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Abstract. The goal of this article is to define and investigate the generic ξ⊥- Riemannian submersions from
Kenmotsu manifolds onto Riemannian manifolds along with the examples. We also examine the integra-
bility as well as totally geodesicness of distributions involved in the definition of a generic ξ⊥-Riemannian
submersion. Along with it, we obtain decomposition theorems of this submersion. Furthermore, necessary
and sufficient conditions for the base manifold to be a local product manifold are obtained. In addition
with it, we also explore the totally umbilical nature of generic ξ⊥-Riemannian submersion. Moreover, we
obtain some curvature relations from Kenmotsu space forms between the total space, the base space and
the fibers.

1. Introduction

O’Neill and Gray [9], [16] initially investigated Riemannian submersions between Riemannian mani-
folds. Following this, studies of these submersions between manifolds with differentiable structures were
conducted. Numerous authors investigated various geometric properties of the Riemannian submersions,
including anti-invariant submersion [14], [21], [22], semi-invariant submersion [3], [23], paraquaternionic
3-submersion [28], statistical submersion [27], slant submersion [20],[13], [7], [10], [19], semi-slant submer-
sion [11], [18], conformal slant submersion, conformal semi-slant submersion [1], bi-slant submersion [25]
and Quasi bi-slant submersion [17].

Riemannian submersions have uses in physics and mathematics, including Yang-Mills theory [6],
Kaluza-Klein theory [12] and the theories of supergravity and superstrings [15]. A generic Riemannian
submersion from an almost Hermitian manifold onto a Riemannian manifold was introduced by Ali and
Fatima [5]. A Kaehler manifold’s generic submanifold submersions have been examined by several writers
[8]. Also Şahin researched generic Riemannian maps in [24]. Akyol introduced generic Riemannian sub-
mersions and conformal generic Riemannian submersions from almost product Riemannian submanifolds
and almost Hermitian manifold respectively [2], [4].

The geometry of the new submersions on almost contact manifolds was extensively examined by Akyol
[3], who also proposed and analysed semi-invariantξ⊥-Riemannian submersions from almost contact metric
manifolds and as the result of the generalization of it, Ramazan Sari [26], worked on generic ξ⊥-Riemannian
submersions from Sasakian manifolds.
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The following describes how the paper is structured: The fundamental characteristics of a Kenmotsu
manifold and a Riemannian submersion are outlined in Section 2; the generic ξ⊥-Riemannian submersions
from Kenmotsu manifolds onto Riemannian manifolds with examples are designated in Section 3; Section
4 is devoted to the investigation of integrability as well as totally geodesicness of distributions involved in
the definition of generic ξ⊥- Riemannian submersion; Section 5 discusses additional conditions for generic
ξ⊥- Riemannian submersions to be totally geodesic and totally umbilical; Finally, section 6 deals with the
curvature features and Einstein conditions of distributions for a generic ξ⊥- Riemannian submersion from
Kenmotsu space forms onto Riemannian manifolds.

2. Preliminaries

LetN(ϕ, ξ, η,G) be an almost contact manifold of dimension n = 2m + 1 admitting ϕ as a tensor field of
(1,1) type, a vector field ξ and a 1-form η satisfying the following conditions:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (1)

where I is an identity map defined on TN . Also, on an almost contact manifold there exists a Riemannian
metric Gwhich satisfies the condition:

G(ϕU, ϕV) = G(U,V) − η(U)η(V), (2)

for U,V ∈ TN . A manifold N together with the structure (ϕ, ξ, η,G) is called an almost contact metric
manifold.

Due to the above equations (1) and (2), we obtain following consequences:

G(U, ξ) = η(U) (3)

and

G(ϕU,V) = −G(U, ϕV) (4)

for all vector fields U,V ∈ Γ(TN).

Now if

(∇Uϕ)(V) = G(ϕU,V)ξ − η(V)ϕU, (5)

and

∇Uξ = U − η(U)ξ (6)

for any U,V tangent to N , where ∇ is the Levi-civita connection, then (N , ϕ, ξ, η,G) is called a Kenmotsu
manifold.

Let (N ,GN ) and (B,GB) be Riemannian manifolds with dim(N) = m, dim(B) = n and m > n. Now,
consider a Riemannian submersion π : N → B is a map ofN onto B satisfying the following axioms:

1. π has maximal rank.
2. The differential π∗ preserves the lengths of horizontal vectors.

For each p ∈ B, π−1(p) is an (m − n)-dimensional submanifold of N . The submanifolds π−1(p) are called
fibers.

A vector field on N is referred to as vertical if the fibers are tangent and referred to as horizontal if the
fibers are orthogonal. A vector field U on N is called basic vector field if U is horizontal and π-related
to a vector field U∗ on B i.e. π∗Uq = Uπ∗(q) for all p ∈ N . We denote the projection morphisms on the
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distributions kerπ∗ and (kerπ∗)⊥ byV andH respectively. Then for any U ∈ Γ(TM), we put

U =VU +HU. (7)

We recall that the sections of V and H are called vertical vector fields and horizontal vector fields
respectively. A Riemannian submersion π : N → B determines two (1, 2) tensor fields T and A on N , by
the formulas:

T (E,F) = TEF = H∇N
VEVF +V∇N

VEHF (8)

and

A(E,F) = AEF =V∇N
HEHF +H∇N

HEVF (9)

for any E,F ∈ Γ(TN) where V and H are the vertical and horizontal projections. It is easy to see that a
Riemannian submersion π : N → B has totally geodesic fibers if and only if T vanishes identically. For
any E ∈ Γ(TN), TE andAE are skew symmetric operators on (Γ(TN),G) reversing the horizontal and the
vertical distributions. It is also seen that T is vertical, TE = TVE andAE is horizontal,AE = AHE.

Using (8) and (9), we have

∇
N

V W = TVW + ∇̂VW, (10)

∇
N

V X = TVX +H(∇NV X), (11)

∇
N

X V = AXV +V(∇NX V) (12)

and

∇
N

X Y = AXY +H(∇NX Y) (13)

for any V,W ∈ Γ(kerπ∗) and X,Y ∈ Γ((kerπ∗)⊥), where ∇̂VW =V(∇VW). Furthermore, if X is a basic then

H(∇NV X) = AXV. (14)

We note that for V,W ∈ Γ(kerπ∗), TVW coincides with the second fundamental form of the immersion of the
fiber submanifolds and T is symmetric on the vertical distribution i.e. TVW = TWV, for V,W ∈ Γ(kerπ∗).
Furthermore, AXY = 1

2V[X,Y] which shows the complete integrability of the horizontal distribution
H , for X,Y ∈ Γ((kerπ∗)⊥). Moreover, A alternates on the horizontal distribution, AXY = −AYX, for
X,Y ∈ Γ((kerπ∗)⊥).

Lemma 2.1. Let π : N → B be a Riemannian submersion between Riemannian manifolds and X,Y be basic vector
fields ofN . Then we have

1. G(X,Y) = GB(X∗,Y∗) ◦ π,
2. the horizontal part H[X,Y] of [X,Y] is a basic vector field and corresponds to [X∗,Y∗], i.e., π∗(H[X,Y]) =

[X∗,Y∗].
3. [V,X] is vertical for any V ∈ Γ(kerπ∗).
4. H(∇XY) is the basic vector field corresponding to ∇BX∗Y∗, where ∇ and ∇B are the Levi-Civita connections of G

and GB respectively.
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Let (N ,G) and (B,GB) be Riemannian manifolds and π : N → B is a smooth map between them. Then
the differential π∗ of π can be viewed as a section of the bundle Hom((TN), π−1(TB))→N , where π−1(TB)
is the pullback bundle which has fibers (π−1(TB))p = Tπ(p)B, p ∈ N . Hom((TN), π−1(TB)) has a connection
∇ induced from Levi-Civita connection ∇N and the pullback connection. The second fundamental form of
π is then given by

(∇π∗)(X,Y) = ∇πXπ∗Y − π∗(∇
N

X Y), (15)

for X,Y ∈ Γ(TN), where we denote the Levi-Civita connections of the metrics G and GB conveniently by
∇. Recall that π is called a totally geodesic map if (∇π∗)(X,Y) = 0 for X,Y ∈ Γ(TN). It is known that the
second fundamental form is symmetric. We note that, the tensor fieldsA andT , their covariant derivatives
play a fundamantal role in expressing the Riemannian curvature RN ofN . In 1966, [16], O’Neill are given

RN (U,V,W,S) = R̂(U,V,W,S) +G(TUW,TVS) − G(TVW,TUS) (16)

where R̂ is Riemannian curvature tensor of any fiber (π−1(x),G). Moreover if {U,V} is orthonormal basis of
the vertical 2-plane, then from (16) we have

KN (U,V) = K̂(U,V) + ||TUV||2 − G(TUU,TVV) (17)

where KN and K̂ is sectional curvature ofN and π−1(x).
A plane section in the tangent space TpN at p ∈ N is called a ϕ-section if it is spanned by a vector X

orthogonal to ξ and ϕX. The sectional curvature of ϕ-section is called ϕ-sectional curvature. A Kenmotsu
manifold with constant ϕ-sectional curvature c is called as Kenmotsu space form and denoted byN(c). The
Riemannian curvature tensor of a Kenmotsu space form is given by

R(X,Y,Z,W) =
c − 3

4
[G(Y,Z)G(X,W) − G(X,Z)G(Y,W)]+

c + 1
4

[η(X)η(Z)G(Y,W) − η(Y)η(Z)G(X,W) + η(Y)G(X,Z)η(W)

− η(X)G(Y,Z)η(W) +G(X, ϕZ)G(ϕY,W) − G(Y, ϕZ)G(ϕX,W)
+ 2G(X, ϕY)G(ϕZ,W)]

(18)

for all X,Y,Z,W ∈ Γ(TN).

3. Generic ξ⊥-Riemannian submersions

We define generic ξ⊥-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold
with examples. We begin with the following definition: Let π : (N , ϕ, ξ, η,G) → (B,GB) be a Riemannian
submersion such that N is a Kenmotsu manifold , B is a Riemannian manifold and ξ is normal to kerπ∗.
Then, the complex subspace of the vertical subspaceVp is defined by

Dp = (kerπ∗p ∩ ϕ(kerπ∗p))

where p ∈ N .

Definition 3.1. LetN be a Kenmotsu manifold with almost contact structureϕ and metricG andB be a Riemannian
manifold with Riemannian metric GB. Also consider ξ is normal to kerπ∗ then a Riemannian submersion π :
(N , ϕ, ξ, η,G) → (B,GB) is called a generic ξ⊥-Riemannian submersion if there is a distribution D ⊂ kerπ∗ such
that

(kerπ∗) = D ⊕D⊥, ϕ(D) = D

where,D⊥ is the orthogonal complement ofD in Γ(kerπ∗) and is purely real distribution on the fibers of the submersion
π.
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Example 3.2. Every semi-invariant ξ⊥-Riemannian submersion from a Kenmotsu manifold onto a Riemannian
manifold is a generic ξ⊥-Riemannian submersion such that D⊥ is total real distribution.

Example 3.3. Every slant ξ⊥-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold is a
generic ξ⊥-Riemannian submersion such that D = {0} and D⊥ is a slant distribution.

Example 3.4. Every semi-slant ξ⊥-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold
is a generic ξ⊥-Riemannian submersion such that D⊥ is a slant distribution.

Example 3.5. LetM7 be a 7-dimensional manifold given by the following:

M7 = {(x1, x2, x3, y1, y2, y3, z) ∈ R7
|z > 0}.

We define the Kenmotsu structure (ϕ, ξ, η,G) onM7 given by the following:

ξ =
∂
∂z
, η = dz,

G =



ez 0 0 0 0 0 0
0 ez 0 0 0 0 0
0 0 ez 0 0 0 0
0 0 0 ez 0 0 0
0 0 0 0 ez 0 0
0 0 0 0 0 ez 0
0 0 0 0 0 0 1


, ϕ =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0


.

A ϕ-basis for this structure can be given by {ε1 = ez ∂
∂y1
, ε2 = ez ∂

∂y2
, ε3 = ez ∂

∂y3
, ε4 = ez ∂

∂x1
, ε5 = ez ∂

∂x2
, ε6 =

ez ∂
∂x3
, ε1 = ξ}.

Let B={(u1,u2,u3) ∈ R3
|u3 = z , 0}. We choose the Riemannian metric GB on B in the following form:

GB =

e
3z 0 0
0 e3z 0
0 0 1

.
Now, we define the map π :M7

→ B such that

π(x1, x2, x3, y1, y2, y3, z) = (
x2 + y3
√

2
,

x3 + y2
√

2
, z).

By direct calculations, we have

kerπ∗ = span{X1 = ε1,X2 =
1
√

2
(ε5 − ε3),X3 = ε4,X4 =

1
√

2
(ε6 − ε2)}

D = span{X1 = ε1,X3 = ε4}, D⊥ = span{X2 =
1
√

2
(ε5 − ε3),X4 =

1
√

2
(ε6 − ε2)}

(kerπ∗)⊥ = span{Y1 =
1
√

2
(ε5 + ε3),Y2 =

1
√

2
(ε6 + ε2),Y3 = ξ}.

After some computations, one can see that

π∗(Y1) = e−z ∂
∂u1
, π∗(Y2) = e−z ∂

∂u2
, π∗(Y3) = π∗(ξ) =

∂
∂u3

and
G(Yi,Y j) = GB(π∗(Yi), π∗(Y j))

for all Yi,Y j ∈ (kerπ∗)⊥, i, j = 1, 2, 3. Thus π is semi-invariant ξ⊥-Riemannian submersion . Moreover it is easy to
verify that ϕ(X1) = X3, ϕ(X2) = Y2, ϕ(X3) = X1, ϕ(X4) = Y1. Thus, π is a generic ξ⊥-Riemannian submersion .



R. Prasad, P. Gupta / Filomat 38:18 (2024), 6477–6491 6482

Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N is Kenmotsu
manifold and B is a Riemannian manifold. Now, for any Z ∈ Γ(TN), we have the following condition

Z =VZ +HZ (19)

whereVZ ∈ Γ(kerπ∗) andHZ ∈ Γ((kerπ∗)⊥). For U ∈ Γ(kerπ∗), we write

ϕU = ρU + ωU (20)

where ρU and ωU are vertical and horizontal components of ϕU, respectively.
Further, let µ be the complementary distribution to ωD⊥ in (kerπ∗)⊥. Then, we have

ϕD⊥ ⊂ D⊥, (kerπ∗)⊥ = ωD⊥ ⊕ µ,

where ϕ(µ) ⊂ µ. Hence, µ contains ξ. Similarly, for any X ∈ Γ((kerπ∗)⊥), we have

ϕX = BX + CX, (21)

where, BX and CX are vertical and horizontal components of ϕX, respectively.
Now with the help of above equations (10), (11), (20), (21) and covariant derivative of ρ and ω which

are defined as follows:

(∇NV ω)W = H∇NV ωW − ω∇̂VW,

(∇NV ρ)W = ∇̂VρW − ρ∇̂VW,

we obtain the following relations:

(∇NV ρ)W = BTVW − TVωW (22)

(∇NV ω)W = CTVW − TVρW (23)

for any V,W ∈ Γ(kerπ∗)

4. Geometry of foliations

In this section, we examine the integrability as well as totally geodesicness of distributions involved
in the definition of a generic ξ⊥-Riemannian submersion. Along with it, we also obtain decomposition
theorems of this submersion.

Theorem 4.1. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the distribution D is integrable if and only if

G(TVϕW − TWϕV, ωZ) = G(∇̂WϕV − ∇̂VϕW, ρZ)

for any V,W ∈ Γ(D).

Proof. For V,W ∈ Γ(D),Z ∈ Γ(D⊥),X ∈ Γ((kerπ∗)⊥), since [V,W] ∈ Γ(kerπ∗), we have that G([V,W],X) = 0.
Thus, D is integrable if and only if G([V,W],Z) = 0.

Initially we note that, for any V,W ∈ Γ(D) and Z ∈ Γ(D⊥), from (2) and (5), we have

G(∇VW,Z) = G(ϕ(∇VW), ϕZ) + η(∇VW)η(Z)
= G(ϕ(∇VW), ϕZ)
= G(∇V(ϕW) − (∇Vϕ)W, ϕZ)
= G(∇VϕW − G(ϕV,W)ξ + η(W)ϕV, ϕZ)
= G(∇VϕW, ϕZ).
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Now, consider

G([V,W],Z) = G(∇VW − ∇WV,Z)
= G(∇VϕW, ϕZ) − G(∇WϕV, ϕZ),

which further gives

G([V,W],Z) = G(TVϕW + ∇̂VϕW, ϕZ) − G(TWϕV + ∇̂WϕV, ϕZ)

= G(TVϕW − TWϕV, ωZ) +G(∇̂VϕW − ∇̂WϕV, ρZ)

by using equations (10) and hence we have theorem.

Theorem 4.2. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds respectively. Then, the distribution D⊥ is integrable if and only if

−∇̂ZϕW − TZωW + ∇̂WϕZ + TWωZ ∈ Γ(D⊥)

for any Z,W ∈ Γ(D⊥) and K ∈ Γ(D).

Proof. Firstly, in the account of equations (2) and (5), for any Z,W ∈ Γ(D⊥) and K ∈ Γ(D), we have the
following

G(∇ZW,K) = G(ϕ(∇ZW), ϕK) + η(∇ZW)η(K)
= G(∇Z(ϕW) − G(ϕZ,W)ξ + η(W)ϕZ, ϕK)
= G(∇Z(ϕW), ϕK).

Now, with help of above condition and using the equations (2), (10), (11), we obtain

G([Z,W],K) = G(∇ZW − ∇WZ,K)

= G(TZρW + ∇̂ZρW + TZωW +H∇ZωW, ϕK)

− G(TWρZ + ∇̂WρZ + TWωZ +H∇WωZ, ϕK).

By virtue of (20), (21), we arrive

G([Z,W],K) = G(ρ(−∇̂ZρW − TZωW + ∇̂WρZ + TWωZ)
+ B(−TZρW −H∇ZωW + TWρZ +H∇WωZ),K)

+G(ω(−∇̂ZρW − TZωW + ∇̂WρZ + TWωZ)
+ C(−TZρW −H∇ZωW + TWρZ +H∇WωZ),K).

After some calculations, we get

G([Z,W],K) =G(ρ(−∇̂ZρW − TZωW + ∇̂WρZ + TWωZ)
+ B(−TZρW −H∇ZωW + TWρZ +H∇WωZ),K).

Since, B(−TZρW −H∇ZωW + TWρZ +H∇WωZ),K) ∈ Γ(D⊥), therefore we can conclude that

G([Z,W],K) = G(ρ(−∇̂ZρW − TZωW + ∇̂WρZ + TWωZ)

which demonstrates the statement.
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Theorem 4.3. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds respectively. Then, the distribution D defines a totally geodesic foliation onN
if and only if

ρ(∇̂KρL + TKωL) = −B(TKρL +H(∇KωL))

and
GB((∇π∗)(K, ϕL), π∗CX) = G(∇KϕL,BX)

for any K,L ∈ Γ(D),Z ∈ Γ(D⊥) and X ∈ Γ(kerπ∗)⊥.

Proof. The distribution D defines a totally geodesic foliation onN if and only if
G(∇KL,Z) = 0 and G(∇KL,X) = 0, for any K,L ∈ D,Z ∈ Γ(D⊥) and X ∈ Γ(kerπ∗)⊥.

Now, for any K,L ∈ D,Z ∈ Γ(D⊥) using (2),(5) and (20) we have

G(∇KL,Z) = G(∇KϕL, ϕZ)
= G(∇K(ρL + ωL), ϕZ).

By virtue of (4), (10) and (11), above equation implies that

G(∇KL,Z) = −G(ϕ(TKρL + ∇̂KρL + TKωL +H(∇KωL)),Z)

= −G(BTKρL + ρ∇̂KρL + ρTKωL + BH(∇KωL),Z).

On the other hand, for X ∈ Γ((kerπ∗)⊥), using (11),(15) and (21), we arrive

G(∇KL,X) = G(∇KϕL, ϕX)
= G(∇KϕL,BX + CX).

Since π is generic ξ⊥-Riemannian submersion, we have

G(∇KL,X) = G(∇KϕL,BX) +GB(π∗∇KϕL, π∗CX).

Then, using (15), we get

G(∇KL,X) = G(∇KϕL,BX) +GB(∇πKπ∗ϕL − (∇π∗)(K, ϕL), π∗CX)
= G(∇KϕL,BX) +GB((∇π∗)(K, ϕL), π∗CX).

Thus, we get the required assertion.

Theorem 4.4. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the distribution D⊥ defines a totally geodesic foliation on
N if and only if

GB(π∗(∇ZCX), π∗ωW) +G(∇̂ZBX, ρW) +G(TZBX, ωW) +G(TZCX, ρW) = 0

and
(∇π∗)(Z, ϕW) ∈ Γ(µ)

for any Z,W ∈ Γ(D⊥),K ∈ Γ(D) and X ∈ Γ((kerπ∗)⊥).

Proof. For any Z,W ∈ Γ(D⊥),K ∈ Γ(D) and X ∈ Γ((kerπ∗)⊥), in the account of equations (2) and (20) we obtain

G(∇ZW,K) = G(∇ZϕW, ϕK) = G(∇ZϕW, ρK + ωK)

which turns into

G(∇ZW,K) = G(H∇ZϕW, ωK)
= GB((∇π∗)(Z, ϕW), π∗ωK)
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with help of (15), (19) and following the reason that π is generic ξ⊥-Riemannian submersion.
Hence we get one of the given assertions.
Now again, with the help of equations (2) and (20), we have

G(∇ZW,X) = G(∇ZϕW, ϕX)
= −G(ϕW,∇ZϕX)
= G(∇ZϕX, ϕW).

Then, using (10),(11) and (21), we arrive

G(∇ZW,X) = G(∇Z(BX + CX), ϕW)

= G(∇̂ZBX + TZBX + TZCX +H(∇ZCX), ϕW)

which further transforms into

G(∇ZW,X) = G(∇̂ZBX, ρW) +G(TZBX, ωW) +G(TZCX, ρW)
+GB(π∗(∇ZCX), π∗ωW)

with the virtue of (15). Thus, we have obtained our assertion.

Corollary 4.5. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the fibers of π are the locally product Riemannian manifold
of leaves of D and D⊥ if and only if

ρ(∇̂KρL + TKωL) = −B(TKρL +H(∇KωL)),

GB((∇π∗)(K, ϕL), π∗CX) = G(∇KϕL,BX),

GB(π∗(∇ZCX), π∗ωW) +G(∇̂ZBX, ρW) +G(TZBX, ωW) +G(TZCX, ρW) = 0

and
(∇π∗)(Z, ϕW) ∈ Γ(µ)

for any Z,W ∈ Γ(D⊥),K,L ∈ Γ(D) and X ∈ Γ((kerπ∗)⊥).

Theorem 4.6. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then kerπ∗ defines a totally geodesic foliation onN if and only if

∇̂UρV + TUωV ∈ Γ(D)

and
H(∇UωV) + TUρV ∈ Γ(D⊥)

for any U,V ∈ Γ(kerπ∗).

Proof. For all U,V ∈ Γ(kerπ∗), using (1), (5), (6) and (20), we have

∇UV = −ϕ∇UϕV
= −ϕ[∇U(ρV + ωV)]

which further gives

∇UV = −ϕ[∇̂UρV + TUρV + TUωV +H(∇UωV)]

= −[ρ∇̂UρV + ω∇̂UρV + BTUρV + CTUρV + ρTUωV
+ ωTUωV + BH(∇UωV) + CH(∇UωV)]
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with the help of equations (10), (11), (20) and (21).
As we know that, kerπ∗ defines a totally geodesic foliation iff G(∇UV,Z) = 0, for any Z ∈ Γ((kerπ∗)⊥).

Thus above equation concludes that, kerπ∗ defines a totally geodesic foliation if and only if

C(H(∇UωV) + TUρV) + ω(∇̂UρV + TUωV) = 0,

which is equivalent to say that ∇UV ∈ kerπ∗ iff

∇̂UρV + TUωV ∈ Γ(D)

and
H(∇UωV) + TUρV ∈ Γ(D⊥)

for any U,V ∈ Γ(kerπ∗). Consequently, we have our claim.

Theorem 4.7. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then (kerπ∗)⊥ defines a totally geodesic foliation on N if and
only if

AXBY +H(∇XCY) ∈ Γ(µ)

and
V(∇XBY) +AXCY ∈ Γ(D⊥)

for any X,Y ∈ Γ((kerπ∗)⊥).

Proof. For any X,Y ∈ Γ((kerπ∗)⊥), on the account of equation (1), (5), (6) and (20), we have

∇XY = −ϕ∇XϕY.

Now, using equations (12), (13), (20) and (21) we obtain

∇XY = −[BAXBY+CAXBY + ρV(∇XBY) + ωV(∇XBY)
+ ρAXCY + ωAXCY + BH(∇XCY) + CH(∇XCY)].

Thus, (kerπ∗)⊥ defines a totally geodesic foliation iff

B(AXBY +H(∇XCY)) + ρ(V(∇XBY) +AXCY) = 0

Hence, ∇XY ∈ (kerπ∗)⊥ if and only if

B(AXBY +H(∇XCY)) = 0

and
ρ(V(∇XBY) +AXCY) = 0

and consequently we get our claim.

Corollary 4.8. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the total spaceN is a generic product manifold of the leaves
of kerπ∗ and (kerπ∗)⊥, i.e. N = Nkerπ∗ ×N(kerπ∗)⊥ if and only if

AXBY +H(∇XCY) ∈ Γ(µ),

V(∇XBY) +AXCY ∈ Γ(D⊥),

∇̂UρV + TUωV ∈ Γ(D)

and
H(∇UωV) + TUρV ∈ Γ(D⊥)

for any U,V ∈ Γ(kerπ∗),X,Y ∈ Γ((kerπ∗)⊥).
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5. Totally umbilical and totally geodesicness of π

In this part, we explore further requirements for the totally geodesic and totally umbilical nature
of generic ξ⊥-Riemannian submersion. We refer a Riemannian submersion between two Riemannian
manifolds as totally geodesic iff ∇π∗ = 0. On the other hand, consider π be Riemannian submersion. Then
π is called Riemannian submersion with totally umbilical fiber if

TUV = G(U,V)H (24)

for all U,V ∈ Γ(kerπ∗) andH is mean curvature vector fields of fiber.

Theorem 5.1. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then π is totally geodesic if

∇̂VρW + TVωW ∈ Γ(D), (25)
TVρW +AωWV ∈ Γ(ωD⊥), (26)

C(AXρV +H∇NX ωV) + ω(V∇NX ρV +AXωV) = 0, (27)

for any X,Y ∈ Γ((kerπ∗)⊥),V ∈ Γ(kerπ∗).

Proof. Since π is Riemannian submersion, we have

(∇π∗)(X,Y) = 0,∀X,Y(kerπ∗)⊥ (28)

For any V,W ∈ kerπ∗ using (2), (4), (10), (11), (15), (20) and (21) we get

(∇π∗)(V,W) = ∇πVπ∗W − π∗(∇
N

V W)
= −π∗(∇VW)
= −π∗(−ϕ∇VϕW)
= π∗(ϕ(∇V(ρW + ωW)))

= π∗(ϕ(TVρW + ∇̂VρW) + ϕ(TVωW +H(∇NV ωW)))

= π∗(ϕ(TVρW + ∇̂VρW) + ϕ(TVωW +AωWV))

= π∗[(BTVρW + CTVρW) + (ρ∇̂VρW + ω∇̂VρW)
+ (ρTVωW + ωTVωW) + (BAωWV + CAωWV)]

Thus, (∇π∗)(V,W) = 0 iff

ω(∇̂VρW + TVωW) + C(TVρW +AωWV) = 0. (29)

On the other hand using (2), (4), (10), (20) and (21) for any V ∈ kerπ∗ and X ∈ (kerπ∗)⊥ we get

(∇π∗)(X,V) = ∇πXπ∗V − π∗(∇
N

X V)

= −π∗(∇NX V)

= −π∗(−ϕ∇NX ϕV)
= π∗(ϕ(∇X(ρV + ωV)))

= π∗(ϕ(V∇NX ρV +AXρV) + ϕ(AXωV +H∇NX ωV))

= ϕ∗(ρV∇NX ρV + ωV∇NX ρV + BAXρV + CAXρV

+ ρAXωV + ωAXωV + BH∇NX ωV + CH∇NX ωV).
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Thus, (∇π∗)(X,V) = 0 iff

ω(V∇NX ρV +AXωV) + C(H∇NX ωV +AXρV) = 0. (30)

Hence the result then follows from (28), (29) and (30).

Theorem 5.2. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion with totally umbilical
fibers such thatN and B are Kenmotsu and Riemannian manifolds, respectively, then G(H,X) = −G(ξ,X).

Proof. For any U,V ∈ Γ(D), using (5), (6), (20) and (21), we have

G(ϕU,V)ξ − η(V)ϕU = ∇UϕV − ϕ∇UV.

Taking inner product in above equation with X ∈ Γ(µ), we arrive

G(ϕU,V)G(ξ,X)−η(V)G(ϕU,X)

= G(TUϕV + ∇̂UϕV − ϕ(TUV) − ρ∇̂UV − ω∇̂UV,X)

Since π is totally umbilical, using (20), we conclude that

G(ϕU,V)η(X) = G(U, ϕV)G(H,X) +G(U,V)G(H, ϕX) (31)

Interchanging U and V in equation (31) and subtracting these two equation, we get

G(ϕU,V)[η(X) +G(H,X)] = 0

Since, G(ϕU,V) , 0, hence η(X) = G(ξ,X) = −G(H,X), which proves the required assertion.

6. Generic ξ⊥-Riemannian submersions with Kenmotsu space form

A plane section in the tangent space TpN at p ∈ N is called a ϕ-section if there exists a unit vector X in
TpN orthogonal to ξ⊥ such that {X, ϕX} is an orthonormal basis of the plane section. The sectional curvature
of ϕ-section is called ϕ-sectional curvature. A Kenmotsu manifold with constant ϕ-sectional curvature c is
known as Kenmotsu space forms. The Riemannian curvature tensor of such a manifold is given by

R(X,Y)Z =
c − 3

4
[G(Y,Z)X − G(X,Z)Y]+

c + 1
4

[η(X)η(Z)Y − η(Y)η(Z)X + η(Y)G(X,Z)ξ − η(X)G(Y,Z)ξ

+G(X, ϕZ)ϕY − G(Y, ϕZ)ϕX + 2G(X, ϕY)ϕZ]

(32)

for all X,Y,Z ∈ Γ(TN).
Now, we choose an orthonormal frame onN by

{e1, e2, ..., e2r, e2r+1, ..., e2r+2s, e2r+2s+1}.

Then, we have D = span{e1, e2, ..., e2r}, D⊥ = span{e2r+1, ..., e2r+2s} and ξ = e2r+2s+1, where dimD = 2r and
dimD⊥ = 2s.
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Theorem 6.1. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. Then, we have

R̂(U,V,W,S) =
c − 3

4
[G(V,W)G(U,S) − G(U,W)G(V,S)]

+
c + 1

4
[G(ϕV,W)G(ϕU,S) − G(ϕU,W)G(ϕV,S) + 2G(U, ϕV)G(ϕW,S)]

− G(TUW,TVS) +G(TVW,TUS)

(33)

and

K̂(U,V) =
c − 3

4
[1 − {G(U,V)2

}] +
3(c + 1)

4
{G(ϕU,V)}2 − ||TUV||2 +G(TUU,TVV) (34)

for any U,V,W,S ∈ Γ(D⊥).

Proof. For any U,V,W,S ∈ Γ(D⊥), through the use of (20) and (32) and using the fact that if U ∈ Γ(D⊥) =⇒
η(U) = 0, we obtain the following:

R(U,V,W,S) =
c − 3

4
[G(V,W)G(U,S) − G(U,W)G(V,S)]

+
c + 1

4
[G(ϕV,W)G(ϕU,S) − G(ϕU,W)G(ϕV,S) + 2G(U, ϕV)G(ϕW,S)].

Thus, using above equation in (16), we get our desired claim (33).
Now, if we take W = V and S = U in (33), we obtain the required result of (34), which completes the

proof.

Theorem 6.2. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B
are Kenmotsu space form and Riemannian manifold, respectively. If D⊥ is totally geodesic, the distribution D⊥ is
Einstein.

Proof. For any V,W ∈ Γ(D⊥), we recall

Ŝ⊥(V,W) =
2s∑

i=1

R̂(ei,V,W, ei)

where, Ŝ⊥ is Ricci tensor. Let D⊥ is totally geodesic. Then, by using (33), we have

Ŝ⊥(V,W) =
2s∑

i=1

[
c − 3

4
[G(V,W)G(ei, ei) − G(ei,W)G(V, ei)]

+
c + 1

4
[G(ϕV,W)G(ϕei, ei) − G(ϕei,W)G(ϕV, ei) + 2G(ei, ϕV)G(ϕW, ei)].

After, applying some elementary calculations, we obtain

Ŝ⊥(V,W) =
(c − 3)(2s − 1) + 3(c + 1)

4
1(V,W).

Hence, we have the required assertion.

Corollary 6.3. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If D⊥ is totally geodesic, then the scalar curvature κ̂⊥
of D⊥ is given as follows:

κ̂⊥ =
(c − 3)(2s − 1) + 3(c + 1)

2
s.
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Theorem 6.4. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. Then, for any U,V,W,S ∈ Γ(D) we have

R̂(U,V,W,S) =
c − 1

2
[G(V,W)G(U,S) − G(U,W)G(V,S)] +

c + 1
2
G(U,V)G(W,S)

− G(TUW,TVS) +G(TVW,TUS)
(35)

and

K̂(U,V) =
c − 1

2
+ {G(U,V)}2 − ||TUV||2 +G(TUU,TVV) (36)

for any U,V,W,S ∈ Γ(D⊥).

Proof. Due the consequences of (16), (17), (32) and the fact that ϕ(D) = D we obtain the result (35). Now
taking W = V and S = U in (35) we get the other result (36) of this theorem.

Theorem 6.5. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If D is totally geodesic, the distribution D is Einstein.

Proof. With the help of (35), for any V,W ∈ Γ(D), we obtain the following

Ŝ(V,W) =
2r∑

i=1

R̂(ei,V,W, ei)

=

2r∑
i=1

[
c − 1

2
[G(V,W)G(ei, ei) − G(ei,W)G(V, ei)] +

c + 1
2
G(ei,V)G(W, ei)]

=
r(c − 1) + 1

2
G(V,W)

where, Ŝ is Ricci tensor for distributionD andD is totally geodesic. Therefore, we have the desired claim.

Corollary 6.6. Let π : (N , ϕ, ξ, η,G) → (B,GB) be a generic ξ⊥-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If the distributionD is totally geodesic, then the scalar
curvature, κ̂ of distribution D is given as follows:

κ̂ = {r(c − 1) + 1}r.
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