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Abstract. A convergence sequence in a Hausdorff space X has a unique limit. Hence this idea gives us a
function which is defined on convergence sequences and has the values in X. Replacing this limit function
with any function G whose domain is a certain subset of the sequences extends the notion of limit and such
a function G is called G-method. Then sequential definitions of continuity, compactness and connectedness
have been extended to G-method setting.

In the paper we intent to study some separation axioms such that Ti (i = 0, 1, 2, 3, 4) for G-methods in
sets or topological spaces; and characterise them in terms of G-open and G-closed subsets. Then we give
some different counterexamples of G-methods and evaluate them if these separations axioms are satisfied.

1. Introduction

The convergence of the sequences is useful to define sequential versions of some definitions in topology
such as continuity, compactness, connectedness and many others. Therefore many authors have been
interested in to give the sequential definitions of them.

Initiated with a work in [8], in a number of references [25], [18], [2], [3], [26] for a regular summability
matrix A, A-continuity have been studied. In [27], [28], [29], [7] for almost convergence and related
methods A-continuity have been considered. The paper [6] is referred for summability matrices and [14]
for summability in topological groups. In [17] statistical convergence in topological spaces with some
applications have been considered.

The authors in [15] have an important investigation of extending the sequential definition of a contin-
uous function to any G-method defined on a subspace of the sequences. Then the sequential definitions
are extended to G-compactness for topological groups in [13] (for topological groups with operations in
[21]), to G-continuity in [11] (see [16] and [12] for different types of continuities) and to G-connectedness
for topological groups in [10] (see also [9]). [23] defines G-open set, G-neighbourhood, and gives more
properties of G-continuities for given a method G on X.

The reference Lin and Liu in [19] extends the G-methods and different convergence methods not only
to topological spaces but also to arbitrary sets; and G-hulls, G-closures, G-kernels and G-interiors are taken
into account. Mucuk and Çakallı in [22] extends sequential connectedness for the topological groups with
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operations which combine groups, rings and some others to G-methods. In the paper [1] the authors
consider the notion of neutrosophic topological space and obtain some results toward this direction. In this
paper we have intension to consider some separation notions Ti (i = 0, 1, 2, 3, 4) for G-methods not only in
topological groups or topological space but also for sets. We give some counter examples of G-methods
and then evaluate if these separation axioms are satisfied for these methods.

We acknowledge that the results and examples of this paper will be taken into account in PhD thesis [4]
of second author, which is under preparation.

2. Preliminaries

In the paper, X denotes a set if otherwise is not stated and the letters x and y represent the sequences
x = (xn) and y = (yn) in X. For the set of all sequences and for the set of convergent sequences in X, we
write s(X) and c(X) respectively.

A G-method is defined to be a map G : cG(X) → X, where the domain cG(X) is a subset of s(X). The
sequence x = (xn) is called G-convergent to ℓ whenever x ∈ cG(X) and G(x) = ℓ. In particularly if X is a
Hausdorff space, then limit function defined on the set of convergent sequences c(X) gives a G-method.
The method G is said to be regular whenever for any convergent sequence x = (xn) one has G(x) = limx
and G preserves the G-convergence of subsequences, whenever for any sequence x with G(x) = ℓ, then any
subsequence of x is also G-convergent to the same point ℓ.

Let X be a set and G a method on X. A function f : X → X is said to be G-continuous if whenever
x ∈ cG(X), then f (x) ∈ cG(X) and G( f (x)) = f (G(x)). In the case when X is a Hausdorff space and G is the
limit function, the G-continuity agrees with the continuity of the function.

Let A ⊆ X be a subset and ℓ ∈ X. Then ℓ ∈ X is a point of the G-hull of A if there is a sequence x = (xn) in
A with G(x) = ℓ; and write [A]G for G-hull of A [19]. A is said to be G-closed if [A]G

⊆ A. For a regular method
G and a ∈ A, the constant sequence x = (a, a, . . . ), G-convergent to a and therefore A ⊆ [A]G. Hence in the
case where G is regular, A is G-closed whenever [A]G = A. [A]G is not necessarily closed since [[A]G]G is
not necessarily equivalent to [A]G. The union of any two G-closed subsets of X is not necessarily a G-closed
subset of X. Hence even in the case where G is regular, [A]G is not necessarily G-closed (see Example 4.1).
For the subsets A,B ⊆ X, A ⊆ B implies [A]G

⊆ [B]G.
If the complement X \A is G-closed, then we call A as G-open. Unlike the G-closed subsets, the union of

G-open subsets of X is G-open.
In a similar way for a subset A ⊆ X, we can rephrase G-closed and G-open subsets of A. In other words

F ⊆ A is a G-closed subset of A if for a G-closed subset K of X we have F = K ∩A and U ⊆ A is G-open in A if
for a G-open subset V of X we have U = A ∩ V.

A subset V ⊆ X is a G-neighbourhood of a when there is a G-open subset U of X such that a ∈ U ⊆ V.

G-closure A
G

of A is defined as the smallest G-closed subset including A. We remind that the union of
G-closed subsets are not necessarily G-closed however the intersection of G-closed subsets are G-closed.

Hence G-closure A
G

of A is a G-closed subset and A ⊆ A
G

. One need to note that for a subset A ⊆ X,
G-closure A

G
is a G-closed but G-hull [A]G of A is not necessarily G-closed subset. A is G-closed if and only

if A = A
G

.

Theorem 2.1. ([19, Corollary 2.7]) If X is a set endowed with a G-method, then [A]G
⊆ A

G
for A ⊆ X.

Proof. If K is a G-closed subset containing A, then we have

[A]G
⊆ [K]G

⊆ K

which proves that [A]G
⊆ A

G
.

Theorem 2.2. For a G-method on X and A ⊆ X, x ∈ A
G

if and only if any G-open subset U including x has some
elements of A.
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Proof. If x ∈ A
G

, U is a G-open subset with x ∈ U and U ∩A is empty, then we have A ⊆ X \U, where X \U

is a G-closed subset and x < X \U. That gives us x < A
G

which is contradiction with the assumption x ∈ A
G

.
Hence U ∩ A is non empty.

If the intersection of every G-open neighbourhood of x with A is non-empty, and x < A
G

, then there exists
a G-closed subset K with A ⊆ K and x < K. Hence X \K is a G-open neighbourhood of x and A∩ (X \K) = ∅.

This is a contradiction and therefore x ∈ A
G

.

3. Some G-convergently separation axioms

We can define G-convergently versions of the separation axioms Ti (i = 0, 1, 2, 3, 4) as follows.

Definition 3.1. Let X be a set endowed with a G-method. We call X:
i) G-convergently T0 if for any pair of different points a, b ∈ X, at least one has a G-open neighbourhood

not including the other.
ii) G-convergently T1 if for given any pair of distinct points a, b ∈ X, each one has a G-open neighbourhood

not containing another one.
iii) G-convergently T2 or G-convergently Hausdorff if any distinct points a, b ∈ X, have disjoint G-open

neighbourhoods.
iv) G-convergently T3 if it is G-convergently T1 and whenever F is G-closed and x < F, there are disjoint

G-open subsets U and V with F ⊆ U and x ∈ V.
v) G-convergently T4 if it is G-convergently T1 and whenever F and K are G-closed, then there are disjoint

G-open subsets U and V such that F ⊆ U and K ⊆ V.

Theorem 2.2 is useful for the proof of the following propositions.

Proposition 3.2. If G is a method on a set X, then the following hold.

(i) X is G-convergently T0 if and only if for every distinct points a, b ∈ X either a < {b}
G

or b < {a}
G

.

(ii) X is G-convergently T1 if and only for every distinct points a, b ∈ X we have a < {b}
G

and b < {a}
G

.

Proof. (i) Let X be a G-convergently T0 set and a, b ∈ A different points. Then there exists a G-open
neighbourhoof Ua of a with b < Ua or there is a G-open neighbourhood Ub of b with a < Ub. Hence by

Theorem 2.2 either a < {b}
G

or b < {a}
G

.

Let a < {b}
G

or b < {a}
G

. Then there exists a G-open neighborhood Ua of a with b < Ua or there exists a
G-open neighborhood Ub of b with a < Ub. Hence X is G-convergently T0.

(ii) The proof is similar to (i) and therefore it is omitted.

Equivalently to Proposition 3.2, we have the following.

Proposition 3.3. If G is a method on a set X, then the following are true.

(i) X is not G-convergently T0 if and only if there is a pair of distinct points a, b ∈ X such that a ∈ {b}
G

and

b ∈ {a}
G

.

(ii) X is not G-convergently T1 if and only if there is a pair of distinct points a, b ∈ X such that a ∈ {b}
G

or b ∈ {a}
G

.

G-convergently T0 set can be characterised as follows.

Theorem 3.4. A set X is a G-convergently T0 if and only if for all different points a, b ∈ X we have that {a}
G
, {b}

G
.
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Proof. Equivalently we prove that X is not G-convergently T0 if and only if there is a pair of different points

a, b ∈ X such that {a}
G
= {b}

G
.

Let X be not G-convergently T0. Then by Proposition 3.3 (i) there is a pair of different points a, b ∈ X

such that a ∈ {b}
G

and b ∈ {a}
G

.

If x ∈ {a}
G

and U is a G-open neighbourhood of x, then U is a G-open neighbourhood of a and therefore

a G-open neighbourhood of b. Hence x ∈ {b}
G

and therefore {a}
G
⊆ {b}

G
. Similarly {b}

G
⊆ {a}

G
and therefore

{a}
G
= {b}

G
.

Let {a}
G
= {b}

G
for a pair of different points a, b ∈ X. Then any G-open subset including one also contains

the other and therefore X is not G-convergently T0.

Proposition 3.5. If G is a regular method on a set X, then all single point subsets are G-closed.

Proof. Let G be regular method on a set X and A = {a}. If u ∈ [A]c, then the constant sequence a = (a, a, . . . )
is G-convergent to u. Since G is a regular method we have u = G(a) = lima = a and therefore u = a ∈ A.
Hence [A]G

⊆ A and A = {a} is G-closed.

Here note that if each one point set is G-closed, then G is not necessarily a regular method. For example
for the G-method in Example 4.2 all subsets and therefore all one point sets are G-closed but G is not a
regular method.

Theorem 3.6. A set X is G-convergently T1 if and only if one point subsets are G-closed.

Proof. Let X be G-convergently T1 and a ∈ X. If x ∈ {a}c, then x and a are distinct points and therefore there
are G-open subsets Ux and Ua such that x ∈ Ux, a < Ux and a ∈ Ua, x < Ua. Hence Ux ∩ {a} = ∅ and therefore
Ux ⊆ {a}c. That is {a}c is G-open and therefore {a} is G-closed.

Let each one point set be G-closed and x, y ∈ X be distinct points. By assumption {x} and {y} are G-closed
subsets and therefore X\{y} and X\{x} are respectively G-open neighbourhoods of x and y not containing
the other. Therefore X is G-convergently T1 set.

Corollary 3.7. If G is regular method on a set X, then X is G-convergently T1.

Proof. This is a direct result of Propositions 3.5 and Theorem 3.6 .

Proposition 3.8. Let X be a set with a G-method. Then the following implications hold.
G-convergently T4 ⇒ G-convergently T3 ⇒ G-convergently T2 ⇒ G-convergently T1 ⇒ G-convergently T0

Proof. G-convergently T4 ⇒ G-convergently T3 : Let X be G-convergently T4, F ⊆ X a G-closed subset and
x < F. Since X is G-convergently T1 by Theorem 3.6 we have that {x} is G-closed. Since X is G-convergently
T4, we have G-open subsets U,V ⊆ X such that F ⊆ U and {x} ⊆ V; and therefore X is G-convergently T3.

G-convergently T3 ⇒ G-convergently T2: Let X be G-convergently T3 and x, y ∈ X be distinct point.
Since the one point subset {x} is G-closed and y < {x}, there are G-open disjoint subsets U,V ⊆ X such that
{x} ⊆ U and y ∈ V; and therefore X is G-convergently T2 .

The other parts of the proof is straightforward and omitted.

We need the following theorem in some proofs of the paper.

Theorem 3.9. ([22, Theorem 13]) For a method G on a set X preserving the G-convergences of subsequences, and
the first projection map π1 : A× B→ A, (a, b) 7→ a, the inverse image π1

−1(U) of a G-open subset U ⊆ A is a G-open
subset of A × B.

Theorem 3.10. If A and B are G-convergently T1, then so also is A × B.
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Proof. Let a, b ∈ A×B be distinct points. Letπ1(a) andπ1(b) be distinct points of A. Since A is G-convergently
T1 the points π1(a) and π1(b) have respectively G-open neighbourhoods U and V in A which contain exactly
one of these points. Then by Theorem 3.9, the subsets π1

−1(U) and π1
−1(V) are G-open neighbourhoods of

a and b respectively in A × B not including the other. If π2(a) and π2(b) are distinct points of B, the proof is
similar. Therefore A × B is G-convergently T1.

In particularly if X is G-convergently T1, then so also is X × X.

Theorem 3.11. If A,B are G-convergently T0, then so also is A × B.

Proof. The proof is similar to Theorem 3.10 and therefore omitted

It is well known that X is a Hausdorf space if and only it the diagonal function ∆ : X→ X×X, x 7→ (x, x)
is closed. For G-methods we prove a similar result as follows.

Theorem 3.12. Let X be a set and G be a method on X. Then the diagonal function ∆ : X → X × X, x 7→ (x, x) is
closed.

Proof. Let A be a G-closed subset of X. We prove that ∆A = {(a, a) : a ∈ A} is G-closed. Let (xn, xn) be a
sequence in ∆A such that G(xn, xn) = (G(xn),G(xn)) = (x, x). Then (xn) is a sequence in A and G(xn) = x. Since
A is G-closed we have that x ∈ A and therefore (x, x) ∈ ∆A. This proves that ∆A is G-closed.

As a result of Theorem 3.12, ∆X = {(x, x) | x ∈ X} is a G-closed subset of X × X.

Theorem 3.13. The product of two G-convergently T2 subsets of X is G-convergently Hausdorff.

Proof. Let A and B be two G-convergently T2 subsets of X and a, b ∈ A×B be two distinct points. Assume that
π1(a) and π1(b) are distinct points of A. Since A is G-convergently T2 the points π1(a) and π1(b) have disjoint
G-open neighbourhoods U and V in A. Then U × B and V × B become disjoint G-open neighbourhoods of
a and b respectively, which completes the proof.

Theorem 3.14. Let f : X → X be a function and A = {(x, x′) : f (x) = f (x′)}. If f is G-continuous, then A is
G-closed.

Proof. Let (xn, yn) be a sequence in A with G(xn, yn) = (G(xn),G(yn)) = (x, y). Then for all n ∈Nwe have that
f (xn) = f (yn) which implies that G( f (xn)) = G( f (yn)). Since f is G-continuous we have that f (xn) ∈ cG(X)
and f (G(xn)) = G( f (xn)). Similarly f (yn) ∈ cG(X) and f (G(yn)) = G( f (yn)). Hence f (G(xn)) = f (G(yn)) and
therefore f (x) = f (y). Hence (x, y) ∈ A which proves that A is G-closed.

If X is a topological space, Y is a Hausdorff space and f : X → Y is continuous, then the graph set
G f = {(x, f (x)) : x ∈ X} is closed in X × Y. As we can see in the following theorem, for G-methods we do not
need Hausdorff condition

Theorem 3.15. Let X be a set and G a method on it. If f : X → X is a G-continuous map, then the graph set
G f = {(x, f (x)) : x ∈ X} is G-closed in X × X.

Proof. Let f : X → X be a G-continuous map and let (xn, f (xn)) be a sequence in the graph set G f such that
G(xn, f (xn)) = (x, y). Then we have

G(xn, f (xn)) = (G(xn),G( f (xn)) = (x, y)

Since f is G-continuous G( f (xn)) = f (G(xn)). Hence we have

G(xn, f (xn)) = (G(xn), f (G(xn)) = (x, f (x))

That means (x, f (x)) = (x, y) ∈ G f and therefore G f is G-closed.
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Theorem 3.16. If G is a regular method on a set X, then the projection maps π1 : : X×X→ X and π2 : X×X→ X
are G-closed.

Proof. We prove for the first projection map. Let A ⊆ X × X be G-closed subset and x = (xn) be a sequence
in π1(A) with G(x) = x. Chose a point a in π2(A). Then (x, a) is a sequence in A, where a is the constant
sequence at a and G(x, a) = (G(x),G(a)) = (x, a). Here note that since G is regular we have that G(a) = a.
Since A is G-closed we have (x, a) ∈ A and therefore x ∈ π1(A). Hence π1(A) is G-closed and therefore
π1 : : X × X→ X is G-closed. The proof for second projection map is similar.

Theorem 3.17. Let G be a regular method on a subset X. If X is G-convergently T3, then so also is X × X.

Proof. Let X be G-convergently T3. By Theorem 3.10, X×X is G-convergently T1. Let F ⊆ X×X be G-closed
and (x, y) < F. Then x < π1(F) or y < π2(F). Assume that x < π1(F). By Theorem 3.16 π1(F) is G-closed in
X. Since X is G-convergently T3, there are disjoint G-open subsets U and V such that π1(F) ⊆ U and x ∈ V.
Then π1

−1(U) and π1
−1(V) are disjoint G-open subsets of X ×X such that F ⊆ π1

−1(U) and x ∈ π1
−1(V). As a

result X × X is G-convergently T3.

Theorem 3.18. Let G be a regular method on a subset X. If X is G-convergently T4, then so also is X × X.

Proof. The proof is similar to that of Theorem 3.17 and therefore omitted.

4. Some counterexamples and G-convergently separation axioms

We now give a few examples of G-methods for some separation axioms.
According to the following G-method, R is G-convergently T1 but not G-convergently T2.

Example 4.1. Define a G-method on R with G(x) = lim
xn + xn+1

2
. Hence the method G is defined for the

convergent sequences in R. For any convergence sequence x = (xn) we have G(x) = limx; and therefore
the method G is regular. Hence by Corollary 3.7, R and therefore all subsets are G-convergently T1. The
non-empty G-closed subsets are R and single point subsets {x}’s for x ∈ R and G-open subsets are R \ {x}’s.
Hence different points have no disjoint G-open neighbourhoods and therefore R is not G-convergently T2.
The method also neither G-convergently T3 nor T4.

(i) Let A = {0, 1}. Then [A]G = {0, 1
2 , 1} and [[A]G]]G = {0, 1

4 ,
1
2 ,

3
4 , 1}. Hence [[A]G]]G , [A]G and therefore

the hull [A]G is not G-closed. A
G
= R, since the only G-closed subset including A is R.

(ii) Let a, b ∈ R. Then A = {a} and B = {b} are G-closed but [A∪ B]G = {a, a+b
2 , b} and therefore A∪ B is not

G-closed.

For the G-method below written on a set X , all subsets are G-convergently T4.

Example 4.2. Let X be a set. Define a G-method on X such that G(x) = x1 for all sequences x = (xn) in X.
The method G is not regular. For instance for different points a1, a ∈ X and the sequence x = (a1, a, a . . . ) we
have G(x) , limx since G(x) = a1 but limx = a. Let A ⊆ X be a subset. If x = (xn) is a sequence in A, then
G(x) = x1 ∈ A and therefore A is G-closed. Hence all subsets are G-closed and therefore G-open. Hence X is
G-convergently Ti (i = 0, 1, 2, 3, 4).

In the following example X is G-convergently T0 but not G-convergently T1.

Example 4.3. Let X be a set with a constant element c ∈ X. The G-method defined by G(x) = c for all
sequences x = (xn) in X is not regular. For example if x = (xn) is a convergence sequence with limx = ł such
that ł , c, then G(x) , limx.

Let A be a proper subset of X. Then [A]G = {c} and therefore A is G-closed if c ∈ A, and G-open if c < A.
Hence the point c has no G-open neighbourhood apart from X.
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Let a, b ∈ A be different points. If a , c , b, then Ua = X \ {b, c} and Ub = X \ {a, c} are respectively G-open
neighbourhoods of a and b. If a = c, then X \ {c} is a G-open neighbourhood of b not including a. Similarly
if b = c, then X \ {c} is a G-open neighbourhood of a not including b. Therefore X is G-convergently T0.
Only G-open neighbourhood of c is X and therefore for a , c, the point c has no G-open neighbourhood not
including a. We can also say that for a , c, one point set {a} is not G-closed. Hence X is not G-convergently
Ti (i = 1, 2, 3, 4).

i) If A = {a, b}, then [A]G = {c} and A
G
= {a, b, c}.

ii) For any non-empty subset A, we have that [A]G = {c} and A
c
= A ∪ {c}}.

The following is also an example of G-method in which R is G-convergently T1 but not G-convergently
T2.

Example 4.4. Define a G-method on R by G(x) =
∑
∞

n=1 xn for the sequences x = (xn) whenever the series

is convergent. The method G is not regular. For example for the sequence x = (
1
2n ) we have limx = 0 but

G(x) =
∑
∞

n=1
1
2n = 1.

If A = {0}, then [A]G = {0} and therefore A is G-closed.
Let a , 0 and A = {a}. If x ∈ [A]G, then the sequence (an) = (a, a, . . . ) is G-convergent to x but this is not

possible and therefore [A]G = ∅. Hence A = {a} is G-closed.
Hence all single point sets are G-closed and therefore . by Theorem 3.6,R is G-convergently T1. R is not

G-convergently Ti (i = 2, 3, 4) since different points have no disjoint G-open neighbourhoods. .

In the following example R is not G-convergently T0.

Example 4.5. A G-method on R is defined by G(x) = limxnxn+1 for some sequence x = (xn) in R.
For example the limit of the sequence x = (2, 2, · · · ) is 2 but G(x) = 4. Hence the method G is not regular.

The subsets {0}, {1} and {0, 1} are G-closed; and therefore the only G-open proper subsets are R \ {0}, R \ {1}
and R \ {0, 1}. Hence R with this method G is not Ti (i = 0, 1, 2, 3, 4).

For the following G-method, R is not G-convergently T0.

Example 4.6. Let G be a method on R defined by G(x) = lim(xn+1 − xn) for some sequences x = (xn) in R.
For example for a non-zero element a ∈ R, the limit of the constant sequence x = (a, a · · · ) is a but

G(x) = 0. Hence the method G is not regular.

If A = {0}, then [A]G = {0} = A
G

and therefore A = {0} is G-closed.
If a , 0 and A = {a}, then [A]G = {0} and therefore A = {a} is not G-closed.
If A = {a, 0}, then [A]G = {a, 0,−a}; and therefore A = {a, 0} is not G-closed. Hence G-closed subsets are

closed subgroups of R. For example the subgroupZ and the subgroups generated by a ∈ R are closed and
therefore they are G-closed subsets.

Let a and b be non-integer and different points. Then G-open subsets includes both of these points.
Hence R is not G-convergently T0 and therefore not G-convergently Ti (i = 0, 1, 2, 3, 4).

We now give an example of G-method defined on a topological space X such that X is G-convergently
T2 but not G-convergently T3.

We remark that if X is a Hausdorff space, then limit function lim from the set c(X) of convergent sequences
in X to X itself is a G-method with G = lim. If X is a first countable space, then open and closed subsets
are defined in terms of convergent sequences. Hence if X is a first countable Hausdorff space and G = lim,
then G-open and hence G-closed subsets coincide with open and closed subsets respectively; and therefore
G-convergently separation axioms agree with usual separation axioms.

In the following example X is a first countable Hausdorff space which is not T3 and therefore it provides
an example that X is a G-convergently T2 with G = lim but not G-convergently T3.
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Example 4.7. Let X be the half of the plane X = {(x, y) ∈ R2 : y ≥ 0}. Define a topology on X whose basis
open subsets are open disks in X and half open disks

U(a, r) = B((a, 0), r) ∩ X \ {(x, 0) ∈ R2 : x ∈ (a − r, a + r) \ {a}}

Hence X is a first countable Hausdorf space. The subset F = {(x, 0) ∈ R2 : − 1 < x < 1} is closed in X and
x = (1, 0) < F. Any open neighbourhood of x = (1, 0) intersects the open subsets containing F and therefore
X is not T3. It is clear that X is a first countable Hausdorf space.

By the similar procedure one can produce examples of sets which are G-convergently T3 but not G-
convergently T4. For exampleR2 with lower limit topology is a first countable space which is T3 but not T4
[24, Example 3, p.198]. Hence we can deduce that it is G-convergently T3 but not G-convergently T4 with
G = lim.

5. Conclusion

In the paper, using G-open and G-closed subsets on a set equipped with a G-method we define and
characterise G-convergent separation axioms; and give some counter examples of the results obtained.

In a topological space X, a sequence x = (xn) convergences to a point a ∈ X if almost all terms of the
sequence are in the every open neighbourhood of a. In a first countable space, open and closed subsets
are characterised in terms of convergence sequences. Hence by extending these to the G-method setting,
we say that a sequence x = (xn) is G-sequentially converges to a if every G-open neighbourhood of a contains
almost all terms. That gives us a variety of G-convergence. Then we say a subset A to be G-sequentially open
if any sequence converging to a point of A, is almost in A and call G-sequentially closed when the complement
is G-sequentially open (see [5] and [20] for more discussion of convergences for G-methods). Taking these
into account one can develop the new variant of G-convergently separation axioms under the different
name G-sequentially separation axioms.

Acknowledgement

We would like to thank the referee for useful and helpful comments which improve the paper; and to
thank the editors for editorial work during the review process of the paper.

References

[1] A. Açikgöz, H. Çakallı, F. Esenbel, Lj. D. R Kočinac, A quest of G-continuity in neutrosophic spaces, Math. Methods Appl. Sci. 44
(2021), 7834–7844.

[2] J. Antoni, On the A-continuity of real functions II, Math. Slovaca 36 (1986), 283–287.
[3] J. Antoni, T. Salat, On the A-continuity of real functions, Acta Math. Univ. Comenian.39 (1980), 159–164.
[4] S. Behram, On varieties of convergences via G-methods in topological spaces or sets, Erciyes Univ. Ph.D Thesis (in preparation).
[5] S. Behram, O. Mucuk, About varieties of G-sequential methods, G-hulls and G-closures, Proc. Internat. Math. Sci. 5 (2023), 81–86.
[6] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, Oxford, 2000.
[7] J. Borsik, T. Salat, On F-continuity of real functions, Tatra Mt.. Math. Publ. 2 (1993), 37–42.
[8] R. C. Buck, Solution of problem 4216, Amer. Math. Monthly 55 (1948), 36.
[9] H. Çakallı, O. Mucuk, On connectedness via a sequential method, Rev. Un. Mat. Argentina 54 (2013), 101–109.
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