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Abstract. In this paper, we introduce the concepts of “deferred statistical convergence” and “strong
deferred convergence” for double sequences in the setting of gradual normed linear spaces. Our study
uncovers the differences between these two concepts. Additionally, we perform a thorough analysis of the
mathematical properties associated with these notions and establish several implication relationships.

1. Introduction and literature review

The concept of fuzzy sets was originally introduced by Zadeh [28] in 1965 as an extension of traditional set
theory. Nowadays, it enjoys wide-ranging applications in numerous scientific and engineering disciplines.
The term “fuzzy number” holds a central position in fuzzy set theory but deviates from conventional
numbers, lacking adherence to specific algebraic properties. This variance has sparked debates among
various authors regarding its characteristics. To clarify this ambiguity, some authors opt for the term
“fuzzy intervals” rather than “fuzzy numbers”.

To alleviate researcher’s confusion, Fortin et al. [11] introduced the concept of gradual real numbers
within fuzzy intervals in 2008. Gradual real numbers are primarily characterized by their assignment
function defined over the interval (0, 1], and it is possible to regard every real number as a gradual real
number with a constant assignment function. In contrast to fuzzy numbers, gradual real numbers adhere
to all the algebraic properties associated with classical real numbers, making them applicable in various
computational and optimization contexts.

In 2011, Sadeqi and Azari [20] were the pioneers in introducing the concept of gradual normed lin-
ear spaces. They conducted an in-depth analysis of various properties, considering both algebraic and
topological aspects, and demonstrated that a gradual normed linear space can be classified as a locally
convex space. This categorization carries significant implications, as it indicates that the four fundamental
theorems of locally convex spaces - namely, the Hahn-Banach theorem, the uniform boundedness theorem,
the open mapping theorem, and the closed graph theorem are applicable within the framework of gradual
normed spaces.

Considering that the scope of gradual normed linear spaces extends beyond that of classical spaces,
researchers have recognized the importance of delving deeper into this direction. In recent years, significant
advancements in this field have been driven by the work of Ettefagh et al. [8, 9], Choudhury and Debnath
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[5], and many others. For a comprehensive study on gradual real numbers, one may refer to [2, 7, 16] where
many more references can be found.

In 1951, the concept of statistical convergence emerged independently through the work of Fast [10] and
Steinhaus [24], aiming to offer deeper insights into summability theory. Subsequently, this concept gained
significant attention in the domain of sequence spaces, with notable contributions from researchers like Fridy
[12, 13], Šalát [21], Di Maio and Kočinac [6], and others [4]. In 2003, Mursaleen and Edely [18] extended
this concept to double sequences, focusing on its relationship with statistical Cauchy double sequences
and strong Cesàro summable double sequences. Furthermore, in 2003, Tripathy [25] conducted a study
exploring various properties of sequence spaces formed by statistically convergent double sequences and
established a decomposition theorem. It’s worth noting that statistical convergence has applications across
a wide range of mathematical disciplines, including number theory, mathematical analysis, probability
theory, and various other fields.

In 1932, Agnew [1] introduced a generalization of the Cesàro mean, known as the deferred Cesàro
mean, which offered enhanced features and utility. Using the deferred Cesàro mean as a foundation,
Küçükaslan and Yilmaztürk [15] in 2016 introduced the concept of deferred statistical convergence. Their
work involved proving fundamental properties and establishing several implication relationships between
deferred statistical convergence, strong deferred Cesàro mean, and statistical convergence. For more
comprehensive information on deferred statistical convergence and its various generalizations, [3, 14, 17,
22, 23, 26] can be addressed where many more references can be found.

2. Definitions and preliminaries

Throughout the paper, N and R denote the set of all positive integers and the set of all real numbers
respectively and by the convergence of a double sequence, we mean the convergence in Pringsheim’s [19]
sense.

Definition 2.1. ([11]) A gradual real number r̃ is defined by an assignment function Ar̃ : (0, 1] → R. The
set of all gradual real numbers is denoted by G(R). A gradual real number r̃ is said to be non-negative if
for every κ ∈ (0, 1],Ar̃(κ) ≥ 0. The set of all non-negative gradual real numbers is denoted by G∗(R).

In [11], the gradual operations between the elements of G(R) was defined as follows:

Definition 2.2. Let “∗” be any operation in R and suppose r̃1, r̃2 ∈ G(R) with assignment functionsAr̃1 and
Ar̃2 respectively. Then, r̃1 ∗ r̃2 ∈ G(R) is defined with the assignment functionAr̃1∗r̃2 given by

Ar̃1∗r̃2 (κ) = Ar̃1 (κ) ∗ Ar̃2 (κ),

for all κ ∈ (0, 1]. Then, the gradual addition r̃1 + r̃2 and the gradual scalar multiplication cr̃(c ∈ R) are
defined by

Ar̃1+r̃2 (κ) = Ar̃1 (κ) +Ar̃2 (κ) andAcr̃(κ) = cAr̃(κ),

for all κ ∈ (0, 1].

Definition 2.3. ([20]) Let X be a real vector space. The function ∥·∥G : X → G∗(R) is said to be a gradual
norm on X, if for every κ ∈ (0, 1], the following conditions are true for any x, y ∈ X:

(G1)A∥x∥G (κ) = A0̃(κ) if and only if x = 0;
(G2)A∥λx∥G (κ) = |λ|A∥x∥G (κ) for any λ ∈ R;
(G3)A

∥x+y∥
G

(κ) ≤ A∥x∥G (κ) +A
∥y∥

G

(κ).

The pair (X, ∥·∥G) is called a gradual normed linear space (GNLS).
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Example 2.4. ([20]) Let X = Rw and x = (x1, x2, ..., xw) ∈ Rw. Define

∥·∥G : Rw
→ G∗(R)

for κ ∈ (0, 1], as follows

A∥x∥G (κ) = eκ
w∑

i=1

|xi|.

Then, ∥·∥G is a gradual norm on Rw and (Rw, ∥·∥G) is a GNLS.

Definition 2.5. ([20]) Let x = (xk) be a sequence in the GNLS (X, ∥·∥G). Then, x is said to be gradual
convergent to x0 ∈ X, if for every κ ∈ (0, 1] and ε > 0, there exists N(= Nε(κ)) ∈N such that

A∥xk−x0∥G (κ) < ε,

satisfies for all k ≥ N. Symbolically, xk → x0(G).

Let p = (pn) and q = (qn) be the sequence of non-negative integers satisfying

pn < qn and lim
n→∞

qn = ∞.

Definition 2.6. ([1]) A real-valued sequence x = (xk) is said to be strong deferred Cesàro convergent to
x0 ∈ R if

lim
n→∞

1
qn − pn

qn∑
k=pn+1

|xk − x0| = 0.

Symbolically, it is denoted by xk → x0(D[p, q]).

Definition 2.7. ([27]) Let K ⊂ N and Kp,q(n) denote the set {pn + 1 ≤ k ≤ qn : k ∈ K}. Then, the deferred
density of K is denoted and defined as

δp,q(K) = lim
n→∞

1
qn−pn
|Kp,q(n)|

provided that the limit exists. Here, | · | indicates the cardinality of the inside set.

Definition 2.8. ([15]) A real-valued sequence x = (xk) is said to be deferred statistical convergent to x0 ∈ R
if for every ε > 0,

δp,q(B (ε)) = 0,

where B (ε) = {k ∈N : |xk − x0| ≥ ε}. Symbolically, it is represented as xk → x0(DS[p, q]).

In particular, if we take p(n) = 0 and q(n) = n, then Definition 2.6, Definition 2.7, and Definition
2.8 reduces to the definition of strong Cesàro summability, natural density, and statistical convergence
respectively.

Definition 2.9. ([19]) A real valued double sequence x = (xi j) is said to be convergent to a real number x0,
if for any ε > 0, there exists a positive integer k0 = k0(ε) such that for all i, j ≥ k0,∣∣∣xi j − x0

∣∣∣ < ε.
Definition 2.10. ([18]) Let K ⊆N ×N and Kl,m denote the set{

(i, j) ∈ K : i ≤ l, j ≤ m
}
.

The double natural density of K is denoted and defined by
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δ2(K) = lim
l,m→∞

|Kl,m|
lm ,

provided that the limit exists.

Definition 2.11. Let (X, ∥·∥G) be a GNLS. Then, a double sequence (xi j) in X is said to be gradual bounded
if there exists M > 0 such that

A
∥xi j∥G

(κ) <M

holds for all κ ∈ (0, 1] and (i, j) ∈N ×N.

Definition 2.12. A double sequence x = (xi j) in the GNLS (X, ∥·∥G) is said to be statistical convergent to
x0 ∈ X if for every ε > 0 and κ ∈ (0, 1],

δ2
({

(i, j) ∈N ×N : A
∥xi j−x0∥G

(κ) ≥ ε
})
= 0.

In this case, we write xi j → x0(GS).

3. Main results

In this section, we will introduce the definitions of strong gradual deferred convergence and gradual
deferred statistical convergence for double sequences. Throughout the paper, 0 ∈ Rw denotes the w−tuple
(0, 0, ..., 0) and ϖl = bl − al, ϖ′l = b′l − a′l , ϱm = qm − pm, ϱ′m = q′m − p′m, where a = (al), a′ = (a′l ), b = (bl), b′ =
(b′l ), p = (pm), p′ = (p′m), q = (qm), q′ = (q′m) be the sequences of nonnegative integers satisfying

al < bl, a′l < b′l , pm < qm, p′m < q′m

and

lim
l→∞

bl = ∞, lim
m→∞

qm = ∞ and lim
l→∞

b′l = ∞, lim
m→∞

q′m = ∞. (1)

Definition 3.1. Let x = (xi j) be a double sequence in the GNLS (X, ∥·∥G). Then, x is said to be strong gradual
deferred convergent to x0 ∈ X if for every κ ∈ (0, 1],

lim
l,m→∞

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−x0∥G

(κ) = 0.

In this case, we write xi j → x0(GDbq
ap).

Definition 3.2. Let K ⊆N ×N and Kbq
ap(l,m) denote the set{
(i, j) ∈ K : al < i ≤ bl, pm < j ≤ qm

}
.

The double deferred density of K is denoted and defined by

δ2,bq
ap (K) = lim

l,m→∞

∣∣∣∣Kbq
ap(l,m)

∣∣∣∣
ϖlϱm

,

provided that the limit exists.

In particular if bl = l, al = 0, qm = m, pm = 0 then the above definition reduces to the Definition 2.10.

Definition 3.3. Let x = (xi j) be a double sequence in the GNLS (X, ∥·∥G). Then, x is said to be gradual
deferred statistical convergent to x0 ∈ X if for every ε > 0 and κ ∈ (0, 1],
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δ2,bq
ap

({
(i, j) ∈N ×N : A

∥xi j−x0∥G
(κ) ≥ ε

})
= 0,

i.e., lim
l,m→∞

1
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ = 0.

In this case, we write xi j → x0(GDSbq
ap).

Theorem 3.4. Let (xi j) be any double sequence in the GNLS (X, ∥·∥G) such that xi j → x0(G) in X. Then, xi j →

x0(GDSbq
ap) for any a, p, b, q.

Proof. Since xi j → x0(G), then the set {
(i, j) ∈N ×N : A

∥xi j−x0∥G
(κ) ≥ ε

}
contains a finite number of elements and consequently has deferred double density zero.

The converse of the above theorem is not true, in general.

Example 3.5. Let X = Rw and ∥·∥G be the norm given in Example 2.4. Suppose, bl, qm are strictly increasing
sequences and al, pm satisfies the conditions 0 < al < [|

√
bl|] − 1, 0 < pm < [|

√
qm|] − 1 for all (l,m) ∈ N ×N,

where [| · |] denotes the greatest integer function. Consider the double sequence (xi j) in Rw as follows:

xi j =


(0, 0, ..., 0, (i j)2),

0,

i f [|
√

bl|] − 1 < i ≤ [|
√

bl|],
[|
√

qm|] − 1 < j ≤ [|
√

qm|],
l,m = 1, 2, 3, . . .

otherwise.

Then, for any ε > 0 and κ ∈ (0, 1],∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

ϖlϱm
=

1
ϖlϱm

. (2)

Letting l,m→∞ on both sides of (2) we obtain xi j → 0(GDSbq
ap). But it is clear that xi j ↛ 0(G).

Theorem 3.6. Let (xi j) be any double sequence in the GNLS (X, ∥·∥G) such that xi j → x0(GDSbq
ap) in X. Then, x0 is

uniquely determined.

Proof. If possible suppose xi j → x0(GDSbq
ap) and xi j → y0(GDSbq

ap) for some x0 , y0 in X. Let ε > 0 be arbitrary.
Then, by Definition 3.3 we have, for any ε > 0 and κ ∈ (0, 1],

δ2,bq
ap (B1(κ, ε)) = δ2,bq

ap (B2(κ, ε)) = 1,

where

B1(κ, ε) =
({

(i, j) ∈N ×N : A
∥xi j−x0∥G

(κ) < ε
})

and

B2(κ, ε) =
({

(i, j) ∈N ×N : A
∥xi j−y0∥G

(κ) < ε
})

.

Choose (i0, j0) ∈ B1(κ, ε) ∩ B2(κ, ε), thenA
∥xi0 j0−x0∥

G

(κ) < ε andA
∥xi0 j0−y0∥

G

(κ) < ε.
Hence,
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A
∥x0−y0∥G

(κ) ≤ A
∥xi0 j0−x0∥

G

(κ) +A
∥xi0 j0−y0∥

G

(κ) < ε + ε = 2ε.

Since ε is arbitrary, soA
∥x0−y0∥G

(κ) = A0̃(κ) and so we must have x0 = y0.

Theorem 3.7. Let (xi j) and (yi j) be two double sequences in the GNLS (X, ∥·∥G) such that xi j → x0(GDSbq
ap) and

yi j → y0(GDSbq
ap). Then:

(i) xi j + yi j → x0 + y0(GDSbq
ap) and

(ii) cxi j → cx0(GDSbq
ap), c ∈ R.

Proof. (i) Suppose xi j → x0(GDSbq
ap) and yi j → y0(GDSbq

ap). Then, by Definition 3.3, for given ε > 0,

δ2,bq
ap (C1) = δ2,bq

ap (C2) = 0,

where

C1 =
{
(i, j) ∈N ×N : A

∥xi j−x0∥G
(κ) ≥ ε2

}
and

C2 =
{
(i, j) ∈N ×N : A

∥yi j−y0∥G
(κ) ≥ ε2

}
.

Now as the inclusion

((N ×N) \ C1) ∩ ((N ×N) \ C2) ⊆
{
(i, j) ∈N ×N : A

∥xi j+yi j−x0−y0∥G
(κ) < ε

}
holds, so we must have

δ2,bq
ap

({
(i, j) ∈N ×N : A

∥xi j+yi j−x0−y0∥G
(κ) ≥ ε

})
≤ δ2,bq

ap (C1 ∪ C2) = 0;

and consequently,

xi j + yi j → x0 + y0(GDSbq
ap).

(ii) If c = 0, then there is nothing to prove. So let us assume c , 0. Then, since xi j → x0(GDSbq
ap), we have

for given ε > 0, δ2,bq
ap (C1) = 0, where

C1 =
{
(i, j) ∈N ×N : A

∥xi j−x0∥G
(κ) ≥ ε

|c|

}
.

Now since

A
∥cxi j−cx0∥G

(κ) = |c|A
∥xi j−x0∥G

(κ)

holds for any c ∈ R, we must have C2 ⊆ C1, where

C2 =
{
(i, j) ∈N ×N : A

∥cxi j−cx0∥G
(κ) ≥ ε

}
,

which as a consequence implies δ2,bq
ap (C2) = 0. This completes the proof.

Theorem 3.8. Let (xi j) be any double sequence in the GNLS (X, ∥·∥G). Then, xi j → x0(GDbq
ap) implies xi j →

x0(GDSbq
ap).
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Proof. Let xi j → x0(GDbq
ap) and ε > 0 be arbitrary. Then, for any κ ∈ (0, 1],

lim
l,m→∞

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−x0∥G

(κ) = 0, (3)

holds. Now,

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−x0∥G

(κ)

≥
1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)≥ε

A
∥xi j−x0∥G

(κ)

≥
1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)≥ε

ε

≥
ε
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ .

Taking l,m→∞ on both sides of the above inequation and using (3), we obtain

lim
l,m→∞

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

ϖlϱm
= 0.

Hence, xi j → x0(GDSbq
ap).

It should be noted that the converse of Theorem 3.8 is not necessarily true. Consider Example 3.5. It
was shown that xi j → 0(GDSbq

ap). But since the right-hand side of the following inequation

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−0∥

G

(κ) ≥
([|
√

bl|] − 1)2([|
√

qm|] − 1)2

ϖlϱm

tends to 1 as l,m→∞, so the left-hand side never approaches zero. In other words, xi j ↛ 0(GDbq
ap).

From the above remark, naturally, a question arises under which condition the converse of Theorem 3.8
holds. The next theorem answers.

Theorem 3.9. Let (xi j) be a gradual bounded double sequence in the GNLS (X, ∥·∥G). Then, xi j → x0(GDSbq
ap) implies

xi j → x0(GDbq
ap).

Proof. Let xi j → x0(GDSbq
ap). Since (xi j) is gradual bounded, so there exists a M > 0 such that for all κ ∈ (0, 1]

and i, j ∈N,
A
∥xi j−x0∥G

(κ) ≤M.
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Now

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−x0∥G

(κ)

=
1
ϖlϱm


bl∑

i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)≥ε

A
∥xi j−x0∥G

(κ) +
bl∑

i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)<ε

A
∥xi j−x0∥G

(κ)



≤
1
ϖlϱm


bl∑

i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)≥ε

M +
bl∑

i=al+1

qm∑
j=pm+1︸      ︷︷      ︸

A
∥xij−x0∥G

(κ)<ε

ε


≤

M
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

+
ε
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) < ε
}∣∣∣∣∣ .

From the assumption and the above inequation, we conclude that for any κ ∈ (0, 1],

lim
l,m→∞

1
ϖlϱm

bl∑
i=al+1

qm∑
j=pm+1

A
∥xi j−x0∥G

(κ) = 0.

Hence, xi j → x0(GDbq
ap).

Theorem 3.10. Let (xi j) be a double sequence in the GNLS (X, ∥·∥G) such that xi j → x0(GS). Then, xi j → x0(GDbq
ap)

provided that the sequences
(

al
ϖl

)
and

( pm

ϱm

)
are bounded.

Proof. Since, xi j → x0(GS), then for any ε > 0 and κ ∈ (0, 1],

lim
l,m→∞

1
lm

∣∣∣∣∣{i ≤ l, j ≤ m : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ = 0.

Again since the sequences b = (bl) and q = (qm) satisfy (1), from the above limit, we must have

lim
l,m→∞

1
blqm

∣∣∣∣∣{i ≤ bl, j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ = 0. (4)

Clearly the inclusion{
al < i ≤ bl, pm < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}
⊆

{
i ≤ bl, j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}
yields the inequation∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}∣∣∣∣∣ ≤ ∣∣∣∣∣{i ≤ bl, j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣
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which subsequently gives the following inequation

1
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

≤

(
1 +

al

ϖl

) (
1 +

pm

ϱm

)
1

blqm

∣∣∣∣∣{i ≤ bl, j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ . (5)

Since the sequences
(

al
ϖl

)
and

( pm

ϱm

)
are bounded, so letting l,m → ∞ on both sides of (5) and using (4) we

obtain,

lim
l,m→∞

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

ϖlϱm
= 0.

Hence, xi j → x0(GDbq
ap) holds and the proof is complete.

Theorem 3.11. Let a′ = (a′l ), b
′ = (b′l ), p

′ = (p′m), and q′ = (q′m) be sequences of positive integers such that

al ≤ a′l < b′l ≤ bl, and pm ≤ p′m < q′m ≤ qm

holds for all l,m ∈N. Then”
(i) xi j → x0(GDSb′q′

a′p′ ) implies xi j → x0(GDSbq
ap) provided that the sets{

(i, j) ∈N ×N : al < i ≤ a′l , pm < j ≤ p′m
}

and {
(i, j) ∈N ×N : b′l < i ≤ bl, q′m < j ≤ qm

}
are finite sets for all (l,m) ∈N ×N.

(ii) xi j → x0(GDSbq
ap) implies xi j → x0(GDSb′q′

a′p′ ) provided that

lim
l,m→∞

ϖlϱm

ϖ′lϱ
′
m
= d > 0.

(iii) If xi j → x0(GDSa′p′
ap ) and xi j → x0(GDSbq

b′q′ ) holds simultaneously, then, xi j → x0(GDSbq
ap) provided that the

set {
(i, j) ∈N ×N : a′l < i ≤ b′l , p

′

m < j ≤ q′m
}

is finite for all (l,m) ∈N ×N.

Proof. (i) For any ε > 0 and κ ∈ (0, 1], the equality{
al < i ≤ bl, pm < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}
⊆

{
al < i ≤ a′l , pm < j ≤ p′m : A

∥xi j−x0∥G
(κ) ≥ ε

}
∪

{
a′l < i ≤ b′l , p

′

m < j ≤ q′m : A
∥xi j−x0∥G

(κ) ≥ ε
}

∪

{
b′l < i ≤ bl, q′m < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}
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and

1
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

≤
1
ϖ′lϱ

′
m

∣∣∣∣∣{al < i ≤ a′l , pm < j ≤ p′m : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

+
1
ϖ′lϱ

′
m

∣∣∣∣∣{a′l < i ≤ b′l , p
′

m < j ≤ q′m : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

+
1
ϖ′lϱ

′
m

∣∣∣∣∣{b′l < i ≤ bl, q′m < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

holds.
On taking l,m→∞we obtain

lim
l,m→∞

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

ϖlϱm
= 0.

Hence, xi j → x0(GDSbq
ap).

(ii) For any ε > 0 and κ ∈ (0, 1], the inclusion{
a′l < i ≤ b′l , p

′

m < j ≤ q′m : A
∥xi j−x0∥G

(κ) ≥ ε
}
⊆

{
al < i ≤ bl, pm < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}
and the inequality∣∣∣∣∣{a′l < i ≤ b′l , p

′

m < j ≤ q′m : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣ ≤ ∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A

∥xi j−x0∥G
(κ) ≥ ε

}∣∣∣∣∣
holds good. So we have,

1
ϖ′lϱ

′
m

∣∣∣∣∣{a′l < i ≤ b′l , p
′

m < j ≤ q′m : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

≤
ϖlϱm

ϖ′lϱ
′
m

1
ϖlϱm

∣∣∣∣∣{al < i ≤ bl, pm < j ≤ qm : A
∥xi j−x0∥G

(κ) ≥ ε
}∣∣∣∣∣

and by taking l,m→∞ the desired result is obtained.
(iii) The proof is easy, so omitted.

4. Concluding remarks

In this paper, we have explored several fundamental characteristics of deferred statistical convergence
of double sequences in gradual normed linear spaces. Theorem 3.8 and Theorem 3.9 have uncovered the
relationship between strong deferred convergence and gradual deferred statistical convergence of double
sequences. The domains of summability theory and sequence convergence have broad applications across
diverse mathematical disciplines, especially in the field of mathematical analysis. Investigating this research
avenue within gradual normed linear spaces is relatively unexplored and is at an early stage of development.
The findings from this study may hold significance for future researchers as they delve further into the
different facets of convergence within gradual normed linear spaces.
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