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Abstract. A connected graph G is said to be k-connected if it has more than k vertices and remains
connected whenever fewer than k vertices are deleted. In this paper, we present a sufficient condition in
terms of the number of r-cliques to guarantee the a graph with minimum degree at least δ to be k-connected,
which extends the result of Feng et al. [Linear Algebra Appl. 524 (2017) 182–198]. For any integer k ≥ 2, a
graph G is called k-leaf-connected, if |V(G)| ≥ k + 1 and given any subset S ⊆ V(G) with |S| = k, G always
has a spanning tree T such that S is precisely the set of leaves of T. The forgotten index of a graph is the
sum of degree cube of all the vertices in graph. Motivated by the degree sequence condition of Gurgel and
Wakabayashi [J. Combin. Theory Ser. B 41 (1986) 1–16], we provide a sufficient condition for a connected
graph to be k-leaf-connected in terms of the forgotten index of G, which improve and extend the result of
Su et al. [Australas. J. Combin. 77 (2020) 269–284].

1. Introduction

Throughout this paper we only consider simple, undirected and connected graphs. Let G be a graph
with vertex set V(G) and edge set E(G) such that |V(G)| = n and |E(G)| = e(G). The degree of vertex v in G,
denoted by dG(v), is the number of edges of G containing v. The number of cliques of size r in G is denoted
by Nr(G). Let Kn and R(n, t) denote a complete graph of order n and a t-regular graph with n vertices,
respectively. Let G1 and G2 be two vertex-disjoint graphs. We use G1 + G2 to denote the disjoint union of
G1 and G2. The join G1 ∨G2 is the graph obtained from G1 +G2 by adding all possible edges between them.

Let G be a graph of order n, P a property defined on G, and l a positive integer. A property P is said to
be l-stable, if whenever G+uv has the property P and dG(u)+ dG(v) ≥ l, then G itself has the property P. The
l-closure Cl(G) [3, 18] of a graph G is the graph obtained from G by successively joining pairs of nonadjacent
vertices whose degree sum is at least l until no such pair exists. Then we have

dCl(G)(u) + dCl(G)(v) ≤ l − 1
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for every pair of nonadjacent vertices u and v of Cl(G).
Füredi et al. [9] considered the number of cliques in k-hamiltonian graphs. Moreover, they listed some

classes of graphs whose cliques number condition can be studied, such as G contains Ck (l = 2n − k), G
contains a path Pk (l = n − 1), G contains a matching kK2 (l = 2k − 1), G contains a k-factor (l = n + 2k − 4), G
is k-connected (l = n + k − 2), G is k-wise hamiltonian (i.e., every n − k vertices span a Cn−k) (l = n + k − 2).
The corresponding question for the property containing long cycles (or Hamiltonian cycle) is well-studied
[8, 14, 16]. Subsequently, Duan et al. [4] studied the G contains a matching kK2 according to the number of
cliques of size r in G.

A connected graph G is said to be k-connected if it has more than k vertices and remains connected
whenever fewer than k vertices are deleted. Feng et al. [7] proved sufficient conditions based upon the
size and spectral radius for a graph to be k-connected. Zhou et al. [23] further proposed some sufficient
conditions for a graph to be k-connected in terms of signless Laplacian spectral radius, distance spectral
radius and distance signless Laplacian spectral radius of G. Bondy and Chvátal [3] presented a closure
theorem to guarantee that a graph to be k-connected.

Theorem 1.1 (Bondy and Chvátal [3]). Let G be an graph of order n, and let 1 ≤ k ≤ n − 2 be an integer. Then G
is k-connected if and only if Cn+k−2(G) is k-connected.

Inspired by the works of [4, 9], and using Pósa property, we prove a sufficient condition in terms of the
number of r-cliques to guarantee a graph with minimum degree at least δ to be k-connected.

Let n, r, k and q be integers. Define

θ(n, r, k, q) =
(
n − q + k − 2

r

)
+ (q − k + 2)

(
q

r − 1

)
.

Theorem 1.2. Let n, r, k and δ be integers with r ≥ 2 and 1 ≤ k ≤ n − 2. Suppose that G is a graph of order n with
minimum degree at least δ and k ≤ δ ≤

⌊
n+k−3

2

⌋
. If

Nr(G) > max
{
θ(n, r, k, δ + 1), θ

(
n, r, k,

⌊
n + k − 3

2

⌋)}
,

then G is k-connected unless Cn+k−2(G) � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2).

By maple, θ(n, 2, k, δ + 1) ≥ θ
(
n, 2, k,

⌊
n+k−3

2

⌋)
for n ≥ 7δ + 10k − 1. The following corollary results from

putting r = 2 in Theorem 1.2.

Corollary 1.1. Let G be a graph of order n ≥ 7δ + 10k − 1 with minimum degree at least δ and k ≤ δ ≤
⌊

n+k−3
2

⌋
. If

e(G) > θ(n, 2, k, δ + 1),

then G is k-connected unless Cn+k−2(G) � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2).

Feng et al. [7] presented a sufficient condition in terms of e(G) for the graph to be k-connected.

Theorem 1.3 (Feng et al. [7]). Let G be a graph of order n ≥ k + 1. If e(G) ≥
(n−1

2
)
+ k − 1, then G is k-connected

unless G � Kk−1 ∨ (Kn−k + K1).

It is easy to verify that
(n−1

2
)
+ k − 1 ≥ θ(n, 2, k, δ + 1) for n ≥ 1

2 (3δ − k + 9). Hence our result improves
Theorem 1.3 for n ≥ 7δ + 10k − 1.

Theorem 1.4. Let G be a graph of order n ≥ 7δ + 10k − 1 with minimum degree at least δ and k ≤ δ ≤
⌊

n+k−3
2

⌋
. If

ρ(G) >
δ − 1

2
+

√
n2 − (3δ − 2k + 7)n +

13
4
δ2 −

(
4k −

31
2

)
δ + k2 − 9k +

73
4
,

then G is k-connected unless Cn+k−2(G) � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2).
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For any integer k ≥ 2, a graph G is called k-leaf-connected if |V(G)| ≥ k + 1 and given any subset
S ⊆ V(G) with |S| = k, G always has a spanning tree T such that S is precisely the set of leaves of T. Note
that a graph is 2-leaf-connected if and only if it is Hamilton-connected. Therefore, as a generalization of
Hamilton-connectedness, the k-leaf-connectedness of a graph G is anNP-hard problem.

Up to now, there have been lots of research works to seek the sufficient conditions for a graph to be
k-leaf-connected. Gurgel and Wakabayashi [11] presented that if G is a k-leaf-connected graph, then G is
(k + 1)-connected. Hence δ ≥ k + 1 is a trivial necessary condition for a graph to be k-leaf-connected. In
the same paper, they also proposed sufficient conditions based on the minimum degree, the degree sum
and the size to assure a graph to be k-leaf-connected, respectively. Egawa et al. [5] improved the degree
sum condition of Gurgel and Wakabayashi [11]. Maezawa et al. [13] provided a Fan-type condition for
a graph to be k-leaf-connected. Ao et al. [1] presented a new sufficient condition based on the size for a
graph to be k-leaf-connected. Subsequently, Wu et al. [21] proved a sufficient condition for a graph to be
k-leaf-connected in terms of the number of r-cliques, which generalized the result of Ao et al. [1]. For a
graph to be k-leaf-connected, one can refer to [2, 15, 20].

The forgotten index [6, 10] of a graph G is defined as

F(G) =
∑

u∈V(G)

d(u)3 =
∑

uv∈E(G)

(
d(u)2 + d(v)2

)
.

Su, Li and Shi [19] presented a sufficient condition for a graph to be Hamilton-connected in terms of the
forgotten index of G.

Theorem 1.5 (Su, Li and Shi [19]). Let G be a connected graph of order n ≥ 3. If

F(G) > n4
− 7n3 + 24n2

− 38n + 30,

then G is Hamilton-connected unless G � K3 ∨ 3K1.

Using the forgotten index F(G), we provide a sufficient condition for a graph to be k-leaf-connected
graphs, which extends and improves the above result.

Theorem 1.6. Let G be a connected graph of order n and minimum degree δ ≥ k + 1, where 2 ≤ k ≤ n − 3. If

F(G) ≥ n4
− 11n3 + (6k + 51)n2

− (24k + 105)n + 2k3 + 6k2 + 32k + 82,

then G is k-leaf-connected unless G ∈ {K3 ∨ (Kn−5 + 2K1),K6 ∨ 6K1,K5 ∨ 5K1,K4 ∨ (K1,4 +K1),K4 ∨ (K2 + 3K1),K4 ∨

4K1,K3 ∨ (K1,3 + K1)}.

2. Proof of Theorems 1.2 and 1.4

Let G be a graph on n vertices. If there are at least s vertices in V(G) with degree at most q, then we say
G has (s, q)-Pósa property.

Lemma 2.1 (Xue, Liu and Kang [22]). Let property P is l-stable and the complete graph Kn has the property P.
Suppose that G is a graph of order n with minimum degree at least δ. If G does not have property P, then there exists
an integer q with δ ≤ q ≤

⌊
l−1
2

⌋
such that G has (n − l + q, q)-Pósa property.

Fact 2.1 (Füredi, Kostochka and Luo[9]). If G has (s, q)-Pósa property and n ≥ s + q, then

Nr(G) ≤
(
n − s

r

)
+ s

(
q

r − 1

)
.

Lemma 2.2 (Duan et al. [4]). Suppose that G has n vertices and is stable under taking l-closure. Let q be the
maximum integer such that G has (n − l + q, q)-Pósa property and q ≤

⌊
l−1
2

⌋
. If U is the set of vertices in V(G) with

degree greater than q, then G[U] is a complete graph.
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Proof of Theorem 1.2. Suppose that G is not k-connected. Let H = Cn+k−2(G). By Theorem 1.1, H is not
k-connected. By Lemma 2.1, there exists an integer q with δ ≤ q ≤

⌊
n+k−3

2

⌋
such that H has (q − k + 2, q)-Pósa

property. Let q be the maximum one with the above Pósa property. First, we will prove the following claim.

Claim 2.1. q = δ.

Proof. Assume that δ + 1 ≤ q ≤
⌊

n+k−3
2

⌋
. By Fact 2.1, we have

Nr(H) ≤
(
n − q + k − 2

r

)
+ (q − k + 2)

(
q

r − 1

)
= θ(n, r, k, q).

Note that G ⊆ H. It follows that Nr(G) ≤ max
{
θ(n, r, k, δ + 1), θ

(
n, r, k,

⌊
n+k−3

2

⌋)}
, which contradicts the

assumption.

By Claim 2.1, Pósa property of H and the maximality of q, there are exactly δ − k + 2 vertices of degree
δ in V(H). Let X be the set of vertices with degree δ in H and C = V(H) \ X. Then |X| = δ − k + 2 and
|C| = n − δ + k − 2. By Lemma 2.2, C forms a clique in H.

Let Y = {v : dH(v) ≥ n − δ + k − 2}. Since δ ≤
⌊

n+k−3
2

⌋
, then Y ⊆ C. For u ∈ X and v ∈ Y, we have

dH(u) + dH(v) ≥ δ + (n − δ + k − 2) = n + k − 2. Note that H is an (n + k − 2)-closed graph. Then every vertex
of Y is adjacent to all vertices of X, and thus H[X,Y] forms a complete bipartite graph.

Claim 2.2. k − 1 ≤ |Y| ≤ δ.

Proof. If |Y| ≥ δ + 1, then dH(u) ≥ δ + 1 for u ∈ X, a contradiction. Moreover, we have NH(u) ⊆ X ∪ Y for
u ∈ X. Then |X ∪ Y| ≥ δ + 1, and thus |Y| ≥ δ + 1 − |X| = δ + 1 − (δ − k + 2) = k − 1.Hence k − 1 ≤ |Y| ≤ δ.

Let |Y| = s. By Claim 2.2, we have k − 1 ≤ s ≤ δ.

Case 1. s = k − 1.

Figure 1: Graph Kk−1 ∨ (Kn−δ−1 + Kδ−k+2).

Obviously, H � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2) (see Fig. 1). Note that H − V(Kk−1) is not connected. By the
definition of k-connected, we know that H is not k-connected. Therefore, H � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2).

Case 2. k ≤ s ≤ δ.

Recall that H[X,Y] forms a complete bipartite graph and dH(v) = δ for v ∈ X. Then H � Ks∨ (Kn−s−δ+k−2+
R(δ−k+2, δ− s)) (see Fig. 2). Clearly, there exist at least k internal disjoint paths for any two distinct vertices
of H. Hence H−S remains connected when S ⊆ V(H) with |S| ≤ k− 1. It follows that Ks ∨ (Kn−s−δ+k−2 +R(δ−
k + 2, δ − s)) is k-connected, a contradiction. □

Lemma 2.3 (Hong, Shu and Fang [12], Nikiforov [17]). Let G be a graph with minimum degree δ. Then

ρ(G) ≤
δ − 1

2
+

√
2e(G) − δn +

(δ + 1)2

4
.
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Figure 2: Graph Ks ∨ (Kn−s−δ+k−2 + R(δ − k + 2, δ − s)).

Proof of Theorem 1.4. By Lemma 2.3, we have

ρ(G) ≤
δ − 1

2
+

√
2e(G) − δn +

(δ + 1)2

4
.

Since ρ(G) > δ−1
2 +

√
n2 − (3δ − 2k + 7)n + 13

4 δ
2 −

(
4k − 31

2

)
δ + k2 − 9k + 73

4 , then

e(G) >
n2

2
−

(
δ − k +

7
2

)
n +

3
2
δ2
−

(
2k −

15
2

)
δ +

1
2

k2
−

9
2

k + 9 = θ(n, 2, k, δ + 1).

By Corollary 1.1, G is k-connected unless Cn+k−2(G) � Kk−1 ∨ (Kn−δ−1 + Kδ−k+2). □

3. Proof of Theorem 1.6

Gurgel and Wakabayashi [11] proved a sufficient condition in terms of the degree sequence for a graph
to be k-leaf-connected.

Lemma 3.1 (Gurgel and Wakabayashi [11]). Let k and n be such that 2 ≤ k ≤ n−3. Let G be a graph with degree
sequence d1 ≤ d2 ≤ · · · ≤ dn. Suppose that there is no integer k ≤ i ≤ n+k−2

2 such that di−k+1 ≤ i and dn−i ≤ n− i+k−2.
Then G is k-leaf-connected.

Proof of Theorem 1.6. Suppose, to the contrary, that G is not k-leaf-connected, where 2 ≤ k ≤ n − 3 and
δ ≥ k + 1. Let (d1, d2, . . . , dn) be the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn. By Lemma 3.1, there exists
an integer i with k ≤ i ≤ n+k−2

2 such that di−k+1 ≤ i and dn−i ≤ n − i + k − 2. Then

F(G) =
∑

u∈V(G)

d3(u) =
i−k+1∑

j=1

d3
j +

n−i∑
j=i−k+2

d3
j +

n∑
j=n−i+1

d3
j

≤ (i − k + 1)i3 + (n − 2i + k − 1)(n − i + k − 2)3 + i(n − 1)3

= n4
− 11n3 + (6k + 51)n2

− (24k + 105)n + 2k3 + 6k2 + 32k + 82
+(i − k − 1)[3i3 − (7n + 5k − 17)i2 + (9n2

− 40n + 11kn + 4k2
− 21k + 47)i

−4n3
− (6k − 33)n2

− (4k2
− 25k + 85)n − k3 + 10k2

− 22k + 74].

By the assumptions F(G) ≥ n4
− 11n3 + (6k + 51)n2

− (24k + 105)n + 2k3 + 6k2 + 32k + 82, we have

(i − k − 1)[3i3 − (7n + 5k − 17)i2 + (9n2
− 40n + 11kn + 4k2

− 21k + 47)i
−4n3

− (6k − 33)n2
− (4k2

− 25k + 85)n − k3 + 10k2
− 22k + 74] ≥ 0.

Note that i ≥ di−k+1 ≥ δ ≥ k + 1. Next we will evaluate the value of i.
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Case 1. i = k + 1.
Then F(G) = n4

− 11n3 + (6k+ 51)n2
− (24k+ 105)n+ 2k3 + 6k2 + 32k+ 82, and all inequalities in the above

arguments must be equalities. Then the degree sequence of G is

d1 = d2 = k + 1, d3 = d4 = · · · = dn−k−1 = n − 3, dn−k = dn−k+1 = · · · = dn = n − 1.

Hence G � Kk+1 ∨ (Kn−k−3 + 2K1). By [1], we know that Kk+1 ∨ (Kn−k−3 + 2K1) is k-leaf-connected for k ≥ 3,
a contradiction. However, it is easy to see that K3 ∨ (Kn−5 + 2K1) is not Hamilton-connected, and thus
G � K3 ∨ (Kn−5 + 2K1).
Case 2. i , k + 1.

Note that i ≥ k + 1. Then i ≥ k + 2 and f (i) = 3i3 − (7n + 5k − 17)i2 + (9n2
− 40n + 11kn + 4k2

− 21k + 47)i −
4n3
− (6k − 33)n2

− (4k2
− 25k + 85)n − k3 + 10k2

− 22k + 74 ≥ 0. Since k + 2 ≤ i ≤ n+k−2
2 , then n ≥ k + 6. Then

we shall divide the following six cases.
Subcase 2.1. n ≥ k + 11.

We claim that maxk+2≤i≤ n+i−2
2

f (i) = f
(

n+k−2
2

)
. In fact,

f ′(i) = 9i2 − 2(7n + 5k − 17)i + 9n2
− 40n + 11kn + 4k2

− 21k + 47.

By maple, we can obtain that ∆ = −4[32n2 + (29k − 122)n + 11k2
− 19k + 134] < 0. Hence f ′(i) > 0 for

k + 2 ≤ i ≤ n+k−2
2 . Then f (i) is a strictly monotonically increasing function on

[
k + 2, n+k−2

2

]
, and hence

maxk+2≤i≤ n+k−2
2

f (i) = f
(

n+k−2
2

)
.

Note that i is an integer. If n + k is even and n ≥ k + 11, then

f
(

n + k − 2
2

)
= −

7
8

n3 +
(3

8
k + 13

)
n2 +

(3
8

k2
−

1
2

k − 41
)

n +
1
8

k3 +
5
2

k2 + 5k + 41 < 0.

If n + k is odd and n ≥ k + 11, then

f
(

n + k − 3
2

)
= −

7
8

n3 +
(3

8
k +

87
8

)
n2 +

(3
8

k2
−

9
4

k −
261
8

)
n +

1
8

k3 +
15
8

k2 +
51
8

k +
253
8
< 0.

Therefore, maxk+2≤i≤ n+k−2
2

f (i) < 0. It follows that f (i) < 0, a contradiction.

Subcase 2.2. n = k + 10.
Note that k+2 ≤ i ≤ n+k−2

2 is an integer. Then k+2 ≤ i ≤ k+4. If i = k+2, then f (i) = −18k2
−216k−570 < 0,

a contradiction. If i = k+3, then f (i) = −9k2
−108k−231 < 0, a contradiction. If i = k+4, then f (i) = −6k+56.

For k ≥ 10, we have f (i) < 0, a contradiction. For 2 ≤ k ≤ 9, we have f (i) = −6k+56 > 0. Note that d5 ≤ k+4,
d6 ≤ k + 4 and

k4 + 37k3 + 423k2 + 2007k + 3132 ≤ F(G) ≤ k4 + 37k3 + 423k2 + 1989k + 3300.

Then the degree sequence of the permissible graphs is

d1 = d2 = · · · = d6 = k + 4, d7 = d8 = · · · = dk+10 = k + 9.

This implies that G � Kk+4∨6K1. One can check that Kk+4∨6K1 is k-leaf-connected for k ≥ 3, a contradiction.
But K6 ∨ 6K1 is not Hamilton-connected. Hence G � K6 ∨ 6K1.
Subcase 2.3. n = k + 9.

Note that k+2 ≤ i ≤ n+k−2
2 is an integer. Then k+2 ≤ i ≤ k+3. If i = k+2, then f (i) = −12k2

−126k−262 < 0,
a contradiction. If i = k + 3, then f (i) = −3k2

− 33k − 19 < 0, a contradiction.
Subcase 2.4. n = k + 8.
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Then k + 2 ≤ i ≤ k + 3. If i = k + 2, then f (i) = −6k2
− 54k − 68 < 0, a contradiction. If i = k + 3, then

d4 ≤ k + 3 and d5 ≤ k + 3. Note that

k4 + 29k3 + 249k2 + 871k + 970 ≤ F(G) =
∑

u∈V(G)

d3(u) ≤ k4 + 29k3 + 255k2 + 919k + 1164.

By a simple calculation, we obtain that

k+8∑
j=6

d3
j = F(G) −

5∑
j=1

d3
j

≥ k4 + 29k3 + 249k2 + 871k + 970 − 5(k + 3)3

= k4 + 24k3 + 204k2 + 736k + 835.

We claim that d7 = d8 = · · · = dk+8 = k + 7. Otherwise,

k+8∑
j=6

d3
j ≤ 2(k + 6)3 + (k + 1)(k + 7)3 = k4 + 24k3 + 204k2 + 706k + 775,

a contradiction. So we have d3
6 ≥ k4 + 24k3 + 204k2 + 736k+ 835− (k+ 2)(k+ 7)3 = k3 + 15k2 + 99k+ 149. Then

d6 = k + 7 or d6 = k + 6.
If d6 = k + 7, then the degree sequence of G must be

d1 = d2 = · · · = d5 = k + 3, d6 = d7 = · · · = dk+8 = k + 7.

This means that G � Kk+3∨5K1. It is easy to check that Kk+3∨5K1 is k-leaf-connected for k ≥ 3, a contradiction.
However, K5 ∨ 5K1 is not Hamilton-connected, and hence G � K5 ∨ 5K1.

If d6 = k + 6, then the degree sequence of G must be

d1 = k + 2, d2 = · · · = d5 = k + 3, d6 = k + 6, d7 = · · · = dk+8 = k + 7.

When k ≥ 9, we have F(G) = k4 + 29k3 + 249k2 + 865k+ 1018 < k4 + 29k3 + 249k2 + 871k+ 970, a contradiction.
When 2 ≤ k ≤ 8, we have G � Kk+2 ∨ (K1,4 +K1).One can determine that Kk+2 ∨ (K1,4 +K1) is k-leaf-connected
for k ≥ 3, a contradiction. But K4 ∨ (K1,4 + K1) is not Hamilton-connected, and thus G � K4 ∨ (K1,4 + K1).
Subcase 2.5. n = k + 7.

Then i = k + 2, and hence d3 ≤ k + 2, d5 ≤ k + 3. Note that

k4 + 25k3 + 180k2 + 522k + 474 ≤ F(G) ≤ k4 + 25k3 + 180k2 + 522k + 510.

Then the degree sequence of G is

d1 = d2 = d3 = k + 2, d4 = d5 = k + 3, d6 = d7 = · · · = dk+7 = k + 6.

This implies that G � Kk+2 ∨ (K2 + 3K1). It is easy to see that Kk+2 ∨ (K2 + 3K1) is k-leaf-connected for k ≥ 3, a
contradiction. But K4 ∨ (K2 + 3K1) is not Hamilton-connected, and hence G � K4 ∨ (K2 + 3K1).
Subcase 2.6. n = k + 6.

Then i = k + 2, and hence d3 ≤ k + 2, d4 ≤ k + 2. Note that

k4 + 21k3 + 123k2 + 287k + 208 ≤ F(G) ≤ k4 + 21k3 + 129k2 + 323k + 282.

Then we have
k+6∑
j=5

d3
j = F(G) −

4∑
j=1

d3
j

≥ k4 + 21k3 + 123k2 + 287k + 208 − 4(k + 2)3

= k4 + 17k3 + 99k2 + 239k + 176.
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We assert that d6 = d7 = · · · = dk+6 = k + 5. Otherwise,

k+6∑
j=5

d3
j ≤ 2(k + 4)3 + k(k + 5)3 = k4 + 17k3 + 99k2 + 221k + 128,

a contradiction. Hence d3
5 ≥ k4 + 17k3 + 99k2 + 239k+ 176− (k+ 1)(k+ 5)3 = k3 + 9k2 + 39k+ 51. Then d5 = k+ 5

or d6 = k + 4.
If d5 = k + 5, then the degree sequence of G is

d1 = d2 = d3 = d4 = k + 2, d5 = d6 = · · · = dk+6 = k + 5.

Hence G � Kk+2 ∨ 4K1. It is easy to check that Kk+2 ∨ 4K1 is k-leaf-connected for k ≥ 3, a contradiction.
However, K4 ∨ 4K1 is not Hamilton-connected, and thus G � K4 ∨ 4K1.

If d5 = k + 4, then the degree sequence of G is

d1 = k + 1, d2 = d3 = d4 = k + 2, d5 = k + 4, d6 = · · · = dk+6 = k + 5.

Then G � Kk+1∨ (K1,3+K1). One can check that Kk+1∨ (K1,3+K1) is k-leaf-connected for k ≥ 3, a contradiction.
But K3 ∨ (K1,3 + K1) is not Hamilton-connected. Hence G � K3 ∨ (K1,3 + K1). □

References

[1] G.Y. Ao, R.F. Liu, J.J. Yuan, R. Li, Improved sufficient conditions for k-leaf-connected graphs, Discrete Appl. Math. 314 (2022) 17–30.
[2] G.Y. Ao, R.F. Liu, J.J. Yuan, G.L. Yu, Wiener-type invariants and k-leaf-connected graphs, Bull. Malays. Math. Sci. Soc. 46 (2023) 10.
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