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Explicit Hashin-Shtrikman bounds in 3D linearized elasticity
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Abstract. In this paper, we are dealing with Hashin-Shtrikman bounds in the context of linearized elasticity.
We give an explicit computation of the upper bound on the primal energy in three space dimensions and the
corresponding microstructure that saturates this bound. Due to equivalency between the upper Hashin-
Shtrikman bound on the primal energy and the lower Hashin-Shtrikman bound on the complementary
energy, the explicit calculation of the latter arises. These calculations have straightforward applications in
evaluation of experimental results and numerical schemes regarding composite elastic materials, as well as
structural optimization problems.

1. Introduction

The term composite material is typically used for a material that is produced from two or more con-
stituent materials, which remain separate and distinct on some (micro) length scale. It appears that such
materials are prevalent in nature, as well as among engineered materials, a non-exhausting list including
some quite distinctive materials, such as sandstone, clouds, bones, wood, concrete, steel and fiberglass.
Benefits of composite materials can be deduced already from aforementioned list, but it is worth to em-
phasize that what gives them their utility is that they often combine (desired) attributes of the constituent
materials. Therefore, it is not surprising that composite materials have been extensively studied by scientist
and engineers, starting already in works of Poisson [29] and Faraday [13] (for more information on historical
developments we refer to [25]), and being today an enormous field of research. Even a brief overview of the
field would be overwhelming for the purpose of this paper, and thus we just mention probably the most
comprehensive book on the subject, a monograph of Milton [26], which can serve as good starting point for
an interested reader, with an extensive list of references.

Properties (chemical or physical) of a composite material typically depend on the corresponding prop-
erties of constituents, their ratio and their arrangement within the composite. The constituents are often
mixed on a rather small scale (microscale), which leads to rapid oscillations (on the length scale of the
microstructure) in coefficients describing the composite. This makes governing partial differential equa-
tions on the microscale quite difficult to study, both from analytical and numerical perspective. In order to
overcome this difficulties, one is typically interested in locally averaged or homogenized coefficients, which
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should describe effective properties of the composite on a macroscale. For the purpose of this paper the
term homogenization refers to the framework introduced by Murat and Tartar [27] (see also [16, 33, 34] and
[4] for an overview of the method). We shall also restrict ourselves to the equations of linearized elasticity
and composites made of only two constituents (phases). A composite material in this setting is a couple
(θ,A), where θ represents a local fraction of the first phase in a mixture, while A is a homogenized elasticity
tensor which contains information on how materials are mixed and represents an effective stiffness of the
composite.

One of the most prominent problems in the theory of composite materials is a description of all posible
mixtures that one can achieve from given constituents (with, or without prescribed ratios of them). It is
usually called G-closure problem [23], as, mathematically, it consists of finding a closure of a set of classical
material in topology of G- (or H-) convergence. Information on G-closure is particularly important in
problems of structural optimization, in which one seeks for a composite (usually with prescribed ratios of
constituents), that has optimal properties in regard with some criterion. While, unfortunately, this is still
an open problem in the context of linearized elasticity, we have on our disposal various bounds on the
properties of such generated composite material. A term bounds typically refers to some inequalities that
correlate various physical or microstructural quantities of a composite. They are often used in evaluation of
various experimental result, as well as numerical schemes for computing coefficients describing composites
[26]. Probably the most prominent representative among them are famous Hashin-Shtrikman bounds
[19, 20], which have imposed themselves as the benchmark against which most experimental results are
compared. Here we use the terminology of Allaire’s book [4], and thus use the term Hashin-Shtrinman
bounds for bounds on effective energy of composite material, which are also known as energy bounds.

Explicit calculation of Hashin-Shtrikman bounds is also important for structural optimization, as these
bounds prove essential for some numerical methods for optimal design problems [4, 10, 11, 32]. They are
well-known in the conductivity setting, where, taken together, they completely characterize the G-closure
of two isotropic phases at a fixed volume fraction [24, 27]. In the elasticity setting the situation is more
complex. An explicit calculation of the bounds was first done by Gibiansky and Cherkaev [17] in the context
of the elastic plate equation (see also [12]) and by using the translation method. In the two-dimensional
linearized elasticity, bounds are calculated in [7] (see also [11]) for the mixture of two isotropic phases,
while in the three-dimensional case it was formally done only for the shape optimization problems, where
one material is replaced by the void [5, 8, 17, 18].

An explicit calculation of bounds in three space dimensions requires elementary but rather tedious and
formidable calculations, and thus, up to date, it remained a task that no one was willing to undertake. In
this paper we explicitly calculate the upper Hashin-Shtrikman bound on the primal energy and the lower
Hashin-Shtrikman bound on the complementary energy of the three-dimensional elastic composite of two
isotropic phases. For the upper bound on the primal energy, we rewrite the minimization problem in
the bound (9) as the nonsmooth convex optimization problem, and solve it by using Karush-Kuhn-Tucker
conditions [22]. The lower bound on the complementary energy is obtained from the upper bound on the
primal energy by the Legendre-Fenchel transformation.

In the rest of this introductory section we briefly recall the framework of mixing two isotropic elastic
materials and provide necessities for the main results from the second and the third section. We finish the
paper with some concluding remarks.

In the paper we mostly follow the notation from [4]: by Symd we denote a space of all d × d symmetric
matrices, and by Sym4

d a space of all symmetric fourth order tensors acting on symmetric matrices. For an
open and bounded set Ω ⊆ Rd, which represents an elastic medium, we consider the linearized elasticity
system{

−div (Ae(u)) = f
u ∈ H1

0(Ω; Rd) , (1)

where e(u) = 1
2 (∇u + ∇u⊤). Here, the displacement u is uniquely determined by the force density f ∈

H−1(Ω; Rd), while a tensor function A ∈ L∞(Ω; Sym4
d) containes information about elastic properties of the

material that constitutes Ω, called the stiffnes tensor. Matrix e(u) is known as the strain tensor, while Ae(u)
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is the stress tensor. We assume that A is bounded and coercive, i.e. for some 0 < α < β it satisfies (a.e. onΩ)

Aξ : ξ ≥ α|ξ|2, A−1ξ : ξ ≥
1
β
|ξ|2, ξ ∈ Symd. (2)

We shall focus on domains filled with two well-ordered isotropic elastic phases

A1 = 2µ1I4 +

(
κ1 −

2µ1

d

)
I2 ⊗ I2

A2 = 2µ2I4 +

(
κ2 −

2µ2

d

)
I2 ⊗ I2,

where κi −
2µi

d is known as Lamé’s first parameter. More precisely, for the shear moduli we shall assume
0 < µ1 ≤ µ2, and similarly for the bulk moduli: 0 < κ1 ≤ κ2, so that any mixture of them satisfies (2),
with α = min{2µ1, dκ1} and β = max{2µ2, dκ2}. Therefore, if we denote by χ ∈ L∞(Ω; {0, 1}) a characteristic
function of the part of the domain occupied by A1, then the overall stiffness tensor is defined as

A(x) = χ(x)A1 + (1 − χ(x))A2, x ∈ Ω. (3)

We are interested in fine mixtures of original materials in prescribed ratio, also known as composite material.
To define a composite more precisely, we use the homogenization framework introduced by Murat and
Tartar [27], where a composite material is a couple (θ,A) that can be obtained as a limit (in L∞ weak∗
topology for θ and H-topology for A) of sequences (χn,An) satisfying (3). Here, θ represents a local fraction
of the first phase in a mixture, while A is a homogenized elasticity tensor which contains information on
how the materials are mixed (see e. g. [4] for more).

An important class of composites made of two elastic materials are laminated composites [4, 16]. A
simple laminate A is made by stacking isotropic phases A1 and A2 in proportions θ and (1 − θ) and layers
orthogonal to a unit vector e ∈ Rd. It is represented with the formula

θ(A −A2)−1 = (A1 −A2)−1 + (1 − θ) f2(e), (4)

where f2(e) is a symmetric positive semidefinite fourth order tensor defined by the quadratic form

f2(e)ξ : ξ =
1
µ2

(
|ξe|2 − (ξe · e)2

)
+

d
2µ2(d − 1) + dκ2

(ξe · e)2, ξ ∈ Symd. (5)

By repeating this lamination process, with different choices for θ and e, we get a whole family of
laminated materials from phases A1 and A2. Explicit formulae for tensor of such composites are known
[16] for sequential laminates, where at each stage of lamination, the previous laminate is laminated again
with the same pure phase. In this way, if we laminate p ∈ N times with the phase A2 in directions e1, . . . ,ep,
the obtained composite is determined by the formula

θ(A −A2)−1 = (A1 −A2)−1 + (1 − θ)
p∑

i=1

mi f2(ei), (6)

where mi ≥ 0, i = 1, . . . , p and
∑p

i=1 mi = 1, while f2 is given by (5). We call it a rank-p sequential laminate,
with core A1 and matrix A2, in proportions θ and (1 − θ), respectively, with the lamination directions ei,
i = 1, . . . , p.

In particular, we are interested in the G-closure set G(θ) of all possible homogenized elasticity tensors
which can be obtained by mixing phases A1 and A2 in the prescribed proportions θ and (1−θ). As already
mentioned, the explicit characterization of the G-closure set is still an open problem in the elasticity setting,
and thus we relay on some optimal bounds on this set obtained by Hashin-Shtrikman variational principle
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[20] and known as Hashin-Shtrikman bounds. They are given as the extremal values of the elastic energy
written in terms of strain (primal energy), Aξ : ξ, or as the extremal values of the elastic energy written in
terms of stress (complementary energy), A−1σ : σ. We start with the Hashin-Shtrikman variational principle
for the primal energy [6].

Proposition 1.1. Let ξ ∈ Symd. Any homogenized tensor A ∈ G(θ) satisfies

Aξ : ξ ≥ A1ξ : ξ + (1 − θ) max
η∈Symd

[
2ξ : η − (A2 −A1)−1η : η − θ1(η)

]
, (7)

where 1(η) is a nonlocal term given by

1(η) = max
e∈Sd−1

(
f1(e)η : η

)
, (8)

and

Aξ : ξ ≤ A2ξ : ξ + θ min
η∈Symd

[
2ξ : η + (A2 −A1)−1η : η − (1 − θ)h(η)

]
, (9)

where h(η) is a nonlocal term given by

h(η) = min
e∈Sd−1

(
f2(e)η : η

)
, (10)

where f2(e) is defined by (5) and f1(e) is defined with the similar formula, by putting 1 instead of 2 in (5).
Furthermore, these upper and lower bounds are optimal and optimality is achieved by a rank-d sequential laminate
with the lamination directions given by the extremal vectors in the definition of the nonlocal terms 1(η) and h(η). In
particular, lamination directions of the optimal rank-d sequential laminate for the upper bound are also eigendirections
of ξ.

■
Optimality of a bound in the above proposition means that for any ξ there exist a tensor A ∈ G(θ) such

that equality in (7) (or (9)) is achieved. In the next section we give an explicit calculation for the upper
Hashin-Shtrikman bound on primal energy in three space dimensions and find the optimal microstructure
that saturates the bound.

2. Explicit calculation of the Hashin-Shtrikman upper bound

Our main motivation for undertaking the explicit calculation of the Hashin-Shtrikman bounds lies in
our interest in optimal design problems, where, when minimizing the compliance under a prescribed ratio
of constituents, the lower Hashin-Shtrikman bound on the complementary energy naturally arises in the
necessary conditions of optimality. Based on these conditions, the optimality criteria method is derived for
finding a numerical solution. In order to implement the method and have the explicit update of the design
variables, we need an explicit computation of the lower Hashin-Shtrikman bound on the complementary
energy. However, due to its simplicity, we shall first explicitly calculate the upper Hashin-Shtrikman bound
on the primal energy, while the lower bound on the complementary energy can be deduced from this bound
by using the Legendre-Fenchel transformation. Beside an explicit computation of the bound, we give the
optimal microstructure for the bound, which is also needed for application in optimal design problems.

For the explicit computation of the bound (9), one should first study the nonlocal term h(η). It is given
in the following Lemma [6].

Lemma 2.1. Let η1, . . . , ηd be the eigenvalues of a symmetric matrix η. Then

h(η) =
3

4µ2 + 3κ2
min

{
η2

1, . . . , η
2
d

}
.
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■

Let us denote the upper Hashin-Shtrikman bound by

f+(ξ) := max
A∈G(θ)

Aξ : ξ.

In order to write explicit expressions for bound f+ in a suitable and more compact form, we shall introduce
numbers δµ = µ2 − µ1, δκ = κ2 − κ1 and γi = 3κi + 4µi, i = 1, 2, and define the following linear functions:

f (x, y, z) = (1 − θ)(2δµ(y − z) − 3δκ(y + 2z)) + γ2(z − x)
1(x, y, z) = −3δµ f (x, y, z) − γ2(3δκ(x + y + z) − 2δµ(−2x + y + z))
l(x, y, z) = −27(1 − θ)δµδκx + γ2(3δκ(3x − y + z) + δµ(z − y))

m(x, y, z) = 9(1 − θ)δκx − γ2(2x − y − z).

Theorem 2.2. In three dimensional, well-ordered case, let ξ be a symmetric matrix with eigenvalues ξ1, ξ2 and ξ3
and corresponding orthonormal eigenvectors e1, e2 and e3.

Then, the upper Hashin-Shtrikman bound on primal energy can be expressed explicitly by exactly one of the
following five cases. In each case (except the case D) one is free to take any choice (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

A. If

f (ξi, ξ j, ξk)1(ξi, ξ j, ξk) <0
f (ξi, ξk, ξ j)1(ξi, ξk, ξ j) <0,

(11)

then

f+(ξ) = (θA1 + (1 − θ)A2)ξ : ξ − (1 − θ)θ

(
2δµ(2ξi − ξ j − ξk) + 3δκ(ξi + ξ j + ξk)

)2

3
(
θγ2 + (1 − θ)γ1

) . (12)

This bound is achieved by a simple laminate with the lamination direction ei.

B. If

f (ξi, ξ j, ξk)
f (ξi, ξ j, ξk) + f (ξk, ξ j, ξi)

≥0

f (ξk, ξ j, ξi)
f (ξi, ξ j, ξk) + f (ξk, ξ j, ξi)

≥0

m(ξ j, ξk, ξi)
(
27(1 − θ)δκδµ(ξ j − ξi − ξk) − l(ξk, ξi, ξ j) − l(ξi, ξk, ξ j)

)
>0,

(13)

then

f+(ξ) = A2ξ : ξ +
2θ

3 f (1, 0,−1)

(
− 27(1 − θ)δµδκξ2

j+

+ γ2

(
δµ(2ξ j − ξi − ξk)2 + 3δκ(ξi + ξ j + ξk)2

))
.

(14)

This bound can be achieved by the rank-2 sequential laminate with the lamination directions ei and ek, and
lamination parameters

mi =
f (ξk, ξ j, ξi)

f (ξi, ξ j, ξk) + f (ξk, ξ j, ξi)
and mk =

f (ξi, ξ j, ξk)
f (ξi, ξ j, ξk) + f (ξk, ξ j, ξi)

. (15)
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C. If

l(ξi, ξ j, ξk)l(ξi, ξk, ξ j) >0
1(ξk, ξi, ξ j)
ξ j − ξk

≥0

1(ξ j, ξi, ξk)
ξk − ξ j

≥0,

(16)

then

f+(ξ) = A2ξ : ξ − θδµ

 9δκξ2
i

3δκ + δµ
+

γ2(ξ j − ξk)2

−3(1 − θ)δµ + γ2

 . (17)

In this case, the bound can be achieved by the rank-2 sequential laminate with the lamination directions e j and
ek, and lamination parameters

m j =
1(ξk, ξi, ξ j)

6(1 − θ)δµ(3δκ + δµ)(ξ j − ξk)
and mk =

1(ξ j, ξi, ξk)
6(1 − θ)δµ(3δκ + δµ)(ξk − ξ j)

. (18)

D If

m(ξ1, ξ2, ξ3)
ξ1 + ξ2 + ξ3

≥0

m(ξ2, ξ1, ξ3)
ξ1 + ξ2 + ξ3

≥0

m(ξ3, ξ2, ξ1)
ξ1 + ξ2 + ξ3

≥0,

(19)

then

f+(ξ) = A2ξ : ξ − θ
δκγ2(ξ1 + ξ2 + ξ3)2

−3(1 − θ)δκ + γ2
. (20)

In this case, the bound can be achieved by the rank-3 sequential laminate with the lamination directions e1, e2
and e3, and lamination parameters

m1 =
m(ξ1, ξ2, ξ3)

9(1 − θ)δκ(ξ1 + ξ2 + ξ3)
, m2 =

m(ξ2, ξ1, ξ3)
9(1 − θ)δκ(ξ1 + ξ2 + ξ3)

, and

m3 =
m(ξ3, ξ2, ξ1)

9(1 − θ)δκ(ξ1 + ξ2 + ξ3)
.

(21)

E If

l(ξi, ξk, ξ j)
ξ j − ξi − ξk

≥0

27(1 − θ)δκδµ(ξ j − ξi − ξk) − l(ξi, ξk, ξ j) − l(ξk, ξi, ξ j)
ξ j − ξi − ξk

≥0

l(ξk, ξi, ξ j)
ξ j − ξi − ξk

≥0,

(22)

then

f+(ξ) = A2ξ : ξ − θ
9δκδµγ2(ξi − ξ j + ξk)2

l(1, 0, 1) + l(0, 1, 1)
. (23)
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In this case, the bound can be achieved by the rank-3 sequential laminate with the lamination directions ei, e j
and ek, and lamination parameters

mi =
l(ξi, ξk, ξ j)

27(1 − θ)δκδµ(ξ j − ξi − ξk)
, m j =

27(1 − θ)δκδµ(ξ j − ξi − ξk) − l(ξi, ξk, ξ j) − l(ξk, ξi, ξ j)
27(1 − θ)δκδµ(ξ j − ξi − ξk)

, and

mk =
l(ξk, ξi, ξ j)

27(1 − θ)δκδµ(ξ j − ξi − ξk)
.

(24)

Proof. In order to find the explicit bound, we need to solve the minimization problem

min
η∈Sym3

[
2ξ : η + (A2 −A1)−1η : η − (1 − θ)h(η)

]
. (25)

In the isotropic three-dimensional case function h can be explicitly written as in Lemma 2.1. Problem (25)
can be recognised as a nonsmooth convex minimization problem

min
η∈Sym3

[
2ξ : η + max

i∈{1,2,3}

{
(A2 −A1)−1η : η − (1 − θ)

3
4µ2 + 3κ2

η2
i

}]
, (26)

where η1, η2 and η3 are eigenvalues of the matrix η. Indeed, by [4, Remark 2.3.17], for any i, one concludes
that the quadratic form Φi(η) := (A2 − A1)−1η : η − (1 − θ) 3

4µ2+3κ2
η2

i is nonnegative. That remark is written
in a more general situation for the sum of p energies, but for the single energy the form is even positive.
Therefore, in (26) we are dealing with a strictly convex function Φ := maxi∈{1,2,3}Φi so, by its coercivity, this
minimization problem has a unique solution, for any ξ.

Furthermore, since the phases are isotropic we have

(A2 −A1)−1η : η =
1

2δµ
(η2

1 + η
2
2 + η

2
3) +

(
1

9δκ
−

1
6δµ

)
(η1 + η2 + η3)2.

By introducing vector b =
[
2ξ1 2ξ2 2ξ3

]⊤
, constants k = 1

9δκ −
1

6δµ and c = 3(1−θ)
4µ2+3κ2

, matrix

B =


1

2δµ + k k k
k 1

2δµ + k k
k k 1

2δµ + k


and employing the classical von Neumann result [28], the minimization over all symmetric 3 × 3 matrices
in (25) is equivalent to the three dimensional minimization of the function

b · η + max
i∈{1,2,3}

{
Bη · η − cη2

i

}
(27)

over all η = (η1, η2, η3) ∈ R3 . Indeed, if we order eigenvalues as ξ1 ≥ ξ2 ≥ ξ3 and η1 ≤ η2 ≤ η3, then [28]
2ξ : η ≥ 2

∑3
i=1 ξiηi, with equality being achieved when ξ and η are simultaneously diagonalized, which

together with the independence of Φ on permutations of its variables implies that (25) is equivalent to
minimization of (27) over the subset {η1 ≤ η2 ≤ η3} of R3. Since

∑3
i=1 ξiηi ≤

∑3
i=1 ξiηp(i) for any permutation

p of the set {1, 2, 3}, we can remove the ordering constraint from the eigenvalues of η (and consequently
from ξ, as well) and conclude that (25) is equivalent to minimization of (27) over R3. To be precise, if η∗ is
optimal in (25) then its eigenvalues are optimal in (27) and if (η∗1, η

∗

2, η
∗

3) is optimal in (27), then the matrix
η∗ with eigenvalues η∗i and eigenvectors ei is optimal in (25). Since the function η 7→ Bη · η − cη2

i , is convex
for i = 1, 2, 3 ([4, Remark 2.3.17]), problem (27) is a problem of the nonsmooth convex optimization which
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can be solved by using subdifferential calculus. However, by introducing the additional variable, problem
(27) is equivalent to the constrained minimizationb · η + t −→ min

(η,t)∈R4

Bη · η − cη2
i ≤ t, i = 1, 2, 3,

(28)

and it can be solved in a more elementary way. We shall obtain the solution of the problem (28) by finding
the unique solution (η1, η2, η3, t, λ1, λ2, λ3) of the Karush-Kuhn-Tucker system:

b +
∑3

i=1 λi(2Bη − 2cηifi) = 0,
1 −

∑3
i=1 λi = 0,

λi(Bη · η − cη2
i − t) = 0, i = 1, 2, 3,

λi ≥ 0, i = 1, 2, 3
Bη · η − cη2

i ≤ t, i = 1, 2, 3,

(29)

where (f1, f2, f3) denotes the canonical basis of R3.
Before solving the above system, let us show that optimality of the bound is achieved by the sequential

laminate A∗ with lamination parameters λi, and lamination directions ei, i = 1, 2, 3, given by formula

θ(A∗ −A2)−1 = (A1 −A2)−1 + (1 − θ)
3∑

i=1

λi f2(ei). (30)

Indeed, by multiplying the equation (30) by matrix η∗, we obtain

θ(A∗ −A2)−1η∗ = (A1 −A2)−1η∗ +
3(1 − θ)

3κ2 + 4µ2

3∑
i=1

λiη
∗

i ei ⊗ ei,

and by definition of vector b, matrix B and constant c, after some calculations, the first two conditions given
in (29) imply

θ(A∗ −A2)−1η∗ = ξ,

from which it follows

A∗ξ : ξ = A2ξ : ξ + θη∗ : ξ.

To prove the assertion, it remains to show that

η∗ : ξ = −(A2 −A1)−1η∗ : η∗ + (1 − θ)h(η∗),

which can be obtained by taking inner product with the optimal vector η∗ in the first condition in (29).
Let us return now to the solution of Karush-Kuhn-Tucker system (29). Since 1 −

∑3
i=1 λi = 0, at least one

λi, i = 1, 2, 3 is positive. Therefore, the solution saturates at least one inequality in (28).

I. Assume that t = Bη · η − cη2
1 and Bη · η − cη2

i < t, i = 2, 3. This implies λ2 = λ3 = 0 and λ1 = 1. From
condition b + 2Bη − 2cη1f1 = 0, we get the unique solution

η1 =
3δµ f (ξ1, ξ3, ξ2) + 1(ξ1, ξ3, ξ2)

3
(
θγ2 + (1 − θ)γ1

)
η2 =

−3δµ f (ξ1, ξ3, ξ2) + 1(ξ1, ξ3, ξ2)

3
(
θγ2 + (1 − θ)γ1

)
η3 =

−3δµ f (ξ1, ξ2, ξ3) + 1(ξ1, ξ2, ξ3)

3
(
θγ2 + (1 − θ)γ1

) .

(31)



K. Burazin et al. / Filomat 38:17 (2024), 6033–6048 6041

Since Bη · η − cη2
i < t, i = 2, 3, this η must satisfy inequalities |ηi| > |η1|, i = 2, 3. Inequality |η1| < |η2|

can be expressed from (31) in terms of ξ1, ξ2, and ξ3 as

f (ξ1, ξ3, ξ2)1(ξ1, ξ3, ξ2) < 0 (32)

while inequality |η1| < |η3| can be expressed as

f (ξ1, ξ2, ξ3)1(ξ1, ξ2, ξ3) < 0. (33)

In this case we have the bound

f+(ξ) = (θA1 + (1 − θ)A2)ξ : ξ − (1 − θ)θ

(
2δµ(2ξ1 − ξ2 − ξ3) + 3δκ(ξ1 + ξ2 + ξ3)

)2

3
(
θγ2 + (1 − θ)γ1

) ,

which corresponds to the subcase of part A of the theorem with (i, j, k) = (1, 2, 3). The bound is achieved
with the simple laminate with lamination direction e1. The case when only equality t = Bη · η− cη2

2 is
achieved and the case when only equality t = Bη · η − cη2

3 is achieved can be obtained by symmetry,
which gives all possible cases of part A in the theorem.

II. Let us now assume that Bη · η − cη2
1 < t, and Bη · η − cη2

i − t = 0, i = 2, 3. This implies λ1 = 0, λ2 ≥ 0,
λ3 ≥ 0 and |η2| = |η3|. If η2 = η3, the first two conditions in KKT system imply

η1 =
−3δµm(ξ1, ξ2, ξ3) − 27(1 − θ)δκδµ(ξ1 − ξ2 − ξ3) + l(ξ2, ξ3, ξ1) + l(ξ3, ξ2, ξ1)

6
(
− γ2 + (1 − θ)(3δκ + δµ)

)
η2 =

3δµm(ξ1, ξ2, ξ3) − 27(1 − θ)δκδµ(ξ1 − ξ2 − ξ3) + l(ξ2, ξ3, ξ1) + l(ξ3, ξ2, ξ1)

3
(
− γ2 + (1 − θ)(3δκ + δµ)

)
λ2 =

f (ξ3, ξ1, ξ2)
f (ξ2, ξ1, ξ3) + f (ξ3, ξ1, ξ2)

λ3 =
f (ξ2, ξ1, ξ3)

f (ξ2, ξ1, ξ3) + f (ξ3, ξ1, ξ2)
.

(34)

Condition Bη · η − cη2
1 < t implies |η2| < |η1|which is equivalent to

m(ξ1, ξ2, ξ3)
(
27(1 − θ)δκδµ(ξ1 − ξ2 − ξ3) − l(ξ2, ξ3, ξ1) − l(ξ3, ξ2, ξ1)

)
> 0.

The above inequality together with conditions λ2 ≥ 0 and λ3 ≥ 0 give conditions for the part B when
(i, j, k) = (3, 1, 2). The Hashin-Shtrikman bound in this case is given with

f+(ξ) = A2ξ : ξ +
2θ

3 f (1, 0,−1)

(
− 27(1 − θ)δµδκξ2

1+

+ γ2

(
δµ(2ξ1 − ξ2 − ξ3)2 + 3δκ(ξ1 + ξ2 + ξ3)2

))
,

(35)

and the optimality is achieved by rank-2 sequential laminate with lamination parameters λ2 and λ3
given in (34) and lamination directions e2 and e3.
On the other hand, if η2 = −η3, we get

η1 = −
9δκδµξ1

3δκ + δµ

η2 =
δµγ2(ξ2 − ξ3)

3(1 − θ)δµ − γ2

λ2 =
1(ξ3, ξ1, ξ2)

6(1 − θ)δµ(3δκ + δµ)(ξ2 − ξ3)

λ3 =
1(ξ2, ξ1, ξ3)

6(1 − θ)δµ(3δκ + δµ)(ξ3 − ξ2)
.

(36)
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In this case condition |η2| < |η1| is eqivalent to

l(ξ1, ξ2, ξ3)l(ξ1, ξ3, ξ2) > 0,

which together with λ2 ≥ 0 and λ3 ≥ 0 gives conditions of case C for triplet (i, j, k) = (1, 2, 3). The
Hashin-Shtrikman bound in this case reads

f+(ξ) = A2ξ : ξ − θδµ

 9δκξ2
1

3δκ + δµ
+

γ2(ξ2 − ξ3)2

−3(1 − θ)δµ + γ2

 , (37)

and it is achieved by rank-2 sequential laminate with lamination parameters λ2 and λ3 from (36) and
directions e2 and e3. Cases when strict inequality Bη · η − cη2

2 < t is valid, with equality in other two
inequalities and when strict inequality Bη·η−cη2

3 < t is valid, with equality in other two inequalities go
analogously, and together with presented case give all possible cases of parts B and C of the theorem.

III. It remains to examine the case when t = Bη · η − cη2
1 = Bη · η − cη2

2 = Bη · η − cη2
3, which implies that

λ1, λ2, λ3 > 0 and |η1| = |η2| = |η3|. If η1 = η2 = η3, the first two conditions in (29) give

η1 =
δκ(3κ2 + 4µ2)(ξ1 + ξ2 + ξ3)

3(1 − θ)δκ − γ2

λ1 =
m(ξ1, ξ2, ξ3)

9(1 − θ)δκ(ξ1 + ξ2 + ξ3)

λ2 =
m(ξ2, ξ1, ξ3)

9(1 − θ)δκ(ξ1 + ξ2 + ξ3)

λ3 =
m(ξ3, ξ1, ξ2)

9(1 − θ)δκ(ξ1 + ξ2 + ξ3)
.

(38)

The bound in this case reads

f+(ξ) = A2ξ : ξ − θ
δκγ2(ξ1 + ξ2 + ξ3)2

−3(1 − θ)δκ + γ2
, (39)

which, together with conditions λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 give conditions for case D of the theorem.
Optimality of the bound is achieved with rank-3 sequential laminate with lamination parameters
λ1, λ2 and λ3 given in (38) and lamination directions given with the eigenvectors e1, e2 and e3 of
matrix ξ.

On the other hand, if we assume that η1 = −η2 = η3, again, from the first two conditions in (29) we get

η1 =
9δκδµγ2(ξ2 − ξ1 − ξ3)

l(1, 0, 1) + l(0, 1, 1)

λ1 =
l(ξ1, ξ3, ξ2)

27(1 − θ)δκδµ(ξ2 − ξ1 − ξ3)

λ2 =
27(1 − θ)δκδµ(ξ2 − ξ1 − ξ3) − l(ξ1, ξ3, ξ2) − l(ξ3, ξ1, ξ2)

27(1 − θ)δκδµ(ξ2 − ξ1 − ξ3)

λ3 =
l(ξ3, ξ1, ξ2)

27(1 − θ)δκδµ(ξ2 − ξ1 − ξ3)
.

(40)

The bound in this case is given with

f+(ξ) = A2ξ : ξ − θ
9δκδµγ2(ξ1 − ξ2 + ξ3)2

l(1, 0, 1) + l(0, 1, 1)
, (41)
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and together with conditions λ1 ≥ 0, λ2 ≥ 0 and λ3 ≥ 0 we get case E of the theorem with
(i, j, k) = (1, 2, 3). Optimality of the bound is achieved with rank-3 sequential laminate with lami-
nation parameters λ1, λ2 and λ3 given in (40) and lamination directions given with the eigenvectors
e1, e2 and e3 of matrix ξ. Cases when η1 = η2 = −η3 and −η1 = η2 = η3 go analogously, and these
cases cover all possible cases of part E and complete the proof of the theorem.

Remark 2.3. As presented, the complete solution of the KKT system can be calculated explicitly, by hands, but due
to very long expressions we also checked the solution via symbolic computation with Mathematica. The software is
also used as a verification tool for the lower Hashin-Shtrikman bounds on the complementary energy in Theorem 3.1.

3. Lower Hashin-Shtrikman bound on complementary energy

The complementary energy plays an important role in studying optimal design problem for compliance
minimization [8]. Using Theorem 2.2 and the Legendre-Fenchel transformation in Theorem 3.1 we give an
explicit lower Hashin-Shtrikman bound on the complementary energy. For completeness, let us describe
this procedure in more detail.

For the moment, let us fix θ ∈ [0, 1] and denote the lower bound on complementary energy by

f c
−(σ) := min

A∈G(θ)
A−1σ : σ.

For a quadratic positive definite functional 1
2 Aξ : ξ, the conjugate function (or its classical Legendre

transform) reads 1
2 A−1σ : σ, i.e.

1
2

Aξ : ξ = max
σ∈Symd

[
σ : ξ −

1
2

A−1σ : σ
]
, (42)

so by taking maximum over A ∈ G(θ), and interchanging two maximizations, we have

1
2

f+(ξ) = max
σ∈Symd

[
σ : ξ −

1
2

f c
−(σ)

]
, (43)

meaning that 1
2 f+ and 1

2 f c
−

are conjugate functions [7]. Note that the upper bound f+ is strongly convex
(on Symd) since f+(ξ) − α|ξ|2 = maxA∈G(θ)

[
Aξ : ξ − α|ξ|2

]
is convex and positive, while f c

−
is also convex,

obtained by

1
2

f c
−(σ) = max

ξ∈Symd

[
σ : ξ −

1
2

f+(ξ)
]
. (44)

Moreover, by [32, Theorem 26.3], due to the strict convexity of f+, its conjugate f c
−

is smooth (differen-
tiable) on the whole Symd. Analogously, one can conclude that f c

−
is strongly convex, which implies that

f+ is smooth, although one concludes the same by [31, Theorem 23.5] (see also the original paper [30]).
This enables us to speak about gradients of f+ and f c

−
instead of their subdifferentials, which makes the

calculation of f c
−

simple. Indeed, (43) implies Fenchel-Young inequality (see also the original paper [14] on
conjugates)

1
2

f c
−(σ) +

1
2

f+(ξ) ≤ σ : ξ ,

and, for given σ ∈ Symd, the equality is obtained for some ξ ∈ Symd. Of course, due to differentiability, this
ξ is given by ∇ f+(ξ) = σ, or equivalently ∇ f c

−
(σ) = ξ. In other words, ∇ f+ is a surjection on Symd (but also

an injection, due to strict convexity of f+).
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Moreover, since the primal upper bound f+(ξ) is expressed in terms of the eigenvalues (ξ1, ξ2, ξ3) of
a matrix ξ, by another application of von Neumann result it follows that f c

−
(σ) is expressed in terms of

the eigenvalues (σ1, σ2, σ3), while σ and ξ (connected by ∇ f+(ξ) = σ, which also holds in terms of their
eigenvalues) are simultaneously diagonalizable.

Let us also note that any microstructure which saturates the upper primal bound f+(ξ) also saturates
the lower dual bound f c

−
(σ), for the corresponding σ. Indeed, if A∗ saturates f+(ξ), then by (42) we have

1
2

A∗ξ : ξ = σ∗ : ξ −
1
2

(A∗)−1σ∗ : σ∗,

where σ∗ = A∗ξ. On the other hand

1
2

A∗ξ : ξ = f+(ξ) = σ : ξ −
1
2

f c
−(σ) ≥ σ∗ : ξ −

1
2

f c
−(σ∗),

where ∇ f+(ξ) = σ, which implies 1
2 (A∗)−1σ∗ : σ∗ ≤ 1

2 f c
−

(σ∗). This is possible only by equality, i.e. A∗ is an
optimal microstructure for the lower dual bound f c

−
(σ∗). Consequently, σ = ∇ f+(ξ) = σ∗ = A∗ξ.

An analogous calculation proves the contrary statement: any microstructure which saturates the lower
dual bound f c

−
(σ) also saturates the upper primal bound f+(ξ), for the corresponding ξ.

Therefore, from Theorem 2.2, we can easily get an explicit lower Hashin-Shtrikman bound on the
complementary energy and the corresponding optimal microstructure. Let us introduce numbers ζ =
µ2 − θδµ, ϑ = κ2 − θδκ, ρ = κ1µ2 − κ2µ1, and linear functions

n(x, y, z) = 6(1 − θ)ζµ2δκz + κ1ζγ2(z − y) − 2(1 − θ)µ2ρ(x − y)
o(x, y, z) = 6(1 − θ)µ2δκ(x − y − z) + κ1γ2(2x − y − z)
p(x, y, z) = 6(1 − θ)δκδµζ(3κ2 + µ2)z − 2ζρ(3κ2 + µ2)(x + y + z) + 3ζ(3κ1κ2δµ +

+ 4µ1µ2δκ)(y + z) + 6ζρµ2z − 6µ1µ2ρ(x − y)
q(x, y, z) = −2(1 − θ)δκδµ(3κ2 + µ2)(γ2(x − z) + 3µ2(−x + y + z)) +

+ γ2(−2µ1δκ(3κ2(x − z) + µ2(x + y + z)) + κ1µ2δµ(z − y)).

Theorem 3.1. In three dimensional, well-ordered case, let σ be a symmetric matrix with eigenvalues σ1, σ2 and σ3
and corresponding orthonormal eigenvectors e1, e2 and e3.

Then, the lower Hashin-Shtrikman bound on complementary energy can be expressed explicitly by exactly one of the
following five cases. In each case (except the case D) one is free to take any choice (i, j, k) ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}.

A. If

n(σi, σ j, σk)p(σi, σ j, σk) <0
n(σ j, σi, σk)p(σ j, σi, σk) <0,

(45)

then

f c
−(σ) = A−1

2 σ : σ +
θ

9κ2µ2ζ(3κ1κ2ζ + 4µ1µ2ϑ)

(
9δµκ2µ2ζ(κ1 + 3(1 − θ)δκ)σ2

k+

+ ζ(3κ1κ2δµ(3κ2 + µ2) + µ1µ1δκγ2)(σi + σ j + σk)2 + 9µ1µ2κ2δµϑ(σ j − σi)2
−

− 9κ1κ2δµζ
(
3κ2σ jσi + (3κ2 + 2µ2)σk(σ j + σi)

))
.

(46)

This bound is achieved by a simple laminate with the lamination direction ek.
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B. If

n(σi, σ j, σk)
n(σi, σ j, σk) + n(σi, σk, σ j)

≥0

n(σi, σk, σ j)
n(σi, σ j, σk) + n(σi, σk, σ j)

≥0

o(σi, σ j, σk)(q(σ j, σi, σk) + q(σk, σi, σ j)−
−6(1 − θ)δκδµµ2(−9κ2σi + (3κ2 + µ2)(σi + σ j + σk)) <0,

(47)

then

f c
−(σ) = A−1

2 σ : σ +
θ

36κ2µ2(3ζ(κ1κ2 + µ2ϑ) + µ1µ2ϑ)

(
27(1 − −θ)µ2κ2δκδµ(−σi + σ j + σk)2+

+ γ2

(
µ2δκ(3ζ + µ1)(σi + σ j + σk)2 + 3κ1κ2δµ(2σi − σ j − σk)2

))
.

(48)

This bound can be achieved by the rank-2 sequential laminate with the lamination directions e j and ek, and
lamination parameters

m j =
n(σi, σ j, σk)

n(σi, σ j, σk) + n(σi, σk, σ j)
and mk =

n(σi, σk, σ j)
n(σi, σ j, σk) + n(σi, σk, σ j)

. (49)

C. If

p(σi, σ j, σk)
σk − σ j

≥0

p(σi, σk, σ j)
σ j − σk

≥0

q(σi, σ j, σk)q(σi, σk, σ j) >0,

(50)

then

f c
−(σ) = A−1

2 σ : σ +
θδµ

9κ2µ2(ζ(3κ2 + µ2) + 3µ1µ2)

((
µ2(σi + σ j + σk)+

+ 3κ2(−σi + σ j + σk)
)2
+ 9κ2

2

(
σi(σ j + σk) − 3σ jσk

)
+ 3κ2µ2

(
4σ2

i +

+ σi(σ j + σk) − 12σ jσk

)
+

µ2(−4µ1δκ + κ1δµ)
4θδκδµ(3κ2 + µ2) − 4κ2µ2(3δκ + δµ)

(
3κ2(2σi−

− σ j − σk) + 2µ2(σi + σ j + σk)
)2
)
.

(51)

This bound can be achieved by the rank-2 sequential laminate with the lamination directions e j and ek, and
lamination parameters

m j =
p(σi, σ j, σk)

6(1 − θ)δµ(3κ2δκζ + µ2δµϑ)(σk − σ j)
and

mk =
p(σi, σk, σ j)

6(1 − θ)δµ(3κ2δκζ + µ2δµϑ)(σ j − σk)
.

(52)
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D. If

−o(σ1, σ2, σ3)
σ1 + σ2 + σ3

≥0

−o(σ2, σ1, σ3)
σ1 + σ2 + σ3

≥0

−o(σ3, σ2, σ1)
σ1 + σ2 + σ3

≥0,

(53)

then

f c
−(σ) = A−1

2 σ : σ + θ
δκγ2(σ1 + σ2 + σ3)2

9κ2(4µ2(1 − θ)δκ + κ1γ2)
. (54)

In this case, the bound can be achieved by the rank-3 sequential laminate with the lamination directions e1, e2
and e3, and lamination parameters

m1 =
−o(σ1, σ2, σ3)

6(1 − θ)δκµ2(σ1 + σ2 + σ3)
, m2 =

−o(σ2, σ1, σ3)
6(1 − θ)δκµ2(σ1 + σ2 + σ3)

, and

m3 =
−o(σ3, σ2, σ1)

6(1 − θ)δκµ2(σ1 + σ2 + σ3)
.

(55)

E. If

1
9κ2σi − (3κ2 + µ2)(σi + σ j + σk)

(
q(σ j, σi, σk) + q(σk, σi, σ j)−

−6(1 − θ)δκδµµ2

(
− 9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

))
≥0

q(σ j, σi, σk)
−9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

≥0

q(σk, σi, σ j)
−9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

≥0,

(56)

then

f c
−(σ) = A−1

2 σ : σ +
θδκδµγ2

(
3κ2(−2σi + σ j + σk) + µ2(σi + σ j + σk)

)2

9κ2µ2

(
4(1 − θ)δκδµ(3κ2 + µ2)2 + γ2(12κ2µ1δκ + µ2κ1δµ)

) . (57)

In this case, the bound can be achieved by the rank-3 sequential laminate with the lamination directions ei, e j
and ek, and lamination parameters

mi =
1

6(1 − θ)δκδµµ2

(
9κ2σi − (3κ2 + µ2)(σi + σ j + σk)

) (q(σ j, σi, σk)+

+ q(σk, σi, σ j) − 6(1 − θ)δκδµµ2

(
− 9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

))
m j =

q(σ j, σi, σk)

6(1 − θ)δκδµµ2

(
− 9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

) and

mk =
q(σk, σi, σ j)

6(1 − θ)δκδµµ2

(
− 9κ2σi + (3κ2 + µ2)(σi + σ j + σk)

) .
(58)
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Remark 3.2. The special case where one material is replaced by void is studied in [5, Theorem 2.6]. The same result
is recalled in [4, Theorem 2.3.36] with notations which are better suited to ours, so it is easier to verify the resemblance
to the results of Theorem 3.1.

More precisely, one is able to directly associate the studied cases:
Theorem 3.1 Theorem 2.3.36 from [4]
A never occurs
B, (i, j, k) = (1, 3, 2) (2.159)
B, (i, j, k) = (3, 2, 1) (2.157)
C, (i, j, k) = (3, 2, 1) (2.160)
D (2.156)
E, (i, j, k) = (1, 3, 2) (2.158).

Other cases from [4, Theorem 2.3.36] are obtained symmetricaly, by replacing σ by −σ, and they also correspond to
particular cases of Theorem 3.1.

Remark 3.3. The classical upper Hashin-Shtrikman bound [20] on bulk moduli of isotropic elastic composites can
also be recovered from Theorems 2.2 and 3.1 by taking ξ (or σ) equal to the identity matrix.

4. Concluding remarks

In this paper, we explicitly calculated the upper Hashin-Shtrikman bound on the primal energy and
the lower Hashin-Shtrikman bound on the complementary energy of a composite material obtained by
mixing two well-ordered isotropic phases in three space dimensions. Additionally, we described sequential
laminates that saturate these bounds. Our explicit calculations of Hashin-Shtrikman bounds smooth path
to further results in theory and applications involving the bounds and the G-closure problem. To be more
specific, by explicitly computing the upper bound we have also obtained new (partial) results on G-closure,
in the sense that we specified the maximum value of the linear function A 7→ Aξ : ξ, A ∈ Gθ, for every
strain ξ. Thus, one is able to reveal a part of the boundary of the set Gθ. Additionally, bounds on energy are
useful on their own. Probably the most obvious application of the energy bounds is for finding solutions in
structural optimization problems involving compliance as a design criterion [4, 10, 11, 32]. Up to now, the
most prominent contribution of homogenization method in 3D optimal design problems was restricted to
finding designs of optimal shape, where one of the two constituting materials is replaced by a void [4, 5].
Thus, our results are expected to have applications to compliance minimization optimal design problem in
the same spirit as it was recently done in 2D case [11]. Other potential applications include the modelling of
the damage accumulation [15], as well as the coherent phase transitions [21]. As a draw back, we pinpoint
that our results are restricted to the well-ordered case. In two space dimensions the non-well-ordered case
was treated by so called translation method [7]. However, in three space dimensions the situation is more
delicate, and, while the lower bound (7) is obtained (but not explicitly calculated) in [9], the optimal upper
bound, to the best of our knowledge, is not yet known.
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