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Higher-order viability result for Carathéodory non-Lipschitz
differential inclusion in Banach spaces

Nabil Charradi?®, Said Sajid**

*University Hassan 11 of Casablanca. Department of Mathematics, FSTM Mohammedia, 28820, Morocco.

Abstract. This paper deals with the construction of approximants and the existence of solutions to the
following higher-order viability problem :

k-1

x®(#) € F(t, x(t), xV(t), ..., xX* (1)) a.e.on [0, T[ and x(t) € D for all t € [0, T], where F : [0, T]x D x H Q;, — 2F
i=1

is a non-convex and non-compact multifunction and D is a closed subset of a separable Banach space E. It

extends our result established in the first-order case [6].

1. Introduction

Let E be a separable Banach space with a norm ||.||, D a nonempty closed subset of E, (5, ...Q_; (k > 2)

are nonempty open subsets of E, T a strictly positive real. Put I := [0, T] and denote W*!(I, E) the space
k-1

of functions possessing absolutely continuous derivatives up to order k. Let F : I X D X H Q; > 25 bea

i=1
k-1
multifunction. The aim of this work is to study, for any fixed (xo, y(l), .y y’é‘l) €D x H Q);, the existence of

i=1
solutions and the construction of approximants to the following problem :

x®(t) € F(t, x(t), xV(t), ..., x*D(t)) a.e. on[0,T[;

(x(0), xV(0), ..., x*D(0)) = (x0, Yo, s Y5 )

x(t)eD, Vtel

(1)

By a solution to (1), we mean x(.) € WK, E) satisfying (1). Here F is a separately measurable on I and
k-1

separately upper semi-continuous multifunction on D X H Q); with non-convex and non-compact values
i=1
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in E, uniformly continuous with respect to the last argument.
This result is an extension of our paper [6], where it has been proved the existence of solutions to the
following first-order viability problem :

x(t) € F(t,x(t)) a.e.on[0,T[;
x(0) = xo; (2)
x(t)eD, Ytel

assuming that the right-hand side (¢, x) — F(t, x) is measurable on t and uniformly continuous on x in the
following sense :

Ve>0,30(e) >0, V(t,x,y) e IXD XD, |lx—yll <6() = du(F(t,x), F(t,y)) < &,

where dy stands for the Hausdorff distance. Solution to (2) is obtained under the following tangency
condition :

Forall t € [0, T[ and x € D, for all measurable selection o(.) of the multifunction t — F(t, x)

1 t+h
lig(i)pf EdD(x + I a(s)ds) =0.

As mentioned in [6], this result extends those of Larrieu [8] and Duc Ha [7] where these authors have
studied problem (2) with Carathéodory Lipschitz single-valued map for the first author, while the second
author gives a multivalued version of Larrieu’s result.

Similar problem of (1) in the case of non-covex Carathéodory Lipschitz right-hand side where proved by
Aitalioubrahim and Sajid [1].

In this paper, we prove the existence of solutions to problem (1) where the right- hand side is a Carathéodory-
upper semi-continuous multifunction, uniformly continuous with respect to the last variable whose values
are not necessarily convex not compact in separable Banach spaces and satisfying the following condition :

k-1

Forall (t,x,y", ..., Y1) € [0, T[XDXH Q;, for all measurable selection o(.) of the multifunctiont — F(t,x,y', ..., y* 1)
i=1

1

| i k=1 t+h
liminf k—];d(x +Y },i'y’ + hk—| f o(s)ds, D) - 0. 3)
L7 r,

h—0* 1
- h i=1

As far as we know, higher-order viability problem was first investigated by Marco and Murillo [10]. It has
been proved a necessary and sufficient condition for the problem (1), to have a solution. More precisely,
they assume the following tangency condition :

k=1
Y (x,x1, ..., X—1) € D X H Q;, F(x,x1, .0, Xk—1) N A’Z-,(x, X1, ey Xk1) £ @
i=1
where A’f)(xo, X1, ..., Xk-1) is the tangent set of k-th-order defined by

; Ko R
Ap(X0, X1, ooy Xk—1) = {y eE: h,fi‘(i)?f ﬁd(z Ex,- + Ey,D) = 0}.
i=0
Though under very strong assumptions, namely the multifunction F does not depend on the time with
convex and compact values in finite dimensional space and the graph of the multifunction (xo, x1, ..., X¢-1) —
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AkD (o, x1, ..., Xx-1) is locally compact.
In this paper, when F does not depend on the time (F(t, x) = F(x)), the tangency condition (3) becomes :

k=1
Forall (x,y1,..., yxk-1) € D X H Qi, F(x, Y1, s Yi—1) C A’B(x, Y1, s Yi-1)-

i=1
Clearly this tangency condition is rather strong than the one of Marco and Murillo. However, it is
counterbalanced in this paper by weaker hypotheses, in particular the right-hand side is non-convex
and non-compact not only in Euclidien spaces but in Banach spaces and the graph of the multifunction
(%, Y1, oo Y1) — A’B (x, Y1, ..., Yk-1) is not necessarily locally compact.

2. Notations, definitions and main result

In all the paper, E is a separable Banach space with the norm ||.||. We denote by WKL(I,E) the space
of functions possessing absolutely continuous derivatives up to order k — 1. For x € E and r > 0, let
B(x,r) :={y € E : ||y — x|| < r} be the open ball centered at x with radius r and B(x, r) be its closure and put
B = B(0,1). For x € E and for nonempty bounded subsets A, B of E, we denote by da(x) or d(x, A) the real
inf{|lx — yll : y € A}; e(A, B) := supl{dp(x); x € A} and dp(A, B) = max(e(A, B), e(B, A)). Let L(I) the o-algebra of
Lebesgue measurable subsets of I, and B(E) is the o-algebra of Borel subsets of E for the strong topology. A
multifunction is said to be measurable if its graph (is measurable) belongs to £(I) ® B(E). For more details
on measurability theory, we refer the reader to the book by Castaing-Valadier [5].

k-1

Let F : IXxD X H Q; — 2F be a multifunction with nonempty closed values in E. On F we make the
i=1

following assumptions :

k-1

(A1) For each (x, 11, ..., yx—1) € D X H Q,, t— Ft,x,y1,.., Yk-1) is measurable.
i=1

(Ap) Forany t € I, (x, y1, ..., Yk-1) = F(t,x, y1, ..., Yx—1) is upper semi-continuous :

k-1 k-1
Ve>0,YEelLY (X, y, ... ) € DX H Q,da>0,V (¥, 21, ... ze1) € DX H Q,
i=1 i=1

Jmax {lle =l lly; - zill} <a = F(t,x', 21, ..., 2-1) © FE %, Y1, 0 Y1) + BO, €)

k-1
(A3)Ve>0,35(e)>0, Vtel, Vx,x €D, and (1, .., Yie1), (21, o Z4e1) € H Q;
i=1

ot — zeall < 6(e) = dH(F(t, % Y1 s Yot), E(E X 21, ...,zk_l)) <

k-1
(A4) There exists M > 0, for all (t,x, y1, ..., Y1) € I X D X H Q;
i=1

sup |zl <M.
2€F(t,%, Y1, Yk-1)
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k=1
(As) For all t € [0, T[ and (x, yl, .y yk’l) € Dx H Q;, for all measurable selection ¢(.) of the multifunction
i=1
t — F(x,y', ..., y*1)
k=1 B, pk1 th
hmmf— (x ; Z A o(s)ds,D) - 0.
k=1
Let (xo, y§, ..., Yo 1) € D X H Q;. Under hypotheses (A1)-(As) we shall prove the following main result :
i=1

Theorem 2.1. There exists x(.) € W*'(I, E), such that
x®(t) € F(t, x(t), xV(t), ..., x* (1)) a.e.on [0, T[;

(X(O), X(l)(O), i x(k_l)(o)) = (X(), y(l)/ vy ylg)_l)/‘
x(t)e D, Vtel.

3. Preliminary results
We will need the following lemmas which deal with measurability results.

Lemma 3.1. [3] Let Q be a nonempty set in E. Let G : [a, b] X Q — 2F be a multifunction with nonempty closed
values satisfying :

- For every x € 3, G(.,x) is measurable on [a, b].

- For every t € [a,b], G(t,.) is (Hausdorff) continuous on Q).

Then for any measurable function x(.) : [a, b] — Q the multifunction G(., x(.)) is measurable on [a, D].

For the proof, see Lemma 8.2.3

Lemma 3.2. [5] Let R : [ — 2F be a measurable multifunction with nonempty closed values in E. Then R admits a
measurable selection : there exists a measurable function v : I — E that is r(t) € R(t) for all t € L.

Lemma 3.3. [6] Let G : [ — 2F be a measurable multifunction with nonempty closed values and z(.) : I —> E a
measurable function. Then for any positive measurable function r(.) : I — R, there exists a measurable selection g(.)
of G such that forall t € I,

llg(£) — z(Dl < d(z(t), G(B)) + ().

4. Proof of the main result

The approach is based on two steps, it consists of the construction of a sequence of approximate solutions
in the first one; while in the second step, we prove the convergence of such approximate solutions.

Step 1 Construction of approximants.

Foranyi=1,.., k-1, €;is nonempty open subsets of E, then there exists 1; > 0 such that E(yf), ni) € Q.
k-1 k-1

Putn = min i then HE(%, n) C H Q.

1<i<k—

i= =
Let us define the sequence (c;),. as following :

co = max ||y’
o= max iyl

¢ =k +M+1, Vp=1. (4)
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T
For each integer n > max(T; 1), put 7, := - and consider the following partition of the interval I with the

points: t!=it,, i=0,1,..,n. Remark that[ = U (e, ¢, ]

Since t — F(t,xo, Y}, -, Y ') is measurable with closed values, then by Lemma 3.2, there exists a measurable
function fy(.) such that for all t € I, fo(t) € F(t, xo, yé, ey y’é‘l). Note that by (A4), fo(.) € LY(L E).

For any n € IN*, put fj(.) = fo(.). We shall prove the following theorem :

k-1
Theorem 4.1. For all n € IN', there exist po(n) € N, (], y; - ,yl e Dx H Qj, ul(.), f{(.) € L'(I,E) such
i=1

that :
v Tio() T
() 3= X0+ ) —hmyf + —Tup(0) € D,
i=1
o @(") i I:Pn)
@) yi, = Z( oY . S0, i€l k1),

i) (L, V) € HB(yO, m,

) 1
(o) wy(t) € Flt, %0, - 57 + B, )~ 3O < o

S o a.e.on [t5, ][,

1
@ fi(t) € F&, 2, 1 0¥, IR0 = 0N < o foralltel

Proof. By (As) forallt € [0, TI,

t+T,

lim inf —dD(xO + Z 2y "| fo"(s)ds) ~0
' t

n—+oo T

Then for all t € [0, T[, there exists an integer ¢,(n) > n such that

k=1 1 k-1

k' Tu P ) Tq) (n) H—T‘Pt( n) 1
g Tt
! dD(xo +Y Sy (s )ds) e
To,n) = T
t =

Hence, by the characterization of the lower bound, there exists £1(t) € D such that

k=1 7t k-1 t+T
k! T(pt (n) i T(p, (n) @y (n) n 1 1
7 @ =x0= ) =Y m 5y fo@sll < S+ s
@, (n) i=1

then

&(t) = x0 — L 1 Py 1 e
[ v f ")l <
t

k
RAC th ()
k!

on+l’
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On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

t+T
1 po . 1
“T t fo®ds = ff®ll < i1 0:€-on I,

@y (n)

therefore

£1(8) - 0 - XA 2y 1
= P < T a.e.onl.

Ty
3
Set
&) -xo— L} o
w() = 1(t) — xo : Y
9 )
Kl
then for all t € [0, T[ &) =xo+ Y5 q’,‘“ i+ W”’ ul(t) €D,
and
n n 1
llug () — fo DI < i feon I
Then 1
ug(t) EF(t,xO,y(l),...,yO )+ 2—
Particularly
k=1 k
Z. Lyi+ uo(t) €D, Vtelt,t[;
i=1
and

1=
ug(t) € F(t, xo, yé,..., Y 1)+ z—nB a.e. on [y, t[.

Let 6, = 6(2,1%) be the real given by (A3) and for every n € IN*, choose an integer ¢, () that is

T(M+1) 4'T¢

(Po(f’l) > max( 671 ’ T)
and set
k=1 k
x’i’ = él(tg) =X+ Z WU(VI) i uo(o) eD.
Foralln e N*and fori =1, ...,k — 1, denote
k-1 ) ki
Py (1) j fpo(n) .
Z G-t G- ©
thus
T To
Iy, —vell < —— |y}l + ———=lug O)Il,
VoWl < 3 Gl G

j=i+1

6554

)
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For all j € IN*, since
j
T‘PO(H)

0< i

< Tg,(m and <1,

j
T%(n)

we deduce, according relations (Ay), (5) and (6) that

i i < _ i
I, = vl < (k= 1) max Iyl + Mo+ 1o 00
< ((k “ 1o+ M+ 1)1%(,1)
S Ty
<
T
then
k—l__ 4
WA, oD € [ [ B
i=1
By relation (7), fori =k -1
T
(e [l (O)I
yl,n yO (Po(n) 0( )
T
< _____(A4'+ 1%
®o(n)
< Oy,
then by (A3)
. _ _ 1
Aua(F (X5, o Vi) F R0, Yo ) < 5y VEEL

thus

A(fy ), Ft, X,y Vi) < Viel

on+2’

In view of Lemma 3.3, there exists a function f'(.) € L'(I, E) such that
fi(h) € F(t,x}, yy o yy,)) and for all £ € 1

_ 1
I = fe®I < d(fg’(f),F(f,x;l,yin,'-.,y’{,nl))+2n+2
1
on+l’

O

By induction, for p € {2, ..., n}, assume that have been constructed

¢,.(n) EN", x| €D, y;_lrn eQie(l, .. k=1}uy ,(): [ty ,, tZ—1[_’ E,and f;’_l(t) € F(t, x;lfl,y;_lln, . y’;:L

satisfying the following relations :

. . 41 Tejy
() Forall j€{0,..,p -2}, (p],(n) > T,
i k
Twp,z(n) Tsvp,z(n)

k-1
) 3 o= Gyt ) =, + ), it — () €D,
i=1

6555

1n)
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k-1 j—i Tk i

, 9pa 9
_ Y "
(i) yllﬂ—l,n - Z —i)! Ypont (k i)! Up- Z(t )

(iv) Forallje{l,..,p—-1}, IIyé./nll <cj,

(@) Foralli € [1,... k= 1), and for j & (1,..,p =11, Iy}, — vi, /I < 7

©0) (!, ¥l ) € HB(yO,

@id) |luy_,(t) = fr, (Bl < ae.on[t, oty 4,

1

(iix) u () € F(t, xp 2,yp e ,yp 2n) 2— a.e.on [t;7 z,tp 1L

(ix) ||f” () = £l < 2 — foralltel.

Let us define Xy, (]/;w),'=

Indeed, for all ¢ € [0, T, by applying (As) for the measurable selection f' ,(f) € F(t, x;

have

k 1 E+Ty,

lim inf —dD( o+ Z 7 yp it p”_l(s)ds) =

n—+00 T

Then for all £ € [0, T[, there exists (pf’_l(n) € IN such that (pf’_l(n) > ¢! _z(n),

kfl

1 t+T
wt Lo i qu () F o n 1
+ _ ! s)ds| <
T ( -1 Z P 1” k! ; P—l( ) = on+2’

)

hence, by the characterization of the lower bound, there exists &,(t) € D such that

1 Ti Tk_l

) i ) t+T¢f'l(u) ” d 1
|§p(i’) x p i T fp—l(s) S” < W + —
(n) i=1 ’ t
then
n k— 1 ‘P (") i

ép(t) _xp Zz 1 ti! ]/p 1n 1 t+T<pf'1(u) n 1
I . - fa@dl < o

fpf_l () 0] t

k!

On the other hand, in view of Lebesgue’s Differentiation Theorem, we can suppose

1 t+T

)
I o g s - L0 <

T ae.onl,

-1
o

1, k=1, f;(.) , u’;_l(.) and ¢, (n) thatis @, , (1) > ¢, ,(n).

1’yp 1n”" ’yp 1n

6556

), we
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therefore

T

=1 &'
Ep(t)—x;l Zl 1 %1! v

1, 1
-l < o= aeonl,

k - n
Tw’,” o) 2
I
Set
k=1 o 'w
ép(t) 1 Zl 1 q], ]/l 1n
u" (t) P p—L
p-1 Tk 4
o)
&
Tk
then for all £ € [0, T[ &) =x, + Y] il v 4L ) eD
’ p - il p 1,n k! p-1 4
and

1
||MZ_1(f) —f;_l(t)” < > ae.onl,

from which, we deduce that
_ 1=
pl(t)EF(txp 1’]/;1 1n’* 'y;c;% 2_

Then we have ,
i Tk

o ¢*”1(>
X, Z Yy + ity €D, Vielt 6],
i=1

and .

p 1(t) € F(t xp l’yp 1n ’yz_‘ll,n) 2_B a.e.on [tp 17 p[
Choose

Tcp
®,.,(n) > maX(gO,n '(n); )
Put
i k
1<"> i Ppq ()

X = &t ) =X 1+Z yeD,

foralln e N*and fori=1,...,k—1, denote

Yot —h A

) = TZ) i] G T]; 11()
- b _p®
y;,n Z (] )|yp 171 (k )' ;71 1(t ) (8)
Fixi € {1,..,, k — 1}, by the same previous reasoning
‘ ' k=1 T (n) . TI;_i(
1Y = Yoyl < Z vl + G
j= 1+1
< ((k - 1)Cp_1 + M+ 1)7%_1(,1)
S GTe, o)
< 1

E.
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So that
1) = Youll - < Z [
j=0
p
Ui
< il
h Z 47
j=1
<
2
and
Wpall < W = Vhma all + 1y
< ((k — ey + M+ 1) +Cp1
< ka—l +M+1= Cp.

n 1), one has

In view of relation (8), as vy, = yp . T, ()

T
k-1 _
1Yy 3/,, Tl = m||uz_1(t';_1)|l
< M+1
@,;_1(”)( )
< Oy,
hence, by (A3)

_ _ 1
Ai(E (33, Yy Yy EO 1 Yy s Y2 S s T HEL

thus

1
ACF A (0, F (X Yoo Yp)) < S Vel

By Lemma 3.3, there exists a measurable function f)(.) € LY(I, E) such that
f(8) € F(t, X3, Yy s - ,yp ~1)yand forall t € I

UFIE) = £ O < dOF 0, FE X e YD) + W

Then

n n 1
1fp &) = fioa O < -

Put g, = ¢,(n). Remark that the previous relations are satisfied for g,,.

Now, let us define the step functions.

Foralln > 1, forallt € [0, T[, set O0,(t) = t” _,, whenever t € [tZ—l’ tZ[, and consider the functions

fn(t)—ZX[,n ®OfL1 () and u,(t) = me (O (0,

when )(,( ) denotes the characteristic funct1on for any interval J.

6558
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On each interval [t;’_l, tg], define by induction

t
un®) = f n(E)ds.

p-1

and foralli € {2,..., k}
¢
gin(t) = f Gi-1,1(8)ds,
o

and consider )
k-1 (t _ tn 1)1
1)
x,(t) = xzfl + E — y;H + Jiu(t).

i=1

It is clear that x,(.), u,(.) and f,(.) satisfy the following relations :

() € WA (LE), xu(04(t) =x;_, €D, Ve[0T

08 = un(t) € F(t, 1000, (1), 2004, (1), - xff‘”(@qn(t))) ; 217§ ae onl, (10)
and
[, (t) = fu@®Il < 21—n a.e.onl. (11)

Step 2 The convergence of (x,(.))
By construction for all t € I
Ful®) € F(t, %464, (5), (64, (1)), ., x5V (6,(1)))-
On the other hand lett € Iand p = 1, 2, ..., n, by relation (9)
n n 1
10 = £ O1 < 57,

then, by induction

n n p
THORSHOES s

from which we deduce that

£, = ol < 5,
then

s () = fu®I < N fusr () = foIl + 11 fu(®) = fo®II
3n+1)
on+2

A

Lett eland (m,n) € N* X IN* with m >n

Wfm(®) = O < Nf() = fra O+ 1 frn1 () = fna O]l furr (B) = fu D
< é(ﬂ_i_m—l_’_ +n+1)
- 2\om m=1 n+l :
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+00
n . , , o . . .
Put v, = >0 by a classical argument (the d’Alembert’s criterion), the numerical series Z v; converges,
i=0
" 1
hence (S,,) = (Z v;) is a Cauchy sequence.

i=0
Since

1) = (O < 3 (S = S0

then (f,(.))n>1 is a Cauchy sequence in L(I, E), denotes f(.) its limit.
Thus, by (11), the sequence (u,).en converges to f(.) in L(I, E), which implies, in view of (10), that the

subsequence (x,(f)(.)),, converges to f(.) in L'(I, E).

Furthermore, by (10), we get
@l <M+ 1,

again, by dominated convergence theorem, (xilkfl)(.))n converges strongly in LY(I, E).
as
D@l < Myl + M+ 1T,

By induction, for alli € {1,2,3, ...,k — 1}, we prove that for all t € I,

i
O < Y llys PIT + (i + DT
p=1

Since

t
xf/lk—l—l)(t) — x(k—i—l)(o) + f x‘(ﬂk—l)(s)ds,
0

then by the dominated convergence theorem, we deduce that for all i € {1,2,3,...,k - 1}, the sequence
(xff)(.)),, converges strongly in L!(I, E). We prove easily that for eachi = 1,...,.k — 1; lim xs)(.) = x(.) where
x(.) = lim x,,(.) in L(I, E).

Recall that T
10,,(t) —t < —n
Since
x50, ) = XD < V(04 1) — x5 V@l + IV ) - D)
< fe t (M + 1)ds + [V (1) — 25D,

i ()
then xﬁ,k_l)(G% (.)) converges strongly to x*D(.) in L!(I, E).
By the same reasoning, fori € {1, ...,k — 2}, we have

Ix2(0,,(0) = xO@BI < 11xP(0,,1) = xL B+ kPt — xO @)

f
f D (s)lds + [1(8) - <O,
64, (1)

IN

so that the subsequences (x,(6,,(.)), and (xﬁ?(@,,”(.))n fori € {1,...,. k — 1}, converge strongly to x(.) and x)(.)
respectively in L(I, E).
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We are able to finish the proof of the main result. For all t € I

t
D) = 1im xEV() = lim (y5 + f Un(s)ds)
n—o0 n—oo 0

Since (14, )en converges to f(.) in L'(I, E), then

t
X0 =yt + f f(s)ds,
0

hence,

£(#) = xO(t) ae. on I

On the other hand, it is easy to check that x(0) = xp and xg)(O) = yg, Yie{l,.. k—1}

In addition, for every t € [0, T[ we have x,(0,,(t)) € D. Since D is closed, then x(t) € D. Moreover, as x(.) is
(M + 1)-Lipschitz then x(t) € D, ¥V t € [0, T].

Since F(t, ., ..., .) is upper semi-continuous at (x(t), xD(), ..., x(k‘l)(t)), xﬁ,k)(Qq” (-)) converges strongly in L!(I, E)

to x®(.) and F is closed values in E, then, x®O(t) = f(t) € F(t, x(t), x(l)(t),...,x(k’l)(t)) for a.e. t € I. This
completes the proof of Theorem 2.1.
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