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Abstract. The Hermite-Hadamard-Fejér inequalities for a harmonically-h-convex function are explored
in this study, and the findings for specific classes of functions are highlighted. Several generalizations of
the Hermite-Hadamard inequalities are also discussed. Some properties of functionsH and F , which are
naturally defined for Hermite-Hadamard-Fejér type inequalities for harmonically-h-convex functions, have
also been studied. Finally, we find applications of the results concerning the p-logarithmic mean and the
order p mean.

1. Introduction

Mathematical inequalities have emerged as a new area of study mathematicians in recent decades.
This topic has far-reaching implications for mathematical analysis, functional analysis, numerical analysis,
applied mathematics, physics, and other applied sciences. This subject is so rich in mathematical reasoning
due to which many new proofs of classical results have arisen in mathematical literature. This topic is
largely reliant on convex sets and convex functions, as well as its innovative generalizations. The following
is the classical definition of convex functions:

Definition 1.1. Let ∅ , I ⊆ R. The function χ : I→ R is said to be convex on I if for all µ, ς ∈ I and α ∈ [0, 1], one
has the inequality:

χ(αµ + (1 − α)ς) ≤ αχ(µ) + (1 − α)χ(ς).

Let χ : ∅ , I ⊆ R→ R be a convex function. Then the following double inequality:

χ
(ρ + σ

2

)
≤

1
σ − ρ

∫ σ

ρ
χ(µ)dµ ≤

χ(ρ) + χ(σ)
2

(1)

holds for ρ, σ ∈ I with ρ < σ. This is known as the Hermite-Hadamard inequality for convex mapping. The
inequalities in (1) hold in reversed direction if χ is a concave function on I.

In [22], Hudzik and Maligranda considered some properties of two classes of s-convex real valued
functions already exist in the literature.
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Definition 1.2. [22] A function χ : [0,∞)→ R is said to be s-convex in the first sense if

χ(αµ + (1 − α)ς) ≤ αsχ(µ) + (1 − αs)χ(ς)

for all µ, ς ∈ [0,∞) and all α ∈ [0, 1]. The class K1
s contains all the s-convex in the first sense.

Definition 1.3. [22] A function χ : [0,∞)→ R is said to be s-convex in the second sense if

χ(αµ + (1 − α)ς) ≤ αsχ(µ) + (1 − α)sχ(ς)

for all µ, ς ∈ [0,∞) and all α ∈ [0, 1]. The class K2
s contains all the s-convex in the second sense.

Remark 1.4. It is clear that s-convexity in the first sense and in the second sense mean just the convexity when s = 1.

Dragomir and Fitzpatrick demonstrated in [22] the following form of Hermite-Hadamard’s inequality
for s-convex functions in the second sense:

Theorem 1.5. [22] Suppose that χ : [0,∞) → [0,∞) is an s-convex function in the second sense, where s ∈ (0, 1)
and let ρ, σ ∈ [0,∞), ρ < σ. If χ ∈ L1([ρ, σ]) then the following inequalities hold:

2s−1χ
(ρ + σ

2

)
≤

1
σ − ρ

∫ σ

ρ
χ(µ)dµ ≤

χ(ρ) + χ(σ)
s + 1

(2)

The constant 1
s+1 is the best possible in the second inequality in (2).

In the paper Varošanec [35], considered a larger class of non-negative functions, which is known as h-
convex functions. This class contains several well-known classes of functions such as non-negative convex
functions, s-convex in the second sense, Godunova-Levin functions and P-functions.

Definition 1.6. [35] Let h : J ⊆ R→ R, where (0, 1) ⊆ J, be a positive function. A function χ : I ⊆ R→ R is said
to be h-convex or that χ is said to belong to the class SX(h, I), if χ is non-negative and for all µ, ς ∈ I and α ∈ (0, 1),
we have

χ(αµ + (1 − α)ς) ≤ h(α)χ(µ) + h(1 − α)χ(ς). (3)

If the inequality (3) is reversed then χ is said to be h-concave and we say that χ belongs to the class SV(h, I).

Fejér [15], established the following double inequality as a weighted generalization of (1):

χ
(ρ + σ

2

) ∫ σ

ρ
ϑ(µ)dµ ≤

∫ σ

ρ
χ(µ)ϑ(µ)dµ ≤

χ(ρ) + χ(σ)
2

∫ σ

ρ
ϑ(µ)dµ, (4)

where χ : I −→ R, ∅ , I ⊆ R, ρ, σ ∈ I with ρ < σ is any convex function and ϑ :
[
ρ, σ

]
→ R is non-negative

integrable and symmetric about µ = ρ+σ2 .
When the class of convex functions is extended to the class of h-convex functions, the features associated

with the integral mean of the function χ do not change, according to Bombardelli and Varošanec [1]. The
authors additionally illustrated the Hermite-Hadamard-Fejér inequality for an h-convex function, as well
as specific examples for other classes of function such as convex functions and s-convex functions. It was
also discovered in this study that the left-hand side inequality of their result is stronger than the right-hand
side inequality. This research also includes various features of the following functions:

H (t) =
1
σ − ρ

∫ σ

ρ
χ
(
tµ + (1 − t)

ρ + σ

2

)
dµ
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and

F (t) =
1(

σ − ρ
)2

∫ σ

ρ

∫ σ

ρ
χ
(
tµ + (1 − t) ς

)
dµdς

that arise when the function χ is an h-convex function.
We recall that harmonically convex functions, also known as HA-convex functions, are prominent

generalizations of convex functions.

Definition 1.7. [23] A function χ : I ⊆ (0,∞)→ R is considered to be harmonically-convex, if

χ

(
µς

(1 − α)µ + ας

)
≤ αχ

(
µ
)
+ (1 − α)χ (ς) (5)

for all µ, ς ∈ I and α ∈ (0, 1). The function χ : I→ R is HA-concave if the inequality in (5) hold in reversed.

The results below include some significant information underlying HA-convex and convex functions.

Theorem 1.8. [9, 10] If
[
ρ, σ

]
⊂ I ⊂ (0,∞) and if we consider the function 1 :

[
1
σ ,

1
ρ

]
→ R defined by 1 (t) =

(χ ◦ k) (t), where k (t) = 1
t , then χ is harmonically convex on

[
ρ, σ

]
if and only if 1 is convex in the usual sense on[

1
σ ,

1
ρ

]
.

Theorem 1.8 can easily be extended to harmonically h-convex functions as follows:

Theorem 1.9. If
[
ρ, σ

]
⊂ I ⊂ (0,∞) and if we consider the function 1 :

[
1
σ ,

1
ρ

]
→ R defined by 1 (t) = (χ ◦ k) (t),

where k (t) = 1
t , then χ is harmonically h-convex on

[
ρ, σ

]
if and only if 1 is h-convex in the usual sense on

[
1
σ ,

1
ρ

]
.

Theorem 1.10. [9, 10] If I ⊂ (0,∞) and χ is convex and nondecreasing function then χ is HA-convex and if χ is
HA-convex and nonincreasing function then χ is convex.

The following inequality of Hermite-Hadamard type for HA-convex (harmonically-convex) functions
holds (see for instance [33] its extension for for an HA-h-convex functions):

Theorem 1.11. [23] Let χ : I ⊆ (0,∞)→ R be a HA-convex function and ρ, σ ∈ I with ρ < σ. If χ ∈ L
([
ρ, σ

])
then

the following inequalities hold:

χ

(
2ρσ
ρ + σ

)
≤
ρσ

σ − ρ

∫ σ

ρ

χ
(
µ
)

µ2 dµ ≤
χ
(
ρ
)
+ χ (σ)
2

. (6)

The notion of harmonically symmetric functions was introduced in [31].

Definition 1.12. [31] A function ϑ :
[
ρ, σ

]
⊆ (0,∞)→ R is harmonically symmetric with respect to (0,∞) if

ϑ
(
µ
)
= ϑ

 1
1
ρ +

1
σ −

1
µ


holds for all µ ∈

[
ρ, σ

]
.

Fejér type inequalities using HA-convex functions using harmonically symmetric functions were pre-
sented in Latif et al. [31].
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Theorem 1.13. [31] Let χ : I ⊆ (0,∞)→ R be a HA-convex function and ρ, σ ∈ I with ρ < σ. If χ ∈ L
([
ρ, σ

])
and

ϑ :
[
ρ, σ

]
⊆ (0,∞)→ R is nonnegative integrable harmonically symmetric with respect to 2ρσ

ρ+σ , then

χ

(
2ρσ
ρ + σ

) ∫ σ

ρ

ϑ
(
µ
)

µ2 dµ ≤
∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ ≤
χ
(
ρ
)
+ χ (σ)
2

∫ σ

ρ

ϑ
(
µ
)

µ2 dµ. (7)

Noor et all. [33] considered a larger class of HA-convex functions, know as the class of HA-h-convex
functions. This class contains many classes of functions such as non-negative HA-convex functions, HA-
s-convex in the second sense, HA-Godunova-Levin functions and HA-P-functions. This class is defined
as:

Definition 1.14. [33] Let h : [0, 1] → [0,∞) be a non-negative function. A function χ : I ⊆ (0,∞) → R is said to
be HA-h-convex, if

χ

(
µς

(1 − α)µ + ας

)
≤ h (α)χ

(
µ
)
+ h (1 − α)χ (ς) (8)

for all µ, ς ∈ I and α ∈ (0, 1). The function χ : I → R is HA-h-concave if the inequality in (8) is reversed. Note that
harmonically-h-convex function becomes harmonically-s-convex function for h (α) = s and harmonically-h-convex
function is reduced to harmonically-P-function for h (α) = 1.

The interested readers are referred to [33] for integral inequalities for the class of HA-h-convex functions.
The main motivation of this research is the study given in Bombardelli and Varošanec [1]. In the next

section, we will prove that there will be no change in the properties of ρσσ−ρ
∫ σ
ρ

χ(µ)
µ2 dµ if the class of HA-convex

functions is extended to the class of HA-h-convex functions. We will also prove Hermite-Hadamard-Fejér
type inequalities for an HA-h-convex function and we will consider some special cases for other classes of
functions such as HA-convex functions and HA-s-convex functions.We will discuss in this research that in
our obtained result, the left-hand side of the inequality is stronger than the right-hand side of the inequality.
Lastly, some properties will be observed as well for the mappingsH ,F : [0, 1]→ R be defined by

H (t) =
ρσ

σ − ρ

∫ σ

ρ

1
µ2χ

(
2ρσµ

2ρσt + (1 − t)µ
(
ρ + σ

) ) dµ,

F (t) =
(
ρσ

σ − ρ

)2 ∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

(1 − t)µ + tς

)
dµdς,

where χ : I ⊆ (0,∞)→ R is HA-convex on I and ρ, σ ∈ I.

2. The Hermite Hadamard Fejér inequalities for a HA-h-convex function

We begin this section with the following Hermite-Hadamard-Fejér Inequality for an HA-h-convex func-
tion.

Theorem 2.1. Let χ :
[
ρ, σ

]
⊆ (0,∞) → R be an HA-h-convex function and ϑ :

[
ρ, σ

]
→ R be non-negative,

integrable and symmetric with respect to 2ρσ
ρ+σ . Then

ρσ

σ − ρ

∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ ≤
[
χ
(
ρ
)
+ χ (σ)

] ∫ 1

0
h (t)ϑ

(
ρσ

(1 − t)ρ + tσ

)
dt. (9)

If χ :
[
ρ, σ

]
⊆ (0,∞)→ R is an HA-h-concave function, then the inequality in (9) holds in reversed direction.
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Proof. Let µ ∈
(
ρ, σ

)
there exists α ∈ (0, 1) such that µ = ρσ

ᾱρ+ασ , where ᾱ = 1 − α. Since χ is a HA-h-convex
function, we have

χ

(
ρσ

ᾱρ + ασ

)
ϑ

(
ρσ

ᾱρ + ασ

)
≤

[
h (α)χ

(
ρ
)
+ h (ᾱ)χ (σ)

]
ϑ

(
ρσ

ᾱρ + ασ

)
(10)

and

χ

(
ρσ

αρ + ᾱσ

)
ϑ

(
ρσ

αρ + ᾱσ

)
≤

[
h (ᾱ)χ

(
ρ
)
+ h (α)χ (σ)

]
ϑ

(
ρσ

αρ + ᾱσ

)
. (11)

Adding (10) and (11) and integrating with respect to α over the interval [0, 1], we obtain∫ 1

0
χ

(
ρσ

ᾱρ + ασ

)
ϑ

(
ρσ

ᾱρ + ασ

)
dα +

∫ 1

0
χ

(
ρσ

αρ + ᾱσ

)
ϑ

(
ρσ

αρ + ᾱσ

)
dα

≤ χ
(
ρ
) ∫ 1

0
h (α)ϑ

(
ρσ

ᾱρ + ασ

)
dα + χ

(
ρ
) ∫ 1

0
h (ᾱ)ϑ

(
ρσ

αρ + ᾱσ

)
dα

+ χ (σ)
∫ 1

0
h (ᾱ)ϑ

(
ρσ

ᾱρ + ασ

)
dα + χ (σ)

∫ 1

0
h (α)ϑ

(
ρσ

αρ + ᾱσ

)
dα. (12)

By making use of the substitution ᾱ = t in (12) and using the assuption that ϑ is symmetric with respect to
2ρσ
ρ+σ , we have

∫ 1

0
χ

(
ρσ

tρ + (1 − t) σ

)
ϑ

(
ρσ

tρ + (1 − t) σ

)
dt +

∫ 1

0
χ

(
ρσ

(1 − t)ρ + tσ

)
ϑ

(
ρσ

(1 − t)ρ + tσ

)
dt

≤ 2χ
(
ρ
) ∫ 1

0
h (t)ϑ

(
ρσ

(1 − t)ρ + tσ

)
dt + 2χ (σ)

∫ 1

0
h (t)ϑ

(
ρσ

tρ + (1 − t) σ

)
dt

= 2
[
χ
(
ρ
)
+ χ (σ)

] ∫ 1

0
h (t)ϑ

(
ρσ

tρ + (1 − t) σ

)
dt. (13)

By using the change of variable techniques, we observe that each integral on right hand side of (13) is equal

to ρσ
σ−ρ

∫ σ
ρ

χ(µ)ϑ(µ)
µ2 dµ. Hence the theorem is established.

Remark 2.2. If in Theorem 2.1

(i) The function χ is convex, that is, if h (t) = t, then∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ ≤
(
ρσ

σ − ρ

) [
χ
(
ρ
)
+ χ (σ)

] ∫ σ

ρ

(
1
µ
−

1
σ

)
ϑ
(
µ
)

µ2 dµ. (14)

(ii) The function χ is an s-convex, that is, if h (t) = ts, s ∈ (0, 1), then∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ ≤
(
ρσ

σ − ρ

) [
χ
(
ρ
)
+ χ (σ)

] ∫ σ

ρ

(
1
µ
−

1
σ

)s ϑ
(
µ
)

µ2 dµ. (15)

Theorem 2.3. Let h be defined over the interval
[
0,max

{
0, σ−ρρσ

}]
and χ :

[
ρ, σ

]
⊆ (0,∞) → R be a HA-h-convex

function and ϑ :
[
ρ, σ

]
→ R be non-negative, integrable and symmetric with respect to 2ρσ

ρ+σ with
∫ σ
ρ
ϑ(t)
t2 dt > 0. Then

χ

(
2ρσ
ρ + σ

)
≤ C

∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ, (16)
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where C =
2h( 1

2 )∫ σ
ρ

ϑ(µ)
µ2 dµ

.

Furthermore, if
∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ
h
(

1
ς −

1
µ

)
dςdµ , 0, h

(
µ
)
, 0 for µ > 0 and

(i) If h is multiplicative or
(ii) If h is supermultiplicative and χ is non-negative

and if χ is an HA-h-convex function, then inequality (16) holds for

C = min


2h

(
1
2

)
∫ σ
ρ

ϑ(µ)
µ2 dµ

,

∫ σ−ρ
2ρσ

0 h
(
µ
)
ϑ
( 2ρσ
ρ+σ+2ρσµ

)
dµ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

h
(

1
ς−

1
µ

)
ϑ(µ)ϑ(ς)

µ2ς2 dςdµ

 .
Proof. Since χ be a HA-h-convex function, then for α = 1

2 , µ = ρσ
(1−t)ρ+tσ and ς = ρσ

tρ+(1−t)σ , from the definition
of a HA-h-convex function, we have the following inequality

χ

(
2ρσ
ρ + σ

)
≤ h

(1
2

) [
χ

(
ρσ

(1 − t)ρ + tσ

)
+ χ

(
ρσ

tρ + (1 − t) σ

)]
.

Now we multiply it with ϑ
(

ρσ
tρ+(1−t)σ

)
= ϑ

(
ρσ

(1−t)ρ+tσ

)
and integrate by t over [0, 1] to obtain

χ

(
2ρσ
ρ + σ

) ∫ 1

0
ϑ

(
ρσ

(1 − t)ρ + tσ

)
dt

≤ h
(1

2

) [∫ 1

0
χ

(
ρσ

(1 − t)ρ + tσ

)
ϑ

(
ρσ

(1 − t)ρ + tσ

)
dt +

∫ 1

0
χ

(
ρσ

tρ + (1 − t) σ

)
ϑ

(
ρσ

tρ + (1 − t) σ

)
dt

]
. (17)

Making suitable substitution, we get that

χ

(
2ρσ
ρ + σ

)
≤

2h
(

1
2

)
∫ σ
ρ

ϑ(µ)
µ2 dµ

∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ.

The equality (16) is thus established.
We oberve due to the h-convexity 1 on

[
1
σ ,

1
ρ

]
that

χ

(
2ρσ
ρ + σ

)
= (χ ◦ k)

(
ρ + σ

2ρσ

)
= 1

(
ρ + σ

2ρσ

)
= 1


 1
ς −

ρ+σ
2ρσ

1
ς −

1
µ

 1
µ
+


ρ+σ
2ρσ −

1
µ

1
ς −

1
µ

 1
ς


≤ h

 1
ς −

ρ+σ
2ρσ

1
ς −

1
µ

 1 ( 1
µ

)
+ h


ρ+σ
2ρσ −

1
µ

1
ς −

1
µ

 1 (1
ς

)

= h

 1
ς −

ρ+σ
2ρσ

1
ς −

1
µ

 (χ ◦ k)
(

1
µ

)
+ h


ρ+σ
2ρσ −

1
µ

1
ς −

1
µ

 (χ ◦ k)
(1
ς

)
= h

 1
ς −

ρ+σ
2ρσ

1
ς −

1
µ

χ (
µ
)
+ h


ρ+σ
2ρσ −

1
µ

1
ς −

1
µ

χ (ς) . (18)

Let α =
1
ς−
ρ+σ
2ρσ

1
ς−

1
µ

and ᾱ = 1 − α =
ρ+σ
2ρσ −

1
µ

1
ς−

1
µ

, hence (18) takes the form

χ

(
2ρσ
ρ + σ

)
≤ h (α)χ

(
µ
)
+ h (ᾱ)χ (ς) . (19)
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Since h is supermultiplicative, we have

h (α) = h

 1
ς −

ρ+σ
2ρσ

1
ς −

1
µ

 ≤ h
(

1
ς −

ρ+σ
2ρσ

)
h
(

1
ς −

1
µ

)
and

h (ᾱ) = h


ρ+σ
2ρσ −

1
µ

1
ς −

1
µ

 ≤ h
(
ρ+σ
2ρσ −

1
µ

)
h
(

1
ς −

1
µ

) .
Thus (19) becomes

h
(

1
ς
−

1
µ

)
χ

(
2ρσ
ρ + σ

)
≤ h

(
1
ς
−
ρ + σ

2ρσ

)
χ
(
µ
)
+ h

(
ρ + σ

2ρσ
−

1
µ

)
χ (ς) . (20)

Multiplying (20) with
ϑ(µ)
µ2 and integrating over interval

[ 2ρσ
ρ+σ , σ

]
with respect to µ and then multiplying with

ϑ(µ)
µ2 and integrating over interval

[
ρ,

2ρσ
ρ+σ

]
with respect to ςwe get

χ

(
2ρσ
ρ + σ

) ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

h
(

1
ς −

1
µ

)
ϑ
(
µ
)
ϑ (ς)

µ2ς2 dςdµ

≤

∫ σ

2ρσ
ρ+σ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ
∫ 2ρσ

ρ+σ

ρ
h
(

1
ς
−
ρ + σ

2ρσ

)
ϑ (ς)
ς2 dς +

∫ σ

2ρσ
ρ+σ

h
(
ρ + σ

2ρσ
−

1
µ

)
ϑ
(
µ
)

µ2 dµ
∫ 2ρσ

ρ+σ

ρ

χ (ς)ϑ (ς)
ς2 dς

=

∫ σ

2ρσ
ρ+σ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ
∫ 2ρσ

ρ+σ

ρ
h
(

1
ς
−
ρ + σ

2ρσ

)
ϑ (ς)
ς2 dς. (21)

Substitution t = 1
ς −

ρ+σ
2ρσ in the first integral and substitution t = ρ+σ2ρσ −

1
µ in the second integral on the rifht

hand side of (21), we get

χ

(
2ρσ
ρ + σ

) ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

h
(

1
ς −

1
µ

)
ϑ
(
µ
)
ϑ (ς)

µ2ς2 dςdµ

≤

∫ σ

2ρσ
ρ+σ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ
∫ 2ρσ

ρ+σ

ρ
h
(

1
ς
−
ρ + σ

2ρσ

)
ϑ (ς)
ς2 dς +

∫ σ

2ρσ
ρ+σ

h
(
ρ + σ

2ρσ
−

1
µ

)
ϑ
(
µ
)

µ2 dµ
∫ 2ρσ

ρ+σ

ρ

χ (ς)ϑ (ς)
ς2 dς

=

∫ σ

2ρσ
ρ+σ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ
∫ σ−ρ

2ρσ

0
h (t)ϑ

(
ρ + σ

ρ + σ + 2ρσt

)
dt

+

∫ σ−ρ
2ρσ

0
h (t)ϑ

(
ρ + σ

ρ + σ − 2ρσt

)
dt

∫ σ

2ρσ
ρ+σ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ. (22)

Since the mapping ϑ is geometrically symmetric with respect to 2ρσ
ρ+σ , hence ϑ

(
ρ+σ

ρ+σ+2ρσt

)
= ϑ

(
ρ+σ

ρ+σ−2ρσt

)
for all

t ∈
[
0, σ−ρ2ρσ

]
. Thus from (22), we get

χ

(
2ρσ
ρ + σ

) ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

h
(

1
ς −

1
µ

)
ϑ
(
µ
)
ϑ (ς)

µ2ς2 dςdµ ≤
∫ σ−ρ

2ρσ

0
h (t)ϑ

(
2ρσ

ρ + σ + 2ρσt

)
dt

∫ σ

ρ

χ
(
µ
)
ϑ
(
µ
)

µ2 dµ.

Hence (16) is established.
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Remark 2.4. Suppose that the conditions of Theorem 2.3 are satisfied and

(i) If χ is an HA-h-concave function, then the inequality in (16) is reversed.

(ii) If h submultiplicative with
∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

h
(

1
ς−

1
µ

)
ϑ(µ)ϑ(ς)

µ2ς2 dςdµ , 0, h > 0, and if χ is an HA-h-concave function then

the inequality in (16) is reversed with constant C as given in Theorem 2.3 by changing min to max.

Remark 2.5. In Theorem 2.3

(a) If χ is HA-convex, i.e. h (t) = t, then inequality (16) holds for C = 1∫ σ
ρ
ϑ(t)
t2

dt
.

Furthermore, if
∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

(
1
ς−

1
µ

)
ϑ(µ)ϑ(ς)

µ2ς2 dςdµ , 0, h
(
µ
)
, 0 for µ > 0 and

If h is multiplicative or if h is supermultiplicative and χ is non-negative, then inequality (16) holds for

C = min


1∫ σ

ρ

ϑ(µ)
µ2 dµ

,

∫ σ−ρ
2ρσ

0 µϑ
( 2ρσ
ρ+σ+2ρσµ

)
dµ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

(
1
ς−

1
µ

)
ϑ(µ)ϑ(ς)

µ2ς2 dςdµ

 .
(b) If χ is HA-s-convex, i.e. h (t) = ts, then inequality (16) holds for C = 21−s∫ σ

ρ

ϑ(µ)
µ2 dµ

.

Furthermore, if
∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

(
1
ς−

1
µ

)s
ϑ(µ)ϑ(µ)
µ2ς2 dςdµ , 0, h

(
µ
)
, 0 for µ > 0 and

If h is multiplicative or if h is supermultiplicative and χ is non-negative, then inequality (16) holds for

C = min


21−s∫ σ

ρ

ϑ(µ)
µ2 dµ

,

∫ σ−ρ
2ρσ

0 µsϑ
( 2ρσ
ρ+σ+2ρσµ

)
dµ∫ σ

2ρσ
ρ+σ

∫ 2ρσ
ρ+σ

ρ

(
1
ς−

1
µ

)s
ϑ(µ)ϑ(ς)

µ2ς2 dςdµ

 .
Remark 2.6. In Theorem 2.3

(a) If χ is HA-convex, i.e. h (t) = t and ϑ
(
µ
)
=
ρσ
σ−ρ , µ ∈

[
ρ, σ

]
, then inequality (16) becomes the first inequality

in (6).

(b) If χ is HA-s-convex, i.e. h (t) = tsand ϑ
(
µ
)
=
ρσ
σ−ρ , µ ∈

[
ρ, σ

]
., then inequality (16) becomes the first inequality

proved in [33, Corollary 3.3, page 5.].

Let us now consider non-weighted Hermite Hadamard inequalities for HA-h-convex function from [33]:

1

2h
(

1
2

)χ (
2ρσ
ρ + σ

)
≤
ρσ

σ − ρ

∫ σ

ρ

χ
(
µ
)

µ2 dµ ≤
[
χ
(
ρ
)
+ χ (σ)

] ∫ 1

0
h (t) dt, (23)

where h
(

1
2

)
> 0.

Now we define L :
[
ρ, σ

]
→ R and P :

[
ρ, σ

]
→ R by

L (ς) =
[
χ
(
ρ
)
+ χ (ς)

] ( 1
ρ
−

1
ς

) ∫ 1

0
h (t) dt −

∫ µ

ρ

χ
(
µ
)

µ2 dµ

and

P (ς) =
∫ ς

ρ

χ (ς)
ς2 dς − χ

(
2ρς
ρ + ς

) (
ς − ρ

)
2ρςh

(
1
2

)
respectively.



M. A. Latif / Filomat 38:18 (2024), 6311–6324 6319

Theorem 2.7. If the function χ is HA-h-convex, χ ≥ 0, h
(

1
2

)
> 0 and 1

4h( 1
2 ) ≥

∫ 1

0 h (t) dt, then

L (ς) ≥ P (ς) ≥ 0, ς ∈
[
ρ, σ

]
. (24)

Proof. Applying the second Hermite-Hadamard type inequalities over the intervals
[
ρ,

2ρς
ρ+ς

]
and

[ 2ρς
ρ+ς , µ

]
,

we obtain∫ 2ρµ
ρ+µ

ρ

χ
(
µ
)

µ2 dµ ≤

χ
(
ρ
)
+ χ

( 2ρς
ρ+ς

)
2


(
ς − ρ

ρς

) ∫ 1

0
h (t) dt (25)

and ∫ ς

2ρς
ρ+ς

χ
(
µ
)

µ2 dµ ≤

χ
( 2ρς
ρ+ς

)
+ χ (ς)

2


(
ς − ρ

ρς

) ∫ 1

0
h (t) dt. (26)

Adding (25) and (26), we obtain∫ ς

ρ

χ
(
µ
)

µ2 dµ ≤
(
ς − ρ

ρς

) [
χ

(
2ρς
ρ + ς

)
+
χ
(
ρ
)
+ χ

(
µ
)

2

] ∫ 1

0
h (t) dt. (27)

Multiplying both sides of (27), we get∫ ς

ρ

χ
(
µ
)

µ2 dµ −
(
ς − ρ

ρς

) [
χ
(
ρ
)
+ χ (ς)

] ∫ 1

0
h (t) dt ≤ 2

(
ς − ρ

ρς

)
χ

(
2ρς
ρ + ς

) ∫ 1

0
h (t) dt −

∫ µ

ρ

χ
(
µ
)

µ2 dµ. (28)

We can observe now that

P (ς) =
∫ ς

ρ

χ
(
µ
)

µ2 dµ − χ
(

2ρς
ρ + ς

) (
ς − ρ

)
2ρςh

(
1
2

) ≤ ∫ ς

ρ

χ
(
µ
)

µ2 dµ − 2
(
ς − ρ

ρς

)
χ

(
2ρς
ρ + ς

) ∫ 1

0
h (t) dt

≤

(
ς − ρ

ρς

) [
χ
(
ρ
)
+ χ (ς)

] ∫ 1

0
h (t) dt −

∫ ς

ρ

χ
(
µ
)

µ2 dµ = L (ς) .

Hence the first inequality in (24) is proved. The second inequality in (24) follows from the first inequality
in (23). The proof is thus accomplished.

3. Mappings connected with the Hermite-Hadamard type inequalities for HA-convex functions

Consider the mappingsH ,F : [0, 1]→ R be defined by

H (t) =
ρσ

σ − ρ

∫ σ

ρ

1
µ2χ

(
2ρσµ

2ρσt + (1 − t)µ
(
ρ + σ

) ) dµ

and

F (t) =
(
ρσ

σ − ρ

)2 ∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

(1 − t)µ + tς

)
dµdς,

where χ : I ⊆ (0,∞)→ R is HA-convex on I and ρ, σ ∈ I.

The author has proved thatH (0) = χ
( 2ρσ
ρ+σ

)
andH (1) = ρσ

σ−ρ

∫ σ
ρ

χ(µ)
µ2 dµ. The author has discussed some

properties for HA-convex functions and now we investigate which of those properties of the mappingsH
and F for HA-h-convex mappings.
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Theorem 3.1. Let χ be HA-h-convex on
[
ρ, σ

]
⊆ (0,∞) and h : J → R, [0, 1] ⊆ J. Then the mapping H is

HA-h-convex on (0, 1] for t ∈ (0, 1]

H (0) ≤ tC1H (t) ,

where

tC1 =


2h

(
1
2

)
, in general case,

min

2h
(

1
2

)
,

∫ 1
0 h

(
σ−ρ
2ρσ tµ

)
dµ∫ 1

0

∫ 1
0

h
(
σ−ρ
2ρσ t( 1

ς +
1
µ )

)
µ2ς2

dςdµ

 ,
h satisfies (i) or (ii) of Theorem 2.3.

Proof. We kknow that if χ : [ρ, σ]→ R is HA-h-convex on [ρ, σ] ⊂ (0,∞), then χ ◦ k is h-convex on [ 1
σ ,

1
ρ ]. In

order to show thatH is HA-h-convex on (0, 1], it suffices to prove that the mapping H̄ : [0, 1]→ R defined
by

H̄ (t) =
ρσ

σ − ρ

∫ 1
ρ

1
σ

(χ ◦ k)
(
t

1
µ
+ (1 − t)

(
ρ + σ

2ρσ

))
dµ

is h-convex on (0, 1]. Let α, β ∈ [0, 1] with α + β = 1 and t1, t2 ∈ (0, 1], then

H̄
(
αt1 + t2β

)
=
ρσ

σ − ρ

∫ 1
ρ

1
σ

(χ ◦ k)
((
αt1 + t2β

) 1
µ
+

(
1 −

(
αt1 + t2β

)) (ρ + σ
2ρσ

))
dµ

=
ρσ

σ − ρ

∫ 1
ρ

1
σ

(χ ◦ k)
((
αt1 + t2β

) 1
µ
+

(
α + β −

(
αt1 + t2β

)) (ρ + σ
2ρσ

))
dµ

=
ρσ

σ − ρ

∫ 1
ρ

1
σ

(χ ◦ k)
(
α

[
t1

1
µ
+ (1 − t1)

(
ρ + σ

2ρσ

)]
+ β

[
t2

1
µ
+ (1 − t2)

(
ρ + σ

2ρσ

)])
dµ.

Since χ ◦ k is h-convex, we get

H̄
(
αt1 + t2β

)
≤ α

 ρσσ − ρ
∫ 1

ρ

1
σ

(χ ◦ k)
(
t1

1
µ
+ (1 − t1)

(
ρ + σ

2ρσ

))
dµ


+ β

 ρσσ − ρ
∫ 1

ρ

1
σ

(χ ◦ k)
(
t2

1
µ
+ (1 − t2)

(
ρ + σ

2ρσ

))
dµ

 = αH̄ (t1) + βH̄ (t2) .

By making the substitution 1
u = t 1

µ + (1 − t) ρ+σ2ρσ , we get

H (t) =
ρσ

t
(
σ − ρ

) ∫ 2ρσ
2ρt+(1−t)(ρ+σ)

2ρσ
2σt+(1−t)(ρ+σ)

χ (u)
u2 du

=

(
2ρσ

2σt+(1−t)(ρ+σ)

) (
2ρσ

2ρt+(1−t)(ρ+σ)

)
(

2ρσ
2ρt+(1−t)(ρ+σ)

)
−

(
2ρσ

2σt+(1−t)(ρ+σ)

) ∫ 2ρσ
2ρt+(1−t)(ρ+σ)

2ρσ
2σt+(1−t)(ρ+σ)

χ (u)
u2 du =

uUuL

uU − uL

∫ uU

uL

χ (u)
u2 du. (29)
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Multiplying both sides of (29) by C1, we obtain

C1H (t) =
C1uLuU

uU − uL

∫ uU

uL

χ (u)
u2 du ≥ χ

( 2uLuU

uL + uU

)
= χ

(
2ρσ
ρ + σ

)
, (30)

where C1 is a constant defined in Theorem 2.3 over the interval [uL,uU], where uL =
2ρσ

2σt+(1−t)(ρ+σ) and

uU =
2ρσ

2ρt+(1−t)(ρ+σ) and ϑ (u) = uLuU
uU−uL

, u ∈ [uL,uU].

Remark 3.2. If χ is a HA-convex function, then we get

H (0) ≤ H (t) , (31)

for all t ∈ [0, 1]. It is a known result for a HA-convex function proved in [32]. If χ is an HA-s-convex function in the
second sense, then tC1 = 2s+2 (s + 2) so we have

H (0) ≤ 2s+2 (s + 2)H (t) . (32)

Theorem 3.3. Let χ be HA-h-convex on
[
ρ, σ

]
⊆ (0,∞) and h : J → R, [0, 1] ⊆ J. Then the mapping F is is

symmetric with respect to 1
2 and HA-h-convex on (0, 1]. Furthermore, the following inequalities hold

2h
(1

2

)
F (t) ≥ F

(1
2

)
and tC1F (t) ≥ H (1 − t) (33)

for t ∈ (0, 1], where C1 is defined as in the Theorem 3.1.

Proof. We observe that the following equality holds for all µ, ς ∈
[
ρ, σ

]
and t ∈ (0, 1]:

2µς
µ + ς

=

(
µς

(1−t)µ+tς

) (
µς

tµ+(1−t)ς

)
1
2

(
µς

(1−t)µ+tς

)
+ 1

2

(
µς

tµ+(1−t)ς

) .
Since χ is a HA-h-convex on

[
ρ, σ

]
, we have

χ

(
2µς
µ + ς

)
≤ h

(1
2

)
χ

(
µς

(1 − t)µ + tς

)
+ h

(1
2

)
χ

(
µς

tµ + (1 − t) ς

)
. (34)

Multiplying the inequality (34) by 1
µ2ς2 , integrating with respect to µ over

[
ρ, σ

]
, with respect to ς over

[
ρ, σ

]
and using the fact that∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

(1 − t)µ + tς

)
dςdµ =

∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

tµ + (1 − t) ς

)
dςdµ

we obtain the inequality∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
2µς
µ + ς

)
dςdµ ≤ 2h

(1
2

) ∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

(1 − t)µ + tς

)
dςdµ

= 2h
(1

2

) ( 1
ρ
−

1
σ

)2

·
1(

1
ρ −

1
σ

)2

∫ σ

ρ

∫ σ

ρ

1
µ2ς2χ

(
µς

(1 − t)µ + tς

)
dςdµ = 2

(
σ − ρ

ρσ

)2

h
(1

2

)
F (t) . (35)

Thus the first inequality in (33) is proved.
Let us consider the mapping

Hς(t) =
ρσ

σ − ρ

∫ σ

ρ

1
µ2χ

(
µς

(1 − t)µ + tς

)
dµ
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for a fixed ς.
By making use of the substitution u = µς

(1−t)µ+tς , we get

Hς(t) =
ρσ

t
(
σ − ρ

) ∫ σς
(1−t)σ+tς

ρς
(1−t)ρ+tς

χ (u)
u2 du =

uUuL

uU − uL

∫ ρU

ρL

χ (u)
u2 du,

where uL =
ρς

(1−t)ρ+tς and uU =
σς

(1−t)σ+tς .
Using the result from Theorem 2.3, we get

C1Hς(t) = C1

∫ uU

uL

χ (u)
u

uUuL

uU − uL
du ≥ χ


( 2ρσ
ρ+σ

)
ς

(1 − t)
( 2ρσ
ρ+σ

)
+ tς

 (36)

Multiplying both sides of the inequality (36) by 1
ς2 , integrating with respect to µ over

[
ρ, σ

]
and multiplying

both sides by uUuL
uU−uL

, we get

tC1F (t) ≥ H(1 − t).

Hence the second inequality in (33) is also established, where C1 is given in Theorem 3.1.

Remark 3.4. If tC1 > 0, then we have

F (t) ≥
1

tC1
H(1 − t) (37)

for all t ∈ (0, 1]. Replacing t with 1 − t in (37), we have

F (1 − t) ≥
1

(1 − t) C1
H(t) (38)

for all t ∈ (0, 1].
Since F is symmetric with respect to 1

2 , we have

F (t) ≥ max
{

1
tC1
H(1 − t),

1
(1 − t) C1

H(t)
}
. (39)

If χ is a HA-convex function, then we get the following result:

F (t) ≥ max
{
H(1 − t),H(t)

}
. (40)

If h is a multiplicative function, then tC1 = (1 − t) C1. Thus, we obtain

F (t) ≥
1

tC1
max

{
H(1 − t),H(t)

}
. (41)

If χ is a HA-s-convex function, then h (t) = ts and we get the following result

F (t) ≥
1

2s+2 (s + 2)
max

{
H(1 − t),H(t)

}
. (42)

4. Applications to Special Means

Suppose that χ is HA-concave and HA-h-convex simultaneously, or vice versa, when χ is HA-convex

and HA-h-concave. If χ is a HA-concave and HA-h-convex function with
∫ 1

0 h (t) dt > 0, then the Hermite-
Hadamard type inequalities of Theorem 1.11, Theorems 2.1 and 2.3 lead us to the following inequalities

ρσ

σ − ρ

∫ σ

ρ

χ
(
µ
)

µ2 dµ ≤ χ
(

2ρσ
ρ + σ

)
≤ C

∫ σ

ρ

χ
(
µ
)

µ2 dµ (43)
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and
ρσ(

σ − ρ
) ∫ σ
ρ

h (t) dt

∫ σ

ρ

χ
(
µ
)

µ2 dµ ≤ χ
(
ρ
)
+ χ (σ) ≤

2ρσ
σ − ρ

∫ σ

ρ

χ
(
µ
)

µ2 dµ. (44)

If χ is a HA-convex and HA-h-concave function simultaneously, then the inequalities (43) and (44) hold in
reversed directions.

Let ρ and σ be two non-negative real numbers, then the p-logarithmic mean Lp and geometric-mean of
the order p are defined as follows:

Lp
(
ρ, σ

)
=

[
σp+1
− ρp+1(

p + 1
) (
σ − ρ

) ] 1
p

, p ∈ R\ {0,−1}

and

Mp
(
ρ, σ

)
=

(
ρp + σp

2

) 1
p

.

It has been shown in [35] that for the functions χ and hk defined as hk
(
µ
)
= µk, 1

(
µ
)
= µp, µ > 0, k, p ∈ R,

we have the following facts:
(i) The function χ is hk-convex if
(a) p ∈ (−∞, 0] ∪ [1,∞) and k ≤ 1;
(b) p ∈ (0, 1) and k ≤ p.
(ii) The function χ is hk-concave if
(a) p ∈ (0, 1) and k ≥ 1;
(b) p > 1 and k ≥ p.

According to Theorem 1.9 for the functions hk
(
µ
)
= µk, 1

(
µ
)
= µp, µ > 0, k, p ∈ R, we have that

(i) The function χ
(
µ
)
= 1

(
1
µ

)
= µ−p is HA-hk-convex if

(a) p ∈ (−∞, 0] ∪ [1,∞) and k ≤ 1;
(b) p ∈ (0, 1) and k ≤ p.
(ii) The function χ

(
µ
)
= 1

(
1
µ

)
= µ−p is HA-hk-concave if

(a) p ∈ (0, 1) and k ≥ 1;
(b) p > 1 and k ≥ p.

Let p ∈ (0, 1) and 0 ≤ k ≤ p, then we have the following inequalities:

L−p−2
−p−2

(
ρ, σ

)
≤M−2p

−1

(
ρ−1, σ−1

)
≤

(
k + 2

2k+1 − 1

)
L−p−2
−p−2

(
ρ, σ

)
(45)

and

L−p−2
−p−2

(
ρ, σ

)
2
(
σ − ρ

)
Lk

k

(
ρ, σ

) ≤M1

(
ρk, σk

)
≤ L−p−2

−p−2

(
ρ, σ

)
. (46)

5. Conclusion

Since the last four decades, the field of mathematical inequalities has emerged as an emerging topic,
and a lot of research has been generated by a number of mathematicians with innovative results. There
are numerous applications for this concept in applied mathematics, pure mathematics, and other applied
disciplines. Convexity and its generalizations have yielded a variety of unique results with applications
in numerical analysis, fixed point theory, differential equations, and optimization theory. In this study, we
have used the harmonic convexity as a generalization of convexity to get new Fejér type inequalities with
the help of some mappings defined over the interval [0, 1]. We have discussed some of very interesting
properties of those mappings and as a consequence we get refinements of number of number of results
previously obtained in this topic.
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Issue No. 1, 103-124.
[10] Dragomir, S. S. Inequalities of Hermite-Hadamard type for HA-convex functions. Moroccan J. of Pure and Appl. Anal. 2017, 3 (1),

83-101.
[11] Dragomir, S. S. On Hadamard’s inequality for convex functions. Mat. Balkanica 1992, 6, 215-222.
[12] Dragomir, S. S. On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications. Math. Ineq.

and Appl. 2000, 3, 177-187.
[13] Dragomir, S. S. On some integral inequalities for convex functions. Zb.-Rad. (Kragujevac) 1996, 21-25.
[14] Dragomir, S. S.; Agarwal, R. P. Two new mappings associated with Hadamard’s inequalities for convex functions. Appl. Math.

Lett. 1998, 11, 33-38.
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