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Statistical convergence with respect to power series method on product
time scales

Kamil Demircia, Selin Çınara, Sevda Yıldıza
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Abstract. In this paper, we will give some new notions on arbitrary product time scales using statistical
convergence in the sense of the power series method. We will then use these new concepts to present
developments in the literature.

1. Introduction

The concept of statistical convergence introduced by Fast [7] has an important place in summability
theory and this concept was extended to the double sequences by Moricz [16]. In recent years, double
sequences and the concept of statistical convergence have gained popularity among mathematicians, re-
sulting in numerous studies exploring this concept (see, for instance, [6, 15]). The main feature of the time
scale calculation introduced by Hilger [14], which is an effective modeling method, is the combination of
discrete and continuous states. This method was generally used in nature and some engineering problems.
Turan and Duman [20] extended this approach to summability theory and provided a new perspective to
the field via the concept of statistical convergence on time scales, which is an extension of the concept of
statistical convergence. It is also known that double sequences can be considered a generalization of single
sequences because they have some specific properties. Therefore, the concept of statistical convergence on
product time scales for double sequences is presented as one generalization in [8].

More recently, the concept of statistical convergence with respect to the power series method was intro-
duced in [22]. This new type of convergence and statistical convergence are incomparable so meaningful
results are obtained. Recent studies provide application areas for extending this new convergence to
different spaces or sequences with different properties ([5, 9–12, 18, 21]).

This study aims to introduce statistical convergence with respect to power series method on arbitrary
product time scales and to present new developments by examining its fundamental characteristics.

2. Preliminary results on convergence methods and product time scales

We now recall some basic definitions and notations used in the paper.
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A double sequence x = (xmn) is said to be convergent in Pringsheim’s sense if for every ε > 0, there exists
N = N (ε) ∈ N0, belonging to the set of all natural numbers, such that |xmn − L| < ε whenever m,n > N,
where L is called the Pringsheim limit of x and denoted by P− lim

m,n
xmn = L (see [17]). We shall call such an x,

briefly, P−convergent. A double sequence is called bounded if there exists a positive number M such that
|xmn| ≤M for all (m,n) ∈N2

0 =N0 ×N0.Note that in contrast to the case for single sequences, a convergent
double sequence need not to be bounded.

In his work ([16]), Moricz introduced the concept of statistical convergence for double sequences, which
has significantly contributed to the field.

Let A ⊂N2
0 is a two-dimensional subset of positive integers and |.| denote the cardinality of the set. The

double natural density of A is given by

δ2 (A) := P − lim
k,l

|{m ≤ k, n ≤ l : (m,n) ∈ A}|
kl

if it exists. The number sequence x = (xmn) is statistically convergent to L provided that for every ε > 0, the
set

A := Akl (ε) := {m ≤ k, n ≤ l : |xmn − L| ≥ ε}

has natural density zero, that is δ2 (A) = 0, then we write st2-lim xmn = L. Clearly, a P−convergent double
sequence is statistically convergent to the same value but its converse is not always true (see for details,
[16]).

Now we will remind some terminology and definitions in [1].
Let

(
pmn

)
be a double sequence with p00 > 0, pmn ≥ 0 for every m,n ≥ 1 such that the corresponding

power series

p (u, v) :=
∞∑

m,n=0

pmnumvn

has radius of convergence 0 < R ≤ ∞ and u, v ∈ (0,R) . If for all u, v ∈ (0,R) ,

lim
u,v→R−

1
p (u, v)

∞∑
m,n=0

pmnumvnxmn = L

then we say that the double sequence x = (xmn) is convergent to L in the sense of power series method and
denoted by P2

p − lim xmn = L ([1]).
Note here this method is regular if and only if

lim
u,v→R−

∞∑
m=0

pmνum

p (u, v)
= 0 and lim

u,v→R−

∞∑
n=0

pµnvn

p (u, v)
= 0 , for any µ, υ,

hold (see, [1]).

Remark 2.1. Note that in the case of R = 1, if pmn = 1 and pmn =
1

(m+1)(n+1) , the power series methods
coincide with Abel summability method and logarithmic summability method, respectively. In the case of
R = ∞ and pmn =

1
m!n! , the power series method coincides with Borel summability method.

Here and throughout the article, this method is always assumed to be regular.
The concepts of P2

p−density and P2
p−statistical convergence for double sequences have been introduced

by Yıldız, Demirci and Dirik in [23] as follows:
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Definition 2.2. Let A ⊂N2
0. If the limit

δ2
Pp

(A) := lim
u,v→R−

1
p (u, v)

∑
(m,n)∈A

pmnumvn

exists, then δ2
Pp

(A) is said to be the P2
p−density of A. It is evident that whenever it exists, 0 ≤ δ2

Pp
(A) ≤ 1

according to the definition of a power series method and P2
p−density.

Definition 2.3. Let x = (xmn) be a double sequence. Then, x is called statistically convergent with respect
to power series method (P2

p−statistically convergent) to L if for any ε > 0

lim
u,v→R−

1
p (u, v)

∑
(m,n)∈A(ε)

pmnumvn = 0

where A (ε) =
{
(m,n) ∈N2

0 : |xmn − L| ≥ ε
}
, in other words δ2

Pp
(A (ε)) = 0 for any ε > 0. So, we may denote

st2
pp
− lim xmn = L.

Definition 2.4. A sequence of real numbers x = (xmn) is said to be P2
p−statistically bounded if for some

M > 0 such that δ2
Pp

({
(m,n) ∈N2

0 : |xmn| >M
})
= 0.

Let us now recall the concepts related to time scales used in the paper.
A time scale T is any closed nonempty subset of R, the set of real numbers. Here and in the sequel, we

study on a time scales such that infT =i0 (i0 > 0) and supT = ∞. For i ∈ T, the forward and backward jump
operators are defined as follows, respectively:

σ : T→ T, σ (i) := inf {s ∈ T : s > i} ,
ρ : T→ T, ρ (i) := sup {s ∈ T : s < i} ,

and the graininess function µ is defined by

µ : T→ [0,∞) , µ (i) = σ (i) − i.

A closed interval in a time scale T is given by the notation [a, b]T := [a, b]∩T =
{
j ∈ T : a ≤ j ≤ b

}
. Thus,

open intervals and half-open intervals can be given similarly.
Also, the Lebesgue ∆−measure which given by Guseinov [13], denoted by µ∆ and it is known that

if a, b ∈ T and a ≤ b, then µ∆ ([a, b)T) = b − a, µ∆ ((a, b)T) = b − σ (a) , µ∆ ((a, b]T) = σ (b) − σ (a) , and
µ∆ ([a, b]T) = σ (b) − a.

Let i = 1, 2, and let T be a time scale. Set

T2 = T × T = {t = (t1, t2) : ti ∈ T for all i = 1, 2 } .

If A is a ∆−measurable subset of T2, then the density of A is defined by Çınar et al. [8] and given by

δT2 (A) := lim
(i, j)→∞

µ∆
({

(s,u) ∈ [i0, i]T ×
[
j0, j

]
T : (s,u) ∈ A

})
µ∆

(
[i0, i]T ×

[
j0, j

]
T

)
if this limit exists. Now let f : T2

→ R be a ∆−measurable function. Then, f is said to be statistically
convergent to a number L if, for every ε > 0,

δT2

({(
i, j

)
∈ T2 :

∣∣∣ f (
i, j

)
− L

∣∣∣ ≥ ε}) = 0.

In this case, we write stT2 − lim
(i, j)→∞

f
(
i, j

)
= L. This definition can also be written as

lim
(i, j)→∞

µ∆
({

(s,u) ∈ [i0, i]T ×
[
j0, j

]
T :

∣∣∣ f (s,u) − L
∣∣∣ ≥ ε})

µ∆
(
[i0, i]T ×

[
j0, j

]
T

) = 0.



K. Demirci et al. / Filomat 38:18 (2024), 6443–6451 6446

3. Power series method and statistical type convergence on product time scales

In this section, we aim to present the notion of statistical convergence with respect to the power series
method on arbitrary product time scales. Furthermore, we intend to provide some generalizations.

Here and in the sequel, we assume that p : T2
→ R is non-negative ∆-measurable, also for every(

i, j
)
∈ T2, p

(
i, j

)
is a Lebesgue ∆-integrable function on T2 and sup

u,v∈(0,R)
p∆ (u, v) < ∞ where p∆ (u, v) :=∫ ∫

T2

p
(
i, j

)
uiv j∆i∆ j, R ∈ (0,+∞] .

We now present the following definition.

Definition 3.1. If for a given ∆−measurable and Lebesgue ∆−integrable function f on T2

lim
u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j f

(
i, j

)
∆i∆ j = L

then we say that f is convergent to L in the sense of power series method and denoted P∆T2 − lim f = L.

Lemma 3.2. The power series method is regular for bounded functions on a product time scales T2 provided that, for
every finite M > 0,

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j f

(
i, j

)
∆i∆ j = 0. (1)

Proof. Assume that lim
(i, j)→∞

f
(
i, j

)
= L, we can write that, for every ε > 0, there exists a M > 0 such that∣∣∣ f (

i, j
)
− L

∣∣∣ < ε for all i, j > M with
(
i, j

)
∈ T2. Also, since f is bounded on T2, there exists a number M1 > 0

such that
∣∣∣ f (

i, j
)
− L

∣∣∣ ≤M1. Then∣∣∣∣∣∣∣∣ 1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j f

(
i, j

)
∆i∆ j − L

∣∣∣∣∣∣∣∣
≤

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j

=
1

p∆ (u, v)


∫ ∫

[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j +
∫ ∫

T2/[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j


≤

1
p∆ (u, v)


∫ ∫

[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j + ε
∫ ∫
T2

p
(
i, j

)
uiv j∆i∆ j


=

1
p∆ (u, v)

∫ ∫
[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j + ε

≤ M1
1

p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j∆i∆ j + ε.

We get immediately from the (1) that

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j f

(
i, j

)
∆i∆ j = 0
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this completes the proof.

Definition 3.3. For a given ∆−measurable and Lebesgue ∆−integrable function f on T2

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j

∣∣∣ f (
i, j

)
− L

∣∣∣∆i∆ j = 0

then we say that f is strongly convergent to L in the sense of power series method (P∆T2−strongly conver-

gent).

Definition 3.4. Let A be a ∆−measurable subset of T2. P∆T2−density of A in T2 is defined by

δP∆
T2

(A) := lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
A

p
(
i, j

)
uiv j∆i∆ j

if the limit exists.

We should note that the case of T2 = N0 ×N0, Definition 3.4 reduces to the concept of P-density in
Definition 2.2.

Lemma 3.5. (i) δP∆
T2

(
T2

)
= 1.

(ii) For any ∆−measurable subset A of T2, 0 ≤ δP∆
T2

(A) ≤ 1.
(iii) If A is ∆−measurable subset of T2 and δP∆

T2
(A) exists, then δP∆

T2
(Ac) exists and δP∆

T2
(A)+ δP∆

T2
(Ac) = 1,

since A is ∆−measurable, Ac is ∆−measurable. On the other hand A ∪ Ac = T2 and

1 = lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j∆i∆ j

= lim
0<u,v→R−

1
p∆ (u, v)


∫ ∫
A

p
(
i, j

)
uiv j∆i∆ j +

∫ ∫
Ac

p
(
i, j

)
uiv j∆i∆ j

 .
Assume that A and B are ∆−measurable subsets of T2 and δP∆

T2
(A) and δP∆

T2
(B) exists. We have the following

features:
(iv) If A ⊆ B, then δP∆

T2
(A) ≤ δP∆

T2
(B) .

(v) δP∆
T2

(A ∪ B) ≤ δP∆
T2

(A)+ δP∆
T2

(B) .
(vi) If A is bounded, then δP∆

T2
(A) = 0,

for a sufficiently large M ∈ T we can write A ⊆ [i0,M]T×
[
j0,M

]
T, then using the condition (1), we get

0 ≤ lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
A

p
(
i, j

)
uiv j∆i∆ j ≤ lim

0<u,v→R−

1
p∆ (u, v)

∫ ∫
[i0,M]T×[ j0,M]T

p
(
i, j

)
uiv j∆i∆ j = 0.

(vii) If δP∆
T2

(A) = δP∆
T2

(B) = 1, then δP∆
T2

(A ∪ B) = δP∆
T2

(A ∩ B) = 1.

Definition 3.6. Let f : T2
→ R be a ∆−measurable function on T2. We say that f is P∆T2−statistically

convergent to a number L if for every ε > 0,

δP∆
T2

({(
i, j

)
∈ T2 :

∣∣∣ f (
i, j

)
− L

∣∣∣ ≥ ε}) = 0,
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holds, i.e.,

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
{(i, j)∈T2:| f(i, j)−L|≥ε}

p
(
i, j

)
uiv j∆i∆ j = 0

and denoted by stP∆
T2
− lim f

(
i, j

)
= L.

Remark 3.7. In the case T2=N2
0, statistical convergence with respect to power series method on arbitrary

product time scales is reduced to the statistical convergence in the sense of power series method, which is
given by Definition 2.3.

Definition 3.8. Let f : T2
→ R be a ∆-measurable function on T2.We say that f is P∆T2 -statistical Cauchy if

there exists (I, J) ∈ T2 such that, for every ε > 0,

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
{(i, j)∈T2:| f(i, j)− f (I,J)|≥ε}

p
(
i, j

)
u jv j∆i∆ j = 0.

Now we give some basic properties of P∆T2− statistical convergence. Their proofs are similar to those of
statistical ones. We will just Proposition 3.10.

Theorem 3.9. Let f : T2
→ R be a ∆-measurable function on T2. Then the followings are equivalent:

(i) stP∆
T2
− lim f

(
i, j

)
= L,

(ii) f is P∆T2 -statistical Cauchy on T2,

(iii) there exists two∆-measurable functions1 and h such that lim 1
(
i, j

)
= L and δP∆

T2

({(
i, j

)
∈ T2 : f

(
i, j

)
, 0

})
=

0 such that f can be represented as the sum of these functions,
(iv) there exists a ∆-measurable subset A of T2 such that δP∆

T2
(A) = 1 and lim f

(
i, j

)
= L.

Proposition 3.10. The stP∆
T2
−limit of a function f : T2

→ R is unique.

Proof. Let stP∆
T2
− lim f

(
i, j

)
= L1 and stP∆

T2
− lim f

(
i, j

)
= L2. Thanks to Theorem 3.9-(iv) ,we may write that,

for every ε > 0, there exist subsets A1,A2 ofT2 such that δP∆
T2

(A1) = δP
∆
T2

(A2) = 1 and lim
(i, j)→∞((i, j)∈A1)

f
(
i, j

)
=

L1, lim
(i, j)→∞((i, j)∈A2)

f
(
i, j

)
= L2.Hence, we get

∣∣∣ f (
i, j

)
− L1

∣∣∣ < ε2 , for
(
i, j

)
∈ A1 and

∣∣∣ f (
i, j

)
− L2

∣∣∣ < ε2 , for
(
i, j

)
∈ A2.

Then, for every
(
i, j

)
∈ A1 ∩ A2 one has

|L1 − L2| ≤
∣∣∣ f (

i, j
)
− L1

∣∣∣ + ∣∣∣ f (
i, j

)
− L2

∣∣∣ < ε,
thus L1 = L2.

Proposition 3.11. Let f , 1 : T2
→ R. If stP∆

T2
− lim f

(
i, j

)
= L1 and stP∆

T2
− lim 1

(
i, j

)
= L2, then we get the

followings:
(i) stP∆

T2
− lim

{
f
(
i, j

)
+ 1

(
i, j

)}
= L1 + L2,

(ii) stP∆
T2
− lim c f

(
i, j

)
= cL1 (c ∈ R) .

Lemma 3.12. Let f : T2
→ R be a ∆-measurable function on T. If stP∆

T2
− lim f

(
i, j

)
= L and f is bounded, then we

get

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j f

(
i, j

)
∆i∆ j = L.
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Lemma 3.13. Let f : T2
→ R be a ∆-measurable function on T2 and stP∆

T2
− lim f

(
i, j

)
= L. If 1 : R→ R is a

continuous function at L, then we get

stP∆
T2
− lim 1

(
f
(
i, j

))
= 1 (L) .

Now, considering the above terminology, we can give the following theorem.

Theorem 3.14. For a ∆-measurable function f : T2
→ R,

stP∆
T2
− lim f

(
i, j

)
= L (2)

a necessary and sufficient condition, for every κ ∈ R,

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j = erκL. (3)

Proof. Let stP∆
T2
− lim f

(
i, j

)
= L. Since, for a fixed κ ∈ R, 1 (κ) = eiκ f(i, j) is continuous, thanks to Lemma 3.13,

we get

st
P∆
T2
− lim erκ f(i, j) = erκL

and since 1 (κ) is bounded, thanks to Lemma 3.12, we immediately get the equality (3). Conversely, assume
that the equality (3) holds. Following [19] (see also [4, 20]), let us define the following continuous function

H (t) =


0, t ≤ −1 or t ≥ 1,

1 + t, −1 < t < 0,
1 − t, 0 ≤ t < 1.

It follows immediately from the inverse Fourier transformation that we have

H (t) =
1

2π

∞∫
−∞

(
sin κ2
κ
2

)2

erκydκ for t ∈ R. (4)

It is enough to prove equality (3) for the case in which L = 0. Hence, by hypothesis, for every κ ∈ R,

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j = 1. (5)

Let ε > 0 and E :=
{
j ∈ T2 :

∣∣∣ f (
i, j

)∣∣∣ ≥ ε} . Then, from equality (4), we can write

H
(

f
(
i, j

)
ε

)
=
ε

2π

∞∫
−∞

(
sin κε2
κε
2

)2

erκ f(i, j)dκ.

Thus

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=
ε

2π

∞∫
−∞

(
sin κε2
κε
2

)2
 1

p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j

 dκ.
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Note that (4) is an absolutely convergent integral. By the time scale version of Fubini theorem (see [2, 3])
we can get

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=
ε

2π

∞∫
−∞

(
sin κε2
κε
2

)2
 1

p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j

 dκ.

Since 1 (κ) is bounded, there exists a finite constants B such that, for every κ ∈ R and
(
i, j

)
∈ T2,∣∣∣∣∣∣∣∣ 1

p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j

∣∣∣∣∣∣∣∣ ≤ B
1

p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv j∆i∆ j = B.

Hence, thanks to Lebesgue Dominated Convergence Theorem and if we consider equality (4) and (5), we
get

lim
0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=
ε

2π

∞∫
−∞

(
sin κε2
κε
2

)2
 lim

0<u,v→R−

1
p∆ (u, v)

∫ ∫
T2

p
(
i, j

)
uiv jerκ f(i, j)∆i∆ j

 dκ

=
ε

2π

∞∫
−∞

(
sin κε2
κε
2

)2

dκ = H (0) = 1, (6)

and it follows immediately from the definition of H that we may also have∫ ∫
T2

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=

∫ ∫
{(i, j)∈T2:| f(i, j)|<ε}

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=

∫ ∫
{
(i, j)∈T2: −1<

f(i, j)
ε <0

}p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j +

∫ ∫
{
(i, j)∈T2: 0<

f(i, j)
ε <1

}p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j

=

∫ ∫
{
(i, j)∈T2: −1<

f(i, j)
ε <0

}p
(
i, j

)
uiv j∆i∆ j +

∫ ∫
{
(i, j)∈T2: −1<

f(i, j)
ε <0

}p
(
i, j

)
uiv j f

(
i, j

)
ε
∆i∆ j

+

∫ ∫
{
(i, j)∈T2: 0<

f(i, j)
ε <1

}p
(
i, j

)
uiv j∆i∆ j −

∫ ∫
{
(i, j)∈T2: 0<

f(i, j)
ε <1

}p
(
i, j

)
uiv j f

(
i, j

)
ε
∆i∆ j

≤

∫ ∫
{(i, j)∈T2: | f(i, j)|<ε}

p
(
i, j

)
uiv j∆i∆ j = 1 −

∫ ∫
{(i, j)∈T2: | f(i, j)|≥ε}

p
(
i, j

)
uiv j∆i∆ j.
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Then, ∫ ∫
{(i, j)∈T2: | f(i, j)|≥ε}

p
(
i, j

)
uiv j∆i∆ j ≤ 1 −

∫ ∫
T2

p
(
i, j

)
uiv jH

(
f
(
i, j

)
ε

)
∆i∆ j.

Hence, using (6) and taking limit 0 < u, v→ R−,we get

lim
0<u,v→R−

∫ ∫
{(i, j)∈T2: | f(i, j)|≥ε}

p
(
i, j

)
uiv j∆i∆ j = 0.

This completes the proof.
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