl
Therefore, we have
4AM%(T + 1721
Tz = Tzl < =5l ~2llu = 0.
Case 3. Forv € (t,s¢], k=1,2,...,m, we get
[Tz, — I1zl||y = 0.

Case 4. For v € (s, trr1], k= 1,2,...,m. Similar to case 2 of Step 3, we consider

E||(ITz,)(0) — (IT2)(0)II?
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<iE H f (0 = ) M (A0 — 8)°) [0(5, 20(5), za(s — h(s))
0

2
—0(s,z(s),z(s — h(s)))lds|| +4E ‘

f (0 - 9 Mes(Ao - )
0
2

[p(s, 2u(5), 2u(s = h(s))) = p(s, 2(s), z(s = h(s)))JdW(s)

Hak Hfo (sk = 9)* " Me g (A(sk — 9)°) [0(5, 2(5), zu(s = h(s)))

2 Sk
—0(s,z(s),z(s — h(s)))lds|| +4E HL (sx — 5)5_1M5,5(A(sk — s)‘s)

2

[p(s, 2u(5), 2u(s = h(s))) = p(s, 2(s), 2(s = h(s)))JdW(s)

1
<16AMI(T + 1)llz, — zllu fo (v —s)*2ds

16AMA(T + 1)T%!
<
= 281

llzn = zllu-

Thus, we get

16AM(T + 1)1

— <
1z, = I1zllu < 21

Here, we can figure out that ||[[1z, — [1z||[y — 0 as n — +oo.
Step 4: we shall show that IT maps bounded set into equicontinuous set of B,.
Case 1. For each z(v) € By, v1, v2 € [~h, 0] with v; < v, and by assumption (A), one can get

I(ITz)(v2) — (ITz)(@1)llu < Llloo — o1]* = 0,

Iz = zllu — 0.

5994

Case 2. For each z(v) € By, v1, v; € [0,t1] with v; < v, by means of the Lemma 2.7, Cauchy-Schwarz

inequality, It6’s isometry, Assumption (Ag) and Lemma 2.11, we consider

ElI(IT2)(v2) = (TT2)(01) P
2

<6E Hf”l Mg (A(v— 5)5)A¢0[(v2 — )5~ (v — )5 11ds
0

103 2

(02 — )" Mg £ (A(v — 5)°)Acpods

+or Hf " M £(A@ - 99005, 2(5), 25 ~ ()
0

2

+ 6E

X [(v2 =) = (v1 —5)"']ds

2
+ 6E

f ) (02 = 8)* " M £(A(v = 8)*)a (s, 2(s), 2(s = h(s)))ds

U1

+ 6E

fo Me £ (AW — $E)p(s, 26), 2s — h(s))
2
X [(02 = ) = (01 — ) 1AW(S)

2
+ 6E

f ) (v2 = 8)* " Mee(A@w = 5)*)p(s, 2(5), 2(s = 1(s)))dW(s)
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<eMETIAPIgoll [ 102 =9 = (01 - ) P
0

\2E-1
261 2= 1)
12AMX(T + 1)q
1 261
2% -1 (v2 — 1)

+ 12AM%(T +1)q fv] [(vy — 5)5—1 — (v — 5)5‘1]2615
0

<6M§TIIAII2||¢>0|IU

sy (BT T @ w))
u%ﬂ vy —vy)% !
S6M§(TI|A||2||¢20(|S|U_ - 20+ 2TAD e,

Hence, we obtain

I(ITz)(v2) — (ITz)(01)llu
<6M%(T||A||2||<P0||u +2Aq +2TAq)

< 2i-1 (Uz - 01)2571 — 0,0, > vy.

Case 3. For each z(v) € By, v1, 02 € (f, s¢l(k = 1,2,...,m) with v; < v, we get
I(ITz)(v2) — (ITz)(01)llu = 0.

Case 4. For each z(v) € By, v1, v2 € (sg, tre1l(k = 1,2,...,m) with v; < v;. Same result to Case 2 of Step 4.
Therefore, we have

I(ITz)(v2) — (ITz)(01)llu

6MA(T||A|? +2Aq + 2T A c
_SMITIA ||¢Zo!u_ 2T s — 00 = 0,00 - 0.

Clearly, II is equicontinuous.

By means of the Arzela-Ascoli Theorem together with collecting the Step 3 and 4, it is easy to know that
I1 is compact and continuous. According to Theorem 2.14, Namely, Krasnoselskii’s fixed point theorem,
hence, () has at least one fixed point. Therefore, the Theorem is proved. O

Theorem 3.2. Assume that assumptions (Ag) — (A1) holds and A € (0, %), then the problem (1.4) has a unique
solution in U provided that
20AMA(T + )T

<
0<10A + 261

<1

Proof. Let z(v), w(v) € U and z(v) = w(v) = $(v), v € [-h, 0], we consider
Case 1. For each v € [-£, 0], from the operator expression (3.2), yields

19z — Qully =0,
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which indicates that Q is the contraction operator.
Case 2. For any v € [0, 1], we consider

ENQ2)©) - Q)OI
<2E | fo (0 = 8 M (Ao = 9 [0(5, 26), 25 — h(s))

2 v
— (s, w(s), w(s — h(s)))lds|| +2E Hf (v— s)é‘lMg,g(A(v -5)%9)
0

2

[p(s, 2(s), 2(s = h(s))) = p(s, w(s), w(s = h(s)))ldW(s)

<2AMA(T +1) f v(v = )2 (Ellz(s) — w(s)IP
0

+ Ell2(s = h(s)) = w(s = h(s))I*)ds
AAMA(T +1)T2!

< - .
< 21 llz — wllu

Hence, we have
4AM%(T + 171

2&-1
we can readily know () is the contraction operator.
Case 3. Forv € (t,s¢], k=1,2,...,m, we get

1Qz - Qully <

1Qz - Qully < 2A|lz - wllu < llz = wllu,

we can figure out that Q is the contraction operator.
Case 4. For v € (s, tyr1], k=1,2,...,m, we consider

E[l(Q2)(v) — (Qu)(©)|
<5E||¢px(sk, 2(sx), 2(t;)) — Pr(sk, w(si), w(t))IP

+5E f v(v —5) " Mg (A0 = 5)%) [0(s, 2(s), z(s — h(s)))
0

2 v
~ o5, wls), w(s — h(s))]ds +5EH f (0 - )5 Mec(Aw — 9)%)
0

2

[p(s,2(3), 2(s — h(s))) — p(s, w(s), w(s — h(s)))|dW(s)
+5E HL k(Sk - s)é_lMg,g(A(sk — S)é) [9(s, 2(5), 2(5 — h(s)))

2 Sk
—a(s,w(s), w(s — h(s)))lds|| + 5E H]{; (sx — S)g_lMg,g(A(Sk —5)%)

2

[p(s,2(5), 2(s = (s))) = p(s, w(s), w(s = h(s)) AW ()
<5k (Ellz(si) = w(si)l? + Ellz(tp) = w(tp)IP)

+ IOAM%(T +1) fv(v — s)Z‘S_ZEIIz(s) - w(s)llzds
0

+10AMA(T + 1) f (st — SPE2ENa(s) - w(s)IPs
0

llz = wllu < llz = wllu,

5996
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20AM2(T + 1)T%!

<
<|10A + 261

]EIIZ(U) - w().

Hence,we obtain
20AM%(T +1)T2%¢!

28-1

1Qz — Qul|; < [10A+ Iz = wllu < llz — wllu,

we can easily verify that () is the contraction operator.
Clearly, we can conclude that the operator () has a unique fixed point z(v) € U based on the Banach
contraction principle. Thus, the Theorem is proved. O

4. Ulam-Hyers stability results

In the section, we study the U-Hs of the solution for the problem (1.4). We can derive that x(v) is the
solution of (2.5) if x(v) satisfies the following

x(©)

o) +G), vel-h0],

¢o + fv(v = 8) M £ (A(v — 8)°)[Ago + H(s) + a(s, z(s), z(s — h(s)))]ds
+ fo (0 = 9)* Mg £ (A(v — 8)%)p(s, z(s), z(s — h(s)))dW(s),v € [0, 1],

¢k(v,z(v),z(t;)) +k(v), ve(tys,k=1,2,...,m,

=4 Prlse, z(s), 2(8) + I(sg) + fov(v = 8)IMe £ (A(v — 5)°)[Ago

+H(s) + a(s, z(s), z(s — h(s)))]ds + fov(v —8) Mg £ (A(v — 5)°)

+p(s,2(5), 2(s — h(s)))dW(s) — fOSk(Sk —8)" " Mg e(A(sk — 8)°)[Adpo

+H(s) + o(s, z(), z(s — h(s)))]ds — fOSk(Sk — )" Mg g(A(sk — 5)°)

p(s,z(s),z(s — h(s)))dW(s), v € (sk,tiral k=1,2,...,m.

4.1)

Theorem 4.1. Assume the validity of conditions 0 < A < % and (Ag) — (A1), then the addressed systems (1.4) is
Ulam-Hyers stable on K.

Proof. By equation (2.1) and equation (4.1), we derive
Case 1. For each v € [-h, 0], one can get

Ellx(©) - 2@ = EIG)IP < }f <e

which indicates that the system (1.4) is U-H stable.
Case 2. For each v € [0, t1], and based on assumption (Ap), we have

Ellx(v) - z(@)I

1
<4E(IG(0)|1* + 4M2T f; (v — s)*2E||H(s)||*ds

+AMAT +1) fo (0= 9721 (Ellx(s) - 2P

+ Ellx(s = h(s)) - z(v = I(s))I?) ds
27,281 v
<e+ leg—?ile + 4Mf(T + 1)fO (v - s)zé_zl(s) (Ell)((s) - z(s)ll2

+ Ellx(s = h(s)) = 2(v = h(s))I?) ds.
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Let us set ©(v) = E||x(v) — z(v)|[?, then we obtain

o M2Tv? ! ) ? 2%-2 (g
(V) <e+ 25—_15 +4AM(T + 1)]0‘ (v-y9) (©(s) (4.2)

+ O(s — h(s))) ds.

We let n(v) = sup ©O(0), Vv € [0,t], then O(s) < n(s) and O(s — h(s)) < n(s), ¥s € [0,v]. According to
O€[—h,v]

(4.2), for & € (%, 1), we have

M2Tv*1 0
O@) < ¢+ 215—_15 +8AM(T + 1) fo (v — 5)2672(s)ds
M2To?! , % e
=&+ 25—_18+8AM1(T+1)L %7 n(v — s)ds.

Note that Y6 € [0, v], we have

M2T%1 o
0O) <+ 215—15 +8AMA(T +1) f $720(0 — s)ds
- 0
M2Tp2 ! 0
<ed———c+ 8AM%(T + 1)f s%72n(v — s)ds.
261 0

Thus, one can obtain

n@) = sup O(O) < max{ sup O(0), sup @(9)}

O€[—h,v] 0€[-h,0] 0€[0,v]
< max | ElGOR, e + ML
< max ,E+ e
26 -1

+ 8AM§(T +1) f 52‘5‘217(0 - s)ds}
0

MZ T2£

e+ —2——e+8AMA(T +1) f (v — s)2572n(s)ds,
26—1 0

2728
where ¢ + MET ¢ and 8AMZ(T + 1) are nondecreasing along with nonnegative, then applying Lemma 2.8

(Namely, Generalized Gronwall inequality) we obtain

M3T?®
() < (1 T ]Mzg_l (BAMA(T + )T - T*™)
= Ng,
and letting N = (1 - Aﬁf )MZH (SAM%(T +1DIQ2E - 1)T2‘5‘1)- Hence, we can readily obtain

Ellx() - z(0)I> = ©(v) < n(v) < Ne,

Clearly, the system (1.4) is U-H stable.
Case 3. For each v € (f,s¢], k =1,2,...,m, and via assumption (A;), we derive

Ellx(v) - z(@)I* <2Ell ()]
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+ 2 (Ellx (@) — z@)IP + Ellx(t;) — 2(t))IP)
<¢ + 2E||x(0) - 2(0)|P
Owing to A € (0, %), we can figure out that E||x(v) — z(v)|[> < 1251, which means that Eq. (1.4) is U-H stable.
Case 4. For v € (sg, tyr1l, k=1,2,...,m, we derive
) ,  AMITv* e
Ellv(@) = 2@)I” <de +161Elx(0) ~ 20 + —57—5—
# BT+ ) [ (0= (Bl — 20

+ Ellx(s = h(s)) - z(v - I(s))II?) ds

2&-1

# BT+ ) [ (5= 976 (Bl — 20
+ Ellx(s = h(s)) — z(v = I(s))II?) ds.

We also set O(v) = E||x(v) — z(v)|l*, and let n(v) = sup O(0), Yv € (s, ts1], k = 1,2,...,m, then O(s) < 1(s)
Oe[-h,]
and O(s — h(s)) < n(s), Vs € [0, v], then we obtain
4¢ 4MITo* e
“1-16A (1 16A)(2& - 1)

32AM2(1 +T) 220
+ T f(v s)*“""n(s)ds.

Ellx(@) = 2()II* <

Using the above procedure, we get

Ellx(v) - z(@)I* = ©(v) < 1(0)

4 M3T? 32AM3(1+T)

<e- 1+ — L TQ&-1TH!

=¢ 1—16)\( ae =1 Mot Ty @D

=¢- N,

272& 2

where N = ﬁ (1 + ]\;{é—:)Mzg_l (%T(Zé - 1)T2‘5_1) is a constant, which means that Eq. (1.4) is U-H
stable. 0
5. Example

In this section, an example is presented to verify our prime results. Let us consider the following FSDEs
with time-delays and non-instantaneous impulses:

D z(v) = 10~*2(v) + 10722(v) — 10%2(v — Vo) + [10~2cosz(v)

~10 2sinz(v — VO)I52, € [0,91\(4,71,k=0,1,
o (v,z(v),z(t;)) = 0.1e7¥@I + 0.1cosz(t, — 0), ve@4,7,k=1,
o(v)=v+2, v e [-3,0],

(5.1)

where A = 107, let I represent the 1dent1ty matrix, h( v) Vo, K = [0,9], 0(v, z(v), z(v — h(v))) = 1072z(v) —
107%z(v — V), p(v, z(v), z(v — h(v))) = 102cosz(v) — 10~ 2sinz(v — Vo).
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25

z(v)
x¥)
Er

051

Figure 1: The stable solution for system (5.1) with ¢ = 0.0015.

Let A = 002, A = 2x10™%, d = 0.04, ||All = 0.01, L =1, by applying Matlab software, we have
M; ~ 0.9733,
ZOAM%(T +1)T%1

26-1

10A + ~ 04520 <1,

and
g > max {Sy, Sy, lillu} ~ 4.4736.

Clearly, we can figure out that all conditions in Theorem 3.1 and Theorem 3.2 are satisfied, which means
that Eq. (5.1) has a unique solution in By, here q > 4.4736. Meanwhile, system (5.1) satisfies the conditions
of Theorem 4.1, thus, system (5.1) is U-H stable on [0, 9] and the U-H stability constant N = 651.9177. Then
from Figure 1 we can draw a conclusion.

6. Conclusion

Existence, uniqueness and stability of mild solution of FSDEs with time-delays and non-instantaneous
impulses is considered in this work. The existence theorem is established by utilizing Krasnoselskii’s fixed
point theorem. Subsequently, the uniqueness theorem is obtained based on contraction mapping principle.
Moreover, by virtue of the generalized Gronwall inequality and stochastic analysis techniques, we get the
U-Hs result of the solution to the present system. Further, we discuss a representative example to illustrate
the validity of the article’s conclusions.

One interesting research direction is to discuss the stability of fuzzy FSDEs. With the introduction of
fuzziness, the original system becomes complex and its stability may change. For future research, it will be
interesting to ask what conditions we can add to restore stability.
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