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Generic £t-Riemannian submersions from Kenmotsu manifolds onto
Riemannian manifolds

Rajendra Prasad?, Pooja Gupta®*

?Department of Mathematics and Astronomy, University of Lucknow, Lucknow-226007, India.

Abstract. The goal of this article is to define and investigate the generic &*- Riemannian submersions from
Kenmotsu manifolds onto Riemannian manifolds along with the examples. We also examine the integra-
bility as well as totally geodesicness of distributions involved in the definition of a generic £*-Riemannian
submersion. Along with it, we obtain decomposition theorems of this submersion. Furthermore, necessary
and sufficient conditions for the base manifold to be a local product manifold are obtained. In addition
with it, we also explore the totally umbilical nature of generic £*-Riemannian submersion. Moreover, we

obtain some curvature relations from Kenmotsu space forms between the total space, the base space and
the fibers.

1. Introduction

O’Neill and Gray [9], [16] initially investigated Riemannian submersions between Riemannian mani-
folds. Following this, studies of these submersions between manifolds with differentiable structures were
conducted. Numerous authors investigated various geometric properties of the Riemannian submersions,
including anti-invariant submersion [14], [21], [22], semi-invariant submersion [3], [23], paraquaternionic
3-submersion [28], statistical submersion [27], slant submersion [20],[13], [7], [10], [19], semi-slant submer-
sion [11], [18], conformal slant submersion, conformal semi-slant submersion [1], bi-slant submersion [25]
and Quasi bi-slant submersion [17].

Riemannian submersions have uses in physics and mathematics, including Yang-Mills theory [6],
Kaluza-Klein theory [12] and the theories of supergravity and superstrings [15]. A generic Riemannian
submersion from an almost Hermitian manifold onto a Riemannian manifold was introduced by Ali and
Fatima [5]. A Kaehler manifold’s generic submanifold submersions have been examined by several writers
[8]. Also Sahin researched generic Riemannian maps in [24]. Akyol introduced generic Riemannian sub-
mersions and conformal generic Riemannian submersions from almost product Riemannian submanifolds
and almost Hermitian manifold respectively [2], [4].

The geometry of the new submersions on almost contact manifolds was extensively examined by Akyol
[3], who also proposed and analysed semi-invariant £*-Riemannian submersions from almost contact metric

manifolds and as the result of the generalization of it, Ramazan Sari [26], worked on generic £*-Riemannian
submersions from Sasakian manifolds.
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The following describes how the paper is structured: The fundamental characteristics of a Kenmotsu
manifold and a Riemannian submersion are outlined in Section 2; the generic £*-Riemannian submersions
from Kenmotsu manifolds onto Riemannian manifolds with examples are designated in Section 3; Section
4 is devoted to the investigation of integrability as well as totally geodesicness of distributions involved in
the definition of generic &+~ Riemannian submersion; Section 5 discusses additional conditions for generic
&+- Riemannian submersions to be totally geodesic and totally umbilical; Finally, section 6 deals with the
curvature features and Einstein conditions of distributions for a generic £+~ Riemannian submersion from
Kenmotsu space forms onto Riemannian manifolds.

2. Preliminaries

Let N(¢, &, 1, G) be an almost contact manifold of dimension 7 = 2m + 1 admitting ¢ as a tensor field of
(1,1) type, a vector field £ and a 1-form 7 satisfying the following conditions:

P*=-I1+n0&EnNE) =1,¢E=0,n0¢p =0, (1)

where ] is an identity map defined on 7 N. Also, on an almost contact manifold there exists a Riemannian
metric G which satisfies the condition:

GoU, V) = GU, V) - nth)n(V), ()

for U,V € T N. A manifold N together with the structure (¢, &, 1, G) is called an almost contact metric
manifold.
Due to the above equations (1) and (2), we obtain following consequences:

G, ¢) =n) (©)
and

GU V) =-G(U ¢V) (4)
for all vector fields U, V € T(TN).

Now if

(Vugp)(V) = G(oU, V) — n(V)oL, (6)
and

Vué =U-n)é (6)

for any U, V tangent to N, where V is the Levi-civita connection, then (N, ¢, £, 1, G) is called a Kenmotsu
manifold.

Let (N, Gyn) and (B, Gg) be Riemannian manifolds with dim(N) = m, dim(B) = n and m > n. Now,
consider a Riemannian submersion 7 : N'— $is a map of N onto B satisfying the following axioms:

1. 7 has maximal rank.
2. The differential 77, preserves the lengths of horizontal vectors.

For each p € B, n7}(p) is an (m — n)-dimensional submanifold of N. The submanifolds 7~!(p) are called
fibers.

A vector field on N is referred to as vertical if the fibers are tangent and referred to as horizontal if the
fibers are orthogonal. A vector field U on N is called basic vector field if U is horizontal and m-related
to a vector field U. on Bie. m.U; = Uy for all p € N'. We denote the projection morphisms on the
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distributions kerm. and (ker 7.)* by V and H respectively. Then for any U € I'(7 M), we put

U=vUu+HU )

We recall that the sections of V and H are called vertical vector fields and horizontal vector fields
respectively. A Riemannian submersion v : N' — 8 determines two (1,2) tensor fields 7~ and A on N, by
the formulas:

T(E,F) = T¢F = HVE, VF + VN HF (8)
and
A(E,F) = AcF = VYV HF + HV ) VF 9)

for any E,F € T(7 N) where V and H are the vertical and horizontal projections. It is easy to see that a
Riemannian submersion w : N — 8 has totally geodesic fibers if and only if 7~ vanishes identically. For
any E e ['(TN), T and Ag are skew symmetric operators on (I'(7 N), G) reversing the horizontal and the
vertical distributions. It is also seen that 7 is vertical, T¢ = T« and A is horizontal, Ar = Axk.

Using (8) and (9), we have

VAW = TyW + Vy W, (10)

VX =TvX+H(VyX), (11)

VRV = AxV + V(VEV) (12)
and

VY = AxY + H(VYY) (13)

forany V, W € I'(kerr.) and X, Y € I'((ker 7t,)*), where ’V\VW = V(VyW). Furthermore, if X is a basic then
H(VYX) = AxV. (14)

We note that for V, W € I'(kermt.), 7v W coincides with the second fundamental form of the immersion of the
fiber submanifolds and 7 is symmetric on the vertical distribution i.e. TvW = 7wV, for V,W € I'(kerm.).
Furthermore, AxY = 1V[X, Y] which shows the complete integrability of the horizontal distribution
H, for X, Y € T((kerr.)*). Moreover, A alternates on the horizontal distribution, AxY = -AyX, for
X, Y € T'((kerm.)™b).

Lemma 2.1. Let m: N — B be a Riemannian submersion between Riemannian manifolds and X, Y be basic vector
fields of N'. Then we have

1. GX,Y)=Gg(X., Ys) o,

2. the horizontal part H[X,Y] of [X, Y] is a basic vector field and corresponds to [X.,Y.], ie., m.(H[X, Y]) =
[X., Y.].

3. [V, X] is vertical for any V € T'(kerm.).

4. H(VxY) is the basic vector field corresponding to V3 Y., where V and V* are the Levi-Civita connections of G
and Gg respectively.
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Let (N, G) and (8B, Gg) be Riemannian manifolds and 7 : N'— $ is a smooth map between them. Then
the differential 7z, of 77 can be viewed as a section of the bundle Hom((7 N), n~ (T B)) — N, where n~(T B)
is the pullback bundle which has fibers (n™(TB)), = T B,p € N. Hom((T'N), =/(7 B)) has a connection
V induced from Levi-Civita connection V¥ and the pullback connection. The second fundamental form of
7t is then given by

(Vr)(X,Y) = VimY — m(V{Y), (15)

for X,Y € I'(T N), where we denote the Levi-Civita connections of the metrics G and Gg conveniently by
V. Recall that 7 is called a totally geodesic map if (Vr.)(X,Y) = 0 for X, Y € I'(T N). It is known that the
second fundamental form is symmetric. We note that, the tensor fields A and 7, their covariant derivatives
play a fundamantal role in expressing the Riemannian curvature RN of N. In 1966, [16], O'Neill are given

RN(U, V, W,S) = R(U,V, W, S) + G(TuW, TvS) - G(TvW, TuS) (16)

where R is Riemannian curvature tensor of any fiber (7~!(x), G). Moreover if {U, V} is orthonormal basis of
the vertical 2-plane, then from (16) we have

KN(U, V) = KU, V) + [TuVI? - G(Tul, TvV) (17)

where KV and K is sectional curvature of N and ().

A plane section in the tangent space T,N at p € N is called a ¢-section if it is spanned by a vector X
orthogonal to £ and ¢X. The sectional curvature of ¢-section is called ¢-sectional curvature. A Kenmotsu
manifold with constant ¢-sectional curvature c is called as Kenmotsu space form and denoted by N(c). The
Riemannian curvature tensor of a Kenmotsu space form is given by

c—

160216, W) - 6(X, )G, W)+

%[n(X)n(Z)Q(Y, W) = n(Mn2D)G(X, W) + n(Y)G(X, Z)n(W) (18)

—1(X)GY, 2n(W) + G(X, p2)G(pY, W) = G(Y, pZ)G (X, W)
+2G(X, pY)G(9Z, W)]

forall X,Y,Z, W e (T N).

R(X,Y,Z,W) =

3. Generic £*-Riemannian submersions

We define generic &{*-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold
with examples. We begin with the following definition: Let 7 : (N, ¢, ¢&,1,G) — (8, Gg) be a Riemannian
submersion such that N is a Kenmotsu manifold , B is a Riemannian manifold and £ is normal to kerm..
Then, the complex subspace of the vertical subspace V), is defined by

D, = (kerm., N Q(kerm.,))
wherep € N.

Definition 3.1. Let N be a Kenmotsu manifold with almost contact structure ¢ and metric G and B be a Riemannian
manifold with Riemannian metric Gg. Also consider & is normal to kerm. then a Riemannian submersion m :
N, 0,&,1,G) = (B,Gg) is called a generic E+-Riemannian submersion if there is a distribution ® C kerm, such
that

(kerm,) = Dd D, P(D) =D

where, D* is the orthogonal complement of D in I'(kerm.) and is purely real distribution on the fibers of the submersion
.
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Example 3.2. Every semi-invariant &*--Riemannian submersion from a Kenmotsu manifold onto a Riemannian
manifold is a generic E+-Riemannian submersion such that D= is total real distribution.

Example 3.3. Every slant &*+-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold is a
generic E--Riemannian submersion such that © = {0} and D is a slant distribution.

Example 3.4. Every semi-slant &+-Riemannian submersion from a Kenmotsu manifold onto a Riemannian manifold
is a generic &L-Riemannian submersion such that Dt is a slant distribution.

Example 3.5. Let M7 be a 7-dimensional manifold given by the following:
M7 = {(x1, X2, X3, Y1, Y2, y3,2) € R7|z > 0).
We define the Kenmotsu structure (¢, &,1,G) on M7 given by the following:

d
== =d
3 5% n=dz,
e 0 0 0 0 0 O] [0 0 O 01 0 0 O
0 ¢ 0 0 0 0 0 0O 0 O 00100
0 0 ¢ 0 0 0 O 0 0 O O0O0O0T1TTO0O
G=10 0 0 & 0 0 0, ¢=|-1 0 0 0 0 0 0 O
0 0 0 0 ¢ 0 0 0 -1 0 000 OO
0 0 0 0 0 & 0 0 0 -1 00 0 00O
0 0 0 0 0 0 1] |0 0 0 0 0 0 00
A ¢-basis for this structure can be given by {e1 = ezaiyl,ez = 62%,53 = 623%,3,54 = @%,55 = EZ%,Sé =

L &1 =&
8X3’
Let B={(u1,us,u3) € R3luz = z # 0}. We choose the Riemannian metric Gg on B in the following form:
e 0 0
Gs=|0 €% 0|
0 0 1
Now, we define the map 1t : M7 — B such that

X2 +VYs X3+ 1>

V2 V2

(X1, X2, X3, Y1, Y2, Y3,2) = ( ,Z).
By direct calculations, we have

1 1
kermt, = span{X; = €1, Xp = — (&5 — €3), X3 = €4, X4 = —=(&6 — €2)}
g V2 V2

1
D =span{Xy = €1, X5 = €4}, Dt =span(X, = $(€5 —é&3),Xe = $(€6 - &)}
1 1
(kerm,)* = span{Y; = ﬁ(es +e3),Yr = $(€6 +&2), Y3 = &L
After some computations, one can see that
) d d
=P — —e F— = = —
n*(Yl) =e aul/ n*(YZ) e auzl n*(YB) T(*(é) (91/[3

and
G(Yi, Y)) = Gg(r.(Yi), .(Y}))

forall Y;,Y; € (kerrt.)*,i,j = 1,2,3. Thus 1 is semi-invariant &*-Riemannian submersion . Moreover it is easy to
verify that p(X1) = X3, p(Xz) = Yo, p(X3) = X1, p(X4) = Y. Thus, 7 is a generic E--Riemannian submersion .
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Let m: (N,¢,&1,G) — (B,Gs) be a generic £+-Riemannian submersion such that NV is Kenmotsu
manifold and 8 is a Riemannian manifold. Now, for any Z € I'(7N), we have the following condition

Z=VZ+HZ (19)
where VZ € T'(kern.) and HZ € T((kerr,)*). For U € T'(kerm.), we write
oU = pU + wlU (20)

where pU and wU are vertical and horizontal components of ¢pU, respectively.
Further, let u be the complementary distribution to w®* in (kermt,)*. Then, we have

D+ c DY, (kerm,)* = 0D @y,
where ¢(u) C . Hence, i contains &. Similarly, for any X € T'((kerm.)*"), we have
$X = BX +CX, 1)

where, BX and CX are vertical and horizontal components of ¢X, respectively.
Now with the help of above equations (10), (11), (20), (21) and covariant derivative of p and w which
are defined as follows:

(VY)W = HVY oW - wVy W,

(VY p)W = VypW = pVy I,

we obtain the following relations:

(VY)W = BTy W — TywW (22)
(VY)W = CTyW = TypW (23)
for any V, W e I'(kerm.)

4. Geometry of foliations

In this section, we examine the integrability as well as totally geodesicness of distributions involved
in the definition of a generic {*-Riemannian submersion. Along with it, we also obtain decomposition
theorems of this submersion.

Theorem 4.1. Let 7w : (N,$,&,1,G) — (B,Gsg) be a generic E+-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the distribution D is integrable if and only if

GTvOW = TwoV, wZ) = GVwoV = VoW, pZ)
for any V, W € T'(D).
Proof. For V,W € T'(D),Z € T(D*), X € I'((kerr.)*), since [V, W] € I'(kermt.), we have that G([V, W], X) = 0.
Thus, D is integrable if and only if G([V, W], Z) = 0.
Initially we note that, for any V, W € I'(®) and Z € I'(D*), from (2) and (5), we have
G(VvW, Z) = G(O(Vv W), $Z) + (Vv W)n(2)
=G(p(VvW), ¢Z)
=G(Vv(@W) = (Vvp)W, ¢Z)
=G(VvoW - G(pV, W)E + n(W)PpV, $Z)
= G(VvoW, ¢Z).
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Now, consider

G(V,W],2) = G(VvW - VwV,Z)
=G(VvoW, pZ) - G(VwoV, p2),

which further gives
G([V, W], 2) = G(TvdW + VydW,$2) = G(TwoV +VwV,$2)
= G(Ty oW = TwoV,w2) + GEvOW ~ VoV, pZ)
by using equations (10) and hence we have theorem. [J

Theorem 4.2. Let 7 : (N,¢,&,1,G) — (B,Gsg) be a generic &+-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds respectively. Then, the distribution D+ is integrable if and only if

VW = TzwW + V¢ Z + TwwZ € T(DY)
forany Z, W € T(D*) and K e (D).

Proof. Firstly, in the account of equations (2) and (5), for any Z,W € I'(D*) and K € I'(D), we have the
following

G(VzW,K) = G(¢(VzW), $K) + n(VzW)n(K)
= G(VZ(OW) = G(¢Z, W)E + n(W)Z, $K)
= G(Vz(oW), $K).

Now, with help of above condition and using the equations (2), (10), (11), we obtain

G(Z, W], K) = G(VzW - VwZ,K)
= G(TzpW + VoW + Tz0W + HV z0W, $K)
— G(TwpZ + VwpZ + TwwZ + HVwwZ, oK).

By virtue of (20), (21), we arrive

G(Z, W1, K) = G(p(~VzpW — TzwW + ViwpZ + TwwZ)
+B(=TzpW = HVz0W + TwpZ + HVwwZ), K)
+ G((=V2pW = Tz0W + ViwpZ + TwaZ)
+ C(=TzpW — HVz0W + TwpZ + HVwwZ), K).

After some calculations, we get

G(Z, W1, K) =G(p(~V2pW — TzoW + VypZ + TwwZ)
+ B(=T2pW — HVz0W + TwpZ + HVwwZ), K).

Since, B(-TzpW — HVzoW + TwpZ + HVwwZ),K) € T(D+), therefore we can conclude that
G(Z, W1, K) = G(p(-V2pW = TzwW + ViwpZ + TwwZ)

which demonstrates the statement. [
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Theorem 4.3. Let 7 : (N,$,&,1,G) — (B,Gsg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds respectively. Then, the distribution D defines a totally geodesic foliation on N
if and only if

p(vaL + TKCL)L) = —]B(TKpL + W(VKCUL))

and
Gs((Vr.)(K, ¢L), m.CX) = G(VkpL, BX)

orany K,L e T(D), Z € T(D*) and X € T'(kerm,)*.
Y

Proof. The distribution © defines a totally geodesic foliation on N if and only if
G(VkL,Z) =0and G(VkL, X) =0, forany K,L € D,Z € T'(D+) and X € I'(kerm.)*.
Now, for any K,L € D, Z € I'(D+) using (2),(5) and (20) we have

G(VkL,Z) = G(Vk¢L, pZ)
= G(Vk(pL + wL), $Z).

By virtue of (4), (10) and (11), above equation implies that
G(VkL, Z) = -G(¢(TkpL + ’V\KpL + TxwL + H(VkwL)), Z)
= —~G(BT«kpL + pVxpL + pTxwL + BH(VxwL), Z).
On the other hand, for X € I'((kerm.)*), using (11),(15) and (21), we arrive

G(VkL, X) = G(Vk¢L, 9 X)
= G(Vk¢L, BX + CX).

Since 7t is generic &+-Riemannian submersion, we have
Q(VKL/ X) = g(vK(PL/ BX) + QB(R*VK(PL/ T[*CX)
Then, using (15), we get

G(VkL, X) = G(Vk¢L, BX) + Ga(Vim.¢L - (Vi )(K, pL), 1.CX)
= G(Vk¢L, BX) + Gg((Vr.)(K, §L), 1.CX).

Thus, we get the required assertion. [

Theorem 4.4. Let 7w : (N,¢,&,1,G) — (B,Gg) be a generic &+-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the distribution D+ defines a totally geodesic foliation on

N if and only if
G3(.(V2CX), mwW) + G(VzBX, pW) + G(T7BX, wW) + G(T7CX, pW) = 0

and
(Vi )(Z, ¢W) € I'()

forany Z, W € T(D+),K € (D) and X € I'((kerm.)*).

Proof. Forany Z, W e T(D+),K € I'(D) and X € I'((kerm.)*), in the account of equations (2) and (20) we obtain
G(VZW,K) = G(V20W, $K) = G(V26W, pK + wK)

which turns into

G(VzW,K) = G(HVz¢W, wK)
= Gs(Vr.)(Z, W), m.wK)
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with help of (15), (19) and following the reason that 7 is generic £*-Riemannian submersion.
Hence we get one of the given assertions.
Now again, with the help of equations (2) and (20), we have

G(VzW, X) = G(VzoW, ¢X)
= —G(¢W, V20X)
= G(VzoX, pW).

Then, using (10),(11) and (21), we arrive
G(VzW, X) = G(Vz(BX + CX), W)
= G(VzBX + T7BX + T7CX + H(V;CX), pW)
which further transforms into

G(VzW, X) = G(VZBX, pW) + G(T7BX, wW) + G(T7CX, pW)
+ Gg(n.(VzCX), m.wW)

with the virtue of (15). Thus, we have obtained our assertion. [

Corollary 4.5. Let 7 : (N, $,&,1,G) — (B,Gg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the fibers of T are the locally product Riemannian manifold
of leaves of © and D+ if and only if

p(VkpL + TxwL) = —=B(TkpL + H(Vxwl)),

Gs((V)(K, pL), m.CX) = G(Vk¢pL, BX),
Gs(m.(V2CX), mwW) + G(VZBX, pW) + G(TZBX, wW) + G(TCX, pW) = 0

and
(V7)(Z, @W) € T(1)

forany Z, W € T(D4),K, L € I(D) and X € T((kerm.)*).

Theorem 4.6. Let 7 : (N,¢,&,1,G) — (B,Gg) be a generic E+-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then kerm. defines a totally geodesic foliation on N if and only if

VupV + TuwV € T(D)

and
H(VuwV) + TupV € T(D)

forany U,V e T'(kerm.).
Proof. For all U, V € I'(kerm.), using (1), (5), (6) and (20), we have

VuV = VoV
= =¢[Vu(pV + wV)]

which further gives

VuV = =p[VupV + TupV + TuwV + HVywV)]

= —[pVupV + wVupV + BT upV + CTupV + pTuwV
+ wTywV + BH(VywV) + CH(VywV)]
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with the help of equations (10), (11), (20) and (21).
As we know that, kermt, defines a totally geodesic foliation iff G(Vi;V, Z) = 0, for any Z € I'((kerm.)*).
Thus above equation concludes that, kermt. defines a totally geodesic foliation if and only if

CHVuwV) +TupV) + oNVupV + TuwV) =0,
which is equivalent to say that ViV € kerm, iff
VupV + TuwV € T(D)

and
HVuwV) +TupV € T (D)

for any U, V € I'(kermt.). Consequently, we have our claim.
0

Theorem 4.7. Let 7 : (N,¢,&,1,G) — (B,Gg) be a generic &+-Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then (kerm.)* defines a totally geodesic foliation on N if and

only if
AxBY + H(VxCY) € T'(u)

and
V(VxBY) + AxCY € T(DH)

forany X, Y € T'((kerm.)*).
Proof. For any X, Y € I'((kermt.)*), on the account of equation (1), (5), (6) and (20), we have

VxY = —¢pVx0Y.
Now, using equations (12), (13), (20) and (21) we obtain

VxY = —[BAxBY+CAxBY + pV(VxBY) + oV(VxBY)

+ pAxCY + wAxCY + BH(VxCY) + CH(VxCY)].

Thus, (kerm.)* defines a totally geodesic foliation iff

B(AxBY + H(VxCY)) + p(V(VxBY) + AxCY) =0
Hence, VxY € (kerm,)* if and only if

B(AxBY + H(VxCY)) =0

and
p(V(VxBY) + AxCY) =0

and consequently we get our claim.
|

Corollary 4.8. Let u: (N, ¢,&,1,G) — (B,Gsg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu and Riemannian manifolds, respectively. Then, the total space N is a generic product manifold of the leaves
of kerrt, and (kerm.)*, i.e. N = Niern. X Nigern)+ if and only if

AxBY + H(VxCY) € T(w),
V(VxBY) + AxCY € T(DY),
VupV + TuwV € T(D)

and
ﬂ(vaV) + TU‘DV € F(DJ')

forany U,V € T(kerm.), X, Y € T((kerm.)*).
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5. Totally umbilical and totally geodesicness of

6487

In this part, we explore further requirements for the totally geodesic and totally umbilical nature
of generic &+-Riemannian submersion. We refer a Riemannian submersion between two Riemannian
manifolds as totally geodesic iff Vi, = 0. On the other hand, consider = be Riemannian submersion. Then

7t is called Riemannian submersion with totally umbilical fiber if
TuV =6(U V)H

for all U, V € I'(kermt.) and H is mean curvature vector fields of fiber.

(24)

Theorem 5.1. Let 7 : (N,¢,&,1,G) — (B,Gg) be a generic &+-Riemannian submersion such that N and B are

Kenmotsu and Riemannian manifolds, respectively. Then Tt is totally geodesic if

VypW + TyoW € T(D),
TvpW + AuwV € T(wDH),
C(AxpV + HVE 0V) + o(VVY pV + AxwV) =0,

forany X, Y € T((kerm.)*), V € T(kerm.).
Proof. Since 7 is Riemannian submersion, we have
(Vr)(X,Y) = 0,VX, Y(kerm,)*
For any V, W € kern, using (2), (4), (10), (11), (15), (20) and (21) we get
(Vr)(V, W) = VEW — . (ViY W)
= -m.(VyW)

~Tt(=pVyoW)
T (P(Vv(pW + 0W)))

(D TvpW + VypW) + (TyaW + HVYwW)))
= QT vpW + VypW) + (T ywW + AuwV))

= [(BTvpW + CTvpW) + (p’V\VpW + aﬁVpW)
+ (pTvwW + wTyvwW) + (BAwV + CALwV)]

Thus, (Vr.)(V, W) = 0 iff
w(VypW + TywW) + C(TypW + AuwV) = 0.
On the other hand using (2), (4), (10), (20) and (21) for any V € kern, and X € (kerm.)* we get

(Vr)(X, V) = VRV — (VY V)
= —m.(V}V)
= —t.(-pVY PV)
= 1 (P(Vx(pV + wV)))
= (P(VVE pV + AxpV) + p(AxwV + HVY wV))
= ¢.(pVVY pV + wVVY pV + BAxpV + CAxpV
+ pAxwV + 0 AxwV + BHVY 0V + CHV{ 0V).

(25)
(26)
(27)

(28)

(29)
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Thus, (Vi.)(X, V) = 0 iff
(VY pV + AxwV) + C(HVY 0V + AxpV) = 0. (30)

Hence the result then follows from (28), (29) and (30).
O

Theorem 5.2. Let 7 : (N,¢,&,1,G) — (B,Gg) be a generic &+-Riemannian submersion with totally umbilical
fibers such that N and B are Kenmotsu and Riemannian manifolds, respectively, then G(H, X) = -G(&, X).

Proof. For any U, V € I'(D), using (5), (6), (20) and (21), we have
GOU, V)E = n(V)PU = VuV = pVy V.
Taking inner product in above equation with X € I'(u), we arrive

G(eU V)G(&, X)-n(V)G(oU, X)
= G(TupV +VudpV — $(TuV) - pVuV — wVyV, X)

Since T is totally umbilical, using (20), we conclude that

GU VinX) = (U, ¢V)GH, X) + G(U, V)G(H, pX) (31)

Interchanging U and V in equation (31) and subtracting these two equation, we get

GU V)In(X) + G(H, X)] = 0

Since, G(pU, V) # 0, hence 1(X) = G(&, X) = —G(H, X), which proves the required assertion.
O

6. Generic &*-Riemannian submersions with Kenmotsu space form

A plane section in the tangent space T,N at p € N is called a ¢-section if there exists a unit vector X in
T, N orthogonal to &+ such that {X, ¢X]} is an orthonormal basis of the plane section. The sectional curvature
of ¢-section is called ¢p-sectional curvature. A Kenmotsu manifold with constant ¢-sectional curvature c is
known as Kenmotsu space forms. The Riemannian curvature tensor of such a manifold is given by

“RI602X -G,V

CLEN@)Y - n00n@)X + (MG, 2)E - 1(XG(Y, 2)E (32)

+G(X, 92)PY = G(Y, pZ)pX + 2G(X, pY)PZ]

forall X,Y,Z e T(TN).
Now, we choose an orthonormal frame on N by

R(X,Y)Z =

{e1,€2, ... €1, €241, oer €2r425, €21 42541}

Then, we have © = spanie, ey, ..., e}, D+

dim®D+ = 2s.

= span{ez+1, ..., €2r42s) and & = ep40541, Where dim® = 2r and
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Theorem 6.1. Let 7 : (N,$,&,1,G) — (B,Gsg) be a generic E--Riemannian submersion such that N and B are

Kenmotsu space form and Riemannian manifold, respectively. Then, we have

c-3

4

+ ﬁ[g( VW _ (33)
1 GOV, WG(@U,S) - G(oU WG9V, 5) + 26U, pV)G(9W, 5)]

—G(TuW,7vS) + G(TvW, TuS)

RU,V,W,S) = “2[G(V, WG, S) — GU, WG(V, )]

and

c— 3(c+1)

R V) = S0 - (6 VP + 220U VIP = ITuVIP + 6Tt T3 ) (34)

forany U, V,W,S € T(D+).

Proof. For any U, V,W, S € T'(D*), through the use of (20) and (32) and using the fact thatif U e [(D+) =
n(U) = 0, we obtain the following:

RWLV,W9) = 2160V, WGU9) - GU WG(V, )]
+ GOV, WIGOUS) - GOU WGV, S) + 26U pVIGHW, S

Thus, using above equation in (16), we get our desired claim (33).
Now, if we take W = V and S = U in (33), we obtain the required result of (34), which completes the
proof. [J

Theorem 6.2. Let © : (N,¢,&,1,G) — (B,Gg) be a generic E-Riemannian submersion such that N and B
are Kenmotsu space form and Riemannian manifold, respectively. If D+ is totally geodesic, the distribution D+ is
Einstein.

Proof. For any V, W € T(D*), we recall
SLV,W)= ) Ree;, V, We)
i=1

where, S, is Ricci tensor. Let D™ is totally geodesic. Then, by using (33), we have
2s
= c—3
5.W) = YIS 160, WiG(er ) - 6L, WGV, )]
i=1

c+1
+ 1[GV, W)G(¢ei ) — Glei, WGPV, &) + 2G(ei, pVIG(OW, €i)].
After, applying some elementary calculations, we obtain

(c=3)2s=1)+3(c+1)
4

Hence, we have the required assertion. [J

S.(V,W) =

g(V,W).

Corollary 6.3. Let 7 : (N,$,&,n,G) — (B,Gg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If D+ is totally geodesic, then the scalar curvature i,
of D is given as follows:

7= (c —3)(2s —21) + 3(c + 1)5'
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Theorem 6.4. Let 7 : (N,$,&,1,G) — (B,Gsg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. Then, for any U, V, W, S € I'(D) we have

R(U Y, W,5) = G, WIGU,9) - GU WGV, 9] + =G VIGN,9)

2 (35)
= G(TuW,TvS) + G(TvW,TuS)
and
KW Vv) = -1 +{GWU V) = [TuVIP + GTul, TvV) (36)

forany U, V, W, S € T(D4).

Proof. Due the consequences of (16), (17), (32) and the fact that (D) = D we obtain the result (35). Now
taking W = V and S = U in (35) we get the other result (36) of this theorem. [

Theorem 6.5. Let 7 : (N,¢,&,1,G) — (B,Gg) be a generic &+-Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If D is totally geodesic, the distribution D is Einstein.

Proof. With the help of (35), for any V, W € I'(D), we obtain the following

2r
SV, W) =Y Riei, V, W,ei)

i=1

2r
= YIS G, WG (e ) - Gle WG, )] + ot Gler, VIGN, )]
i=1
ric=1)+1

= ——GvwW)

where, S is Ricci tensor for distribution D and D is totally geodesic. Therefore, we have the desired claim. [

Corollary 6.6. Let 7 : (N,$,&,n,G) — (B,Gg) be a generic E--Riemannian submersion such that N and B are
Kenmotsu space form and Riemannian manifold, respectively. If the distribution D is totally geodesic, then the scalar
curvature, ¥ of distribution D is given as follows:

—

x={r(c-1)+1}r.
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