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Abstract. Recently, Ertuğrul provided a way to obtain a 2-uninorm on a bounded lattice L by using a
disjunctive uninorm and a conjunctive uninorm. Later, Xie and Yi proposed two methods for constructing
2-uninorms on L by using two uninorms U1 on [0L, k] and U2 on [k, 1L], and showed that the function
constructed by the first method is a 2-uninorm iff U2 is conjunctive and the function constructed by
the second method is a 2-uninorm iff U1 is disjunctive. Motivated by the three methods, we present two
approaches to construct a 2-uninorm on L via a uni-nullnorm and a t-conorm (a t-norm and a null-uninorm).
By the first new one, we can obtain a 2-uninorm on L such that the uninorm on [0L, k] is not necessarily
disjunctive and the uninorm on [k, 1L] is not necessarily conjunctive. The second approach is different from
all existing construction ways for 2-uninorms on L.

1. Introduction

In 1996, Yager et al. [22] introduced the notion of uninorms on the real unit interval. Fodor et al. [9]
studied the structures of uninorms extensively in 1997. By allowing the neutral element to be any number
in [0, 1], uninorms generalize and unify the concepts of t-norms and t-conorms. Nullnorms as another
generalizations of t-norms and t-conorms were introduced by Calvo et al. [3]. It has been proved that
uninorms and nullnorms are widely used in many fields like fuzzy system modeling, neural networks,
fuzzy logic, aggregation of information, decision making and so on [6, 14, 23, 24]. In order to generalize the
definition of nullnorms, Akella [1] introduced the concept of 2-uninorms. A 2-uninorm has an ordinal sum
like structure made up of two uninorms and has been proved to be a generalization of uninorms. After that,
Sun et al. [13] showed the definitions of null-uninorms and uni-nullnorms, which are two special cases of
2-uninorms. In recent years, 2-uninorms have attracted some research interest [5, 10, 15, 16, 19, 25, 27, 28]
since they cover uninorms, uni-nullnorms, nullnorms and null-uninorms.

In the framework of fuzzy sets, Ertuğrul [7] generalized the notion of 2-uninorms from [0, 1] to more
general algebraic structure – bounded lattices. In [7], Ertuğrul provided a way to obtain a 2-uninorm
on L by using a disjunctive uninorm and a conjunctive uninorm. Recently, Xie and Yi [21] presented
two methods for constructing 2-uninorms on L by using two uninorms U1 and U2, and showed that the
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function constructed by the first method is a 2-uninorm iff U2 is conjunctive and the function constructed
by the second method is a 2-uninorm iff U1 is disjunctive. Furthermore, they proved that the 2-uninorm
constructed by these two methods is, respectively, the weakest and the strongest one among all 2-uninorms.
Subsequently, Wang [18] introduced two other ways to obtain a 2-uninorm on L via a disjunctive uninorm
U1 on [0L, k] or a conjunctive uninorm U2 on [k, 1L]. In this work, we provide two approaches to obtain a
2-uninorm on L via a uni-nullnorm and a t-conorm (a t-norm and a null-uninorm). By the first approach, we
can obtain a 2-uninorm on L such that the uninorm on [0L, k] is not necessarily disjunctive and the uninorm
on [k, 1L] is not necessarily conjunctive. The second new one is different from all known construction ways
for 2-uninorms on L.

The rest of this work is organized as follows. In Section 2, we recall some definitions related to bounded
lattices and uninorms, uni-nullnorms, 2-uninorms on them. In Section 3, we present two ways to obtain
a 2-uninorm on L via a uni-nullnorm and a t-conorm (a t-norm and a null-uninorm). In addition, we
show that the uninorm on [0L, k] is not necessarily disjunctive and the uninorm on [k, 1L] is not necessarily
conjunctive if a 2-uninorm is constructed by the first approach. Section 4 contains our conclusions.

2. Preliminaries

If a lattice (L,≤,∧,∨) has a top element (written as 1L) as well as a bottom element (written as 0L), that
is, there exist two elements 1L, 0L ∈ L such that 0L ≤ x ≤ 1L for all x ∈ L, then we call it a bounded lattice
and denote it as (L,≤, 0L, 1L). More details about lattices can be found in [2].

For convenience, we use L to denote a bounded lattice instead of (L,≤, 0L, 1L) in this work. The notation
u ∥ v is used for u, v ∈ L such that they are incomparable, i.e., neither u ≤ v nor u ≥ v. The notation u ∦ v
denotes that u is comparable with v, that is, u ≤ v or u ≤ v. The notation Iu is defined as Iu = {x ∈ L | x ∥ u}.
Furthermore, [u, v] = {x ∈ L | u ≤ x ≤ v}, ]u, v] = {x ∈ L | u < x ≤ v}, [u, v[= {x ∈ L | u ≤ x < v} and
]u, v[= {x ∈ L | u < x < v} are defined as subintervals of L.

Definition 2.1 ([4]). A function T : L2
→ L (resp. S : L2

→ L) is called a t-norm (resp. t-conorm) on L if it is
associative, increasing, commutative, and satisfies T(x, 1L) = x (resp. S(x, 0L) = x) for all x ∈ L.

Definition 2.2 ([11]). A function T̂ : L2
→ L (resp. Ŝ : L2

→ L) is called a t-subnorm (resp. t-superconorm) on L if
it is associative, increasing, commutative, and satisfies T̂(x, y) ≤ x ∧ y (resp. Ŝ(x, y) ≥ x ∨ y) for all x, y ∈ L.

Definition 2.3 ([12]). A function U : L2
→ L is called a uninorm on L if it is associative, increasing, commutative,

and has a neutral element e ∈ L such that U(x, e) = x for all x ∈ L.

In particular, a uninorm U with a neutral element e = 1L is a t-norm, a uninorm U with a neutral element
e = 0L is a t-conorm. In addition, a uninorm U is called conjunctive if U(0L, 1L) = 0L, a uninorm U is called
disjunctive if U(0L, 1L) = 1L.

Definition 2.4 ([26]). Let e ∈ L\{0L, 1L}. The notation Umin denotes the class of all uninorms on L with a neutral
element e satisfying U(x, y) = y for (x, y) ∈ (e, 1L] × {L\[e, 1L]}. Similarly, the notationUmax denotes the class of all
uninorms on L with a neutral element e satisfying U(x, y) = y for (x, y) ∈ [0L, e) × {L\[0L, e]}.

Theorem 2.5 ([26]). Let e ∈ L\{0L, 1L} and U : L2
→ L. Then U ∈ Umin if and only if there is a t-subnorm T̂ on

L\[e, 1L] and a t-conorm S on [e, 1L] such that U is shown as Eq. (1).

U(x, y) =


S(x, y) when x, y in [e, 1L],
y when x in [e, 1L] and y in {L\[e, 1L]},
x when x in {L\[e, 1L]} and y in [e, 1L],
T̂(x, y) otherwise.

(1)



Y.M. Wang et al. / Filomat 38:18 (2024), 6609–6619 6611

Theorem 2.6 ([26]). Let e ∈ L\{0L, 1L} and U : L2
→ L. Then U ∈ Umax if and only if there is a t-norm T on [0L, e]

and a t-superconorm Ŝ on L\[0L, e] such that U is shown as Eq. (2).

U(x, y) =


T(x, y) when x, y in [0L, e],
y when x in [0L, e] and y in {L\[0L, e]},
x when x in {L\[0L, e]} and y in [0L, e],
Ŝ(x, y) otherwise.

(2)

Definition 2.7 ([17]). A function F : L2
→ L is called a uni-nullnorm on L if it is increasing, commutative,

associative, and has a neutral element e ∈ L and an absorbing element k ∈ L such that 0L ≤ e < k ≤ 1L, F(e, x) = x
for all x ∈ [0L, k] and F(x, 1L) = x for all x ∈ [k, 1L].

Definition 2.8 ([8]). A function G : L2
→ L is called a null-uninorm on L if it is increasing, commutative,

associative, and has a neutral element f ∈ L and an absorbing element k ∈ L such that 0L ≤ k < f ≤ 1L, G(0L, x) = x
for all x ∈ [0L, k] and G( f , x) = x for all x ∈ [k, 1L].

The ways to obtain a uni-nullnorm on L from Theorems 3 and 4 will be used in the next section.

Theorem 2.9 ([20]). Let e, k ∈ L and 0L ≤ e < k < 1L, U : [0L, k]2
→ [0L, k] be a uninorm with a neutral element e

and T : [k, 1L]2
→ [k, 1L] be a t-norm. If FU : L2

→ L is shown by Eq.(3), then FU is a uni-nullnorm.

FU(x, y) =


U(x, y) when x, y in [0L, k],
T(x, y) when x, y in [k, 1L],
U(x ∧ k, y ∧ k) otherwise.

(3)

Theorem 2.10 ([20]). Let e, k ∈ L and 0L ≤ e < k < 1L, U : [0L, k]2
→ [0L, k] be a uninorm with a neutral element e

and T : [k, 1L]2
→ [k, 1L] be a t-norm. If FT : L2

→ L is shown by Eq.(4), then FT is a uni-nullnorm if and only if U
is disjunctive.

FT(x, y) =


U(x, y) when x, y in [0L, k],
T(x, y) when x, y in [k, 1L],
T(x ∨ k, y ∨ k) otherwise.

(4)

Definition 2.11 ([7]). A function H : L2
→ L is called a 2-uninorm on L if it is increasing, commutative, associative,

and there exists e, f ∈ L and k ∈ L\{0L, 1L} such that 0L ≤ e ≤ k ≤ f ≤ 1L, H(x, e) = x for all x ∈ [0L, k] and H(x, f ) = x
for all x ∈ [k, 1L].

From Definitions 2.7, 2.13 and 2.14, it is evident that a 2-uninorm with f = 1L is a uni-nullnorm, a
2-uninorm with e = 0L is a null-uninorm. Here we recall three ways for constructing 2-uninorms on L that
will be compared with the new methods in Section 3.

Theorem 2.12 ([7]). Let k ∈ L\{0L, 1L}, U1 : [0L, k]2
→ [0L, k] be a disjunctive uninorm with a neutral element e

and U2 : [k, 1L]2
→ [k, 1L] be a conjunctive uninorm with a neutral element f . Then the function H : L2

→ L given
by Eq. (5) is a 2-uninorm on L.

H(x, y) =


U1(x, y) when x, y in [0L, k],
U2(x, y) when x, y in [k, 1L],
k otherwise.

(5)
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Theorem 2.13 ([21]). Let k ∈ L\{0L, 1L}, U1 : [0L, k]2
→ [0L, k] be a uninorm with a neutral element e and

U2 : [k, 1L]2
→ [k, 1L] be a uninorm with a neutral element f . Then the function HW : L2

→ L shown by Eq. (6) is a
2-uninorm on L if and only if U2 is conjunctive.

HW(x, y) =


U1(x, y) when x, y in [0L, k],
U2(x, y) when x, y in [k, 1L],
U1(x ∧ k, y ∧ k) otherwise.

(6)

Theorem 2.14 ([21]). Let k ∈ L\{0L, 1L}, U1 : [0L, k]2
→ [0, k] be a uninorm with a neutral element e and U2 :

[k, 1L]2
→ [k, 1L] be a uninorm with a neutral element f . Then the function HS : L2

→ L shown by Eq. (7) is a
2-uninorm on L if and only if U1 is disjunctive.

HS(x, y) =


U1(x, y) when x, y in [0L, k],
U2(x, y) when x, y in [k, 1L],
U2(x ∨ k, y ∨ k) otherwise.

(7)

Xie and Yi have proved that HW in Theorem 2.13 and HS in Theorem 2.14 are, respectively, the weakest
and the strongest 2-uninorm among all 2-uninorms with the given underlying uninorms U1 and U2.

3. Several methods to construct 2-uninorms on L

We provide two methods for obtaining a 2-uninorm on L via a uni-nullnorm and a t-conorm in the first
subsection. There are also two examples in this subsection. The first example illustrates that one can use
a conjunctive uninorm on [0L, k] and a disjunctive uninorm on [k, 1L] to construct a 2-uninorm on L. The
second example shows that the method for obtaining 2-uninorms on bounded lattices in Theorem 3.2 differs
from that ones in Theorems 2.12 and 2.13. Dually, we introduce two approaches to construct a 2-uninorms
on L by using a t-norm and a null-uninorm in the second subsection.

3.1. The methods to obtain a 2-uninorm via a uni-nullnorm and a t-conorm on L
First we recall the definition of the order-preserving mapping. A mapping h : L → L′ is called order-

preserving if x ≤ y implies h(x) ≤ h(y) for all x, y ∈ L. Then we show a theorem for constructing 2-uninorms
on bounded lattices by a order-preserving mapping, a uni-nullnorm and a t-conorm.

Theorem 3.1. Let f ∈ L\{0L, 1L}, F be a uni-nullnorm on [0L, f ] with a neutral element e and an absorbing element
k, S be a t-conorm on [ f , 1L], h : L → [ f , 1L] be an order-preserving mapping such that h(x) = x for any x ∈ [ f , 1L].
Then HS f : L2

→ L shown by Eq. (8) is a 2-uninorm,

HS f (x, y) =


F(x, y) when x, y in [0L, f ],
S(x, y) when x, y in [ f , 1L],
S(h(x), h(y)) otherwise.

(8)

if and only if one of the following conditions is satisfied.

(i) I f = ∅;
(ii) I f , ∅ and x ∥ k for any x ∈ I f .

Proof. It is easy for us to get that h(x) = f for any x ∈ [0L, f ] from the definition of the order-preserving
mapping and the fact h( f ) = f .

Necessity. Assume that I f , ∅ and there exists some x0 ∈ I f such that x0 ∦ k. There are two cases: x0 ≤ k
and x0 > k. If x0 ≤ k, then from the definition of uni-nullnorms on L it follows that x0 ≤ k < f , which
contradicts with x0 ∈ I f . If x0 > k, then x0 = HS f (x0, f ) = S(h(x0), f ) = h(x0) ∈ [ f , 1L], which contradicts with
x0 ∈ I f . Therefore, there are two possibilities: I f = ∅; I f , ∅ and x ∥ k for any x ∈ I f .
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Sufficiency. It is clear that the commutativity of HS f holds. We can obtain that HS f (x, e) = x for all
x ∈ [0L, k], HS f (x, f ) = x for all x ∈ [k, f ] and HS f (x, f ) = x for all [ f , 1L]. If I f = ∅, then [k, 1L] = [k, f ] ∪ [ f , 1L].
If x ∥ k for any x ∈ I f , that is, I f ⊆ Ik, then [k, 1L] = [k, f ] ∪ [ f , 1L]. Thus, HS f (x, f ) = x for all x ∈ [k, 1L]. The
monotonicity of HS f can be easily verified from the inequality F( f , f ) = f = S( f , f ) < S(x, f ) ≤ S(x, y) for any
x, y ∈] f , 1L]. Now let us prove that HS f satisfies the associativity, that is, HS f (x,HS f (y, z)) = HS f (HS f (x, y), z)
for all x, y, z ∈ L.

Case 1. If x, y, z ∈ [0L, f ], then HS f (x,HS f (y, z)) = HS f (x,F(y, z)) = F(x,F(y, z)) = F(F(x, y), z) = HS f (F(x, y), z) =
HS f (HS f (x, y), z).

Case 2. If only one of x, y, z belongs to L\[0L, f ], and assume that z ∈ L\[0L, f ] without loss of generality,
then HS f (x,HS f (y, z)) = HS f (x, h(z)) = h(z) = HS f (F(x, y), z) = HS f (HS f (x, y), z).

Case 3. If only one of x, y, z belongs to [0L, f ], and assume that x ∈ [0L, f ] without loss of generality, then
HS f (x,HS f (y, z)) = HS f (x,S(h(y), h(z))) = h(S(h(y), h(z))) = S(h(y), h(z)) = HS f (h(y), z) = HS f (HS f (x, y), z).

Case 4. If x, y, z ∈ L\[0L, f ], then HS f (x,HS f (y, z)) = HS f (x,S(h(y), h(z))) = S(h(x),S(h(y), h(z))) = S(S(h(x), h(y)), h(z)) =
HS f (S(h(x), h(y)), z) = HS f (HS f (x, y), z).

In summary, HS f is a 2-uninorm on L.

0L f 1L I f

f

1L

I f

F(x, y)

h(y)

h(y)

h(x)

S(x, y)

S(x, h(y))

h(x)

S(h(x), y)

S(h(x), h(y))

Figure 1: HS f on L

The method for constructing 2-uninorms on L in Theorem 3.1 differs from those in [7, 18, 21] which
requiring U1 on [0L, k] be disjunctive or U2 on [k, 1L] be conjunctive. Example 1 illustrates that we can use
the method in Theorem 3.1 to obtain a 2-uninorm via a conjunctive uninorm on [0L, k] and a disjunctive
uninorm on [k, 1L].

Example 1. Let (L⋆ = {0L⋆ , e, a, k, b, f , c,m,n, 1L⋆ },≤, 0L⋆ , 1L⋆ ) be a bounded lattice, and Figure 2 be its Hasse
diagram.
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Figure 2: Hasse diagram of the lattice L⋆
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Firstly, we define the uni-nullnorm F on [0L⋆ , f ] by the method in Theorem 2.9 (shown as Table 1) and
the t-conorm S on [ f , 1L⋆ ] (shown as Table 2).

F 0L⋆ e a k b f n

0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆

e 0L⋆ e a k k k e
a 0L⋆ a k k k k a
k 0L⋆ k k k k k k
b 0L⋆ k k k k b k
f 0L⋆ k k k b f k
n 0L⋆ e a k k k e

S f c 1L⋆

f f c 1L⋆

c c c 1L⋆

1L⋆ 1L⋆ 1L⋆ 1L⋆

Table 1 F on [0L⋆ , f ]

Table 2 S on [ f , 1L⋆ ]

If the order-preserving mapping h : L → [ f , 1L] is defined as h(x) = x ∨ f for any x ∈ L, then we can
obtain the structure of HS f shown as Table 3 from Theorem 3.1. It is obvious from Table 3 that HS f |[0L⋆ ,k]2 is
a conjunctive uninorm and HS f |[k,1L⋆ ]2 is a disjunctive uninorm. This means that one can use a conjunctive
uninorm on [0L⋆ , k] and a disjunctive uninorm on [k, 1L⋆ ] to construct a 2-uninorm on L.

HS f 0L⋆ e a k b f c 1L⋆ m n

0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ 0L⋆ c 1L⋆ c 0L⋆

e 0L⋆ e a k k k c 1L⋆ c e
a 0L⋆ a k k k k c 1L⋆ c a
k 0L⋆ k k k k k c 1L⋆ c k
b 0L⋆ k k k k b c 1L⋆ c k
f 0L⋆ k k k b f c 1L⋆ c k
c c c c c c c c 1L⋆ c c

1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆ 1L⋆

m c c c c c c c 1L⋆ c c
n 0L⋆ e a k k k c 1L⋆ c e

Table 3 2-uninorm HS f on L⋆

Next we will present another theorem for obtaining 2-uninorms on bounded lattices by a order-
preserving mapping, a uni-nullnorm and a t-conorm.

Theorem 3.2. Let f ∈ L\{0L, 1L}, F be a uni-nullnorm on [0L, f ] with a neutral element e and an absorbing element
k, S be a t-conorm on [ f , 1L], h : L→ [0L, f ] be an order-preserving mapping such that h(x) = x for any x ∈ [0L, f ].
Then HF f : L2

→ L shown by Eq. (9) is a 2-uninorm,

HF f (x, y) =


F(x, y) when x, y in [0L, f ],
S(x, y) when x, y in [ f , 1L],
F(h(x), h(y)) otherwise.

(9)

if and only if one of the following conditions is satisfied.

(i) I f = ∅;
(ii) I f , ∅ and x ∥ k for any x ∈ I f .
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Proof. It is easy for us to get that h(x) = f for any x ∈ [ f , 1L] from the definition of the order-preserving
mapping and the fact h( f ) = f .

Necessity. Assume that I f , ∅ and there exists some x0 ∈ I f such that x0 ∦ k. There are two cases: x0 ≤ k
and x0 > k. If x0 ≤ k, then x0 ≤ k < f , which contradicts with x0 ∈ I f . If x0 > k, then from k = h(k) ≤ h(x0) ≤ f
it follows that x0 = HF f (x0, f ) = F(h(x0), f ) = h(x0) ∈ [0L, f ], which contradicts with x0 ∈ I f .

Sufficiency. It is clear that the commutativity of HF f holds. We can obtain that HF f (x, e) = x for all
x ∈ [0L, k] and HF f (x, f ) = x for all [k, 1L] from the condition (i) or (ii). The monotonicity of HF f can be easily
verified from the inequality F(x, y) ≤ F(x, f ) < F( f , f ) = f = S( f , f ) for any x, y ∈ [0L, f [. Now let us prove
that HF f satisfies the associativity, that is, HF f (x,HF f (y, z)) = HF f (HF f (x, y), z) for all x, y, z ∈ L.

Case 1. If x, y, z ∈ [ f , 1L], then HF f (x,HF f (y, z)) = HF f (x,S(y, z)) = S(x,S(y, z)) = S(S(x, y), z) = HF f (S(x, y), z) =
HF f (HF f (x, y), z).

Case 2. If only one of x, y, z belongs to L\[ f , 1L], and assume that z ∈ L\[ f , 1L] without loss of generality,
then HF f (x,HF f (y, z)) = HF f (x,F( f , h(z))) = F( f ,F( f , h(z))) = F(F( f , f ), h(z)) = F( f , h(z)) = HF f (S(x, y), z) =
HF f (HF f (x, y), z).

Case 3. If only one of x, y, z belongs to [ f , 1L], and assume that x ∈ [ f , 1L] without loss of general-
ity, then HF f (x,HF f (y, z)) = HF f (x,F(h(y), h(z))) = F( f ,F(h(y), h(z))) = F(F( f , h(y)), h(z)) = HF f (F( f , h(y)), z) =
HF f (HF f (x, y), z).

Case 4. If x, y, z ∈ L\[ f , 1L], then HF f (x,HF f (y, z)) = HF f (x,F(h(y), h(z))) = F(h(x),F(h(y), h(z))) = F(F(h(x), h(y)), h(z)) =
HF f (F(h(x), h(y)), z) = HF f (HF f (x, y), z).

Therefore, HF f is a 2-uninorm on L.

0L f 1L I f

f

1L

I f

F(x, y)

F(x, f )

F(x, h(y))

F( f , y)

S(x, y)

F( f , h(y))

F(h(x), y)

F(h(x), f )

F(h(x), h(y))

Figure 3: HF f on L

It is obvious that HF f |[k,1L]2 is a conjunctive uninorm from the fact HF f (k, 1L) = F(k, f ) = k. But this
construction methods of 2-uninorms on L is different from those proposed by Ertuğrul and Xie et al. The
following example showing the difference between 2-uninorms constructed by the methods in Theorems
5, 6 and 9.

Example 2. Let (L∗ = {0L∗ , e, k, f ,m,n, 1L∗ },≤, 0L∗ , 1L∗ ) be a bounded lattice, and Figure 4 be its Hasse diagram.
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Figure 4: Hasse diagram of the lattice L∗
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We define the disjunctive uninorm U1 on [0L∗ , k] (shown as Table 4), the conjunctive uninorm U2 on
[k, 1L∗ ] (shown as Table 5), and the uni-nullnorm F on [0L∗ , f ] by the method in Theorem 2.10 (shown as
Table 6).

U1 0L∗ e k

0L∗ 0L∗ 0L∗ k
e 0L∗ e k
k k k k

U2 k f 1L∗

k k k k
f k f 1L∗

1L∗ k 1L∗ 1L∗

Table 4 U1 on [0L∗ , k] Table 5 U2 on [k, 1L∗ ]

If the order-preserving mapping h : L→ [0L∗ ] is defined as h(x) = x∧ f for any x ∈ L, then we can obtain
the structures of H, HW and HF f which are respectively shown as Table 7, Table 8 and Table 9 from Theorem
2.12, Theorem 2.13 and Theorem 3.2.

F 0L∗ e k f m

0L∗ 0L∗ 0L∗ k k k
e 0L∗ e k k k
k k k k k k
f k k k f f

m k k k f f

H 0L∗ e k f 1L∗ m n

0L∗ 0L∗ 0L∗ k k k k k
e 0L∗ e k k k k k
k k k k k k k k
f k k k f 1L∗ k k

1L∗ k k k 1L∗ 1L∗ k k
m k k k k k k k
n k k k k k k k

Table 6 F on [0L∗ , f ]

Table 7 2-uninorm H on L∗

HW 0L∗ e k f 1L∗ m n

0L∗ 0L∗ 0L∗ k k k 0L∗ 0L∗

e 0L∗ e k k k e e
k k k k k k k k
f k k k f 1L∗ k k

1L∗ k k k 1L∗ 1L∗ k k
m 0L∗ e k k k e e
n 0L∗ e k k k e e

HS f 0L∗ e k f 1L∗ m n

0L∗ 0L∗ 0L∗ k k k k 0L∗

e 0L∗ e k k k k e
k k k k k k k k
f k k k f 1L∗ f k

1L∗ k k k 1L∗ 1L∗ f k
m k k k f f f k
n 0L∗ e k k k k e

Table 8 2-uninorm HW on L∗ Table 9 2-uninorm HS f on L∗

Obviously, the 2-uninorms in Tables 7, 8 and 9 are different.
Although Theorem 2.13 and Theorem 3.2 show two different ways to construct a 2-uninorm on L, we

can still get the same 2-uninorm from both ways under some constraints.

Remark 3.3. If I f = ∅ or x ∥ k for any x ∈ I f , and requiring

(i) U2 ∈ Umin,
(ii) the uni-nullnorm F be obtained by the method in Theorem 2.9,

(iii) the order-preserving mapping h be defined as h(x) = x ∧ f for any x ∈ L,

then the 2-uninorms on L constructed by Theorem 2.13 are same as the ones constructed by Theorem 3.2.
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In fact, it is easy to know that [k, 1L] = [k, f ] ∪ [ f , 1L] when I f = ∅. It follows that I f ⊆ Ik from x ∥ k for
any x ∈ I f , then we have [k, 1L] = [k, f ] ∪ [ f , 1L]. Further, if U2 ∈ Umin in Theorem 2.13, then the function
HW becomes the following Eq. (10).

HW(x, y) =



U1(x, y) when x, y in [0L, k];
T(x, y) when x, y in [k, f ];
S(x, y) when x, y in [ f , 1L];
x when x in [k, f ] and y in [ f , 1L];
y when x in [ f , 1L] and y in [k, f ];
U1(x ∧ k, y ∧ k) otherwise.

(10)

If I f = ∅, h(x) = x ∧ f for any x ∈ L and the uni-nullnorm F is obtained by the method from Theorem 2.9,
then HF f (x, y) = F(x∧ f , y∧ f ) = F(x, f ) = x for x ∈ [k, f ] and y ∈ [ f , 1L], HF f (x, y) = F(x∧ f , y∧ f ) = F(x, f ) =
U(x ∧ k, k) = U(x ∧ k, y ∧ k) for x ∈ [0L, k] ∪ Ik and y ∈ [ f , 1L]. If x ∥ k for any x ∈ I f , h(x) = x ∧ f for any x ∈ L
and the uni-nullnorm F is obtained by the method from Theorem 2.9, then x ∧ f = x ∧ k for any x ∈ I f from
the fact I f ⊆ Ik. Thus, HF f (x, y) = F(x∧ f , y∧ f ) = F(x∧ k, y∧ k) = U(x∧ k, y∧ k) for x ∈ I f or y ∈ I f . Therefore,
the function HF f becomes the following Eq. (11).

HF f (x, y) =



U(x, y) when x, y in [0L, k];
T(x, y) when x, y in [k, f ];
S(x, y) when x, y in [ f , 1L];
x when x in [k, f ] and y in [ f , 1L];
y when x in [ f , 1L] and y in [k, f ];
U(x ∧ k, y ∧ k) otherwise.

(11)

Obviously, the 2-uninorms given by Eq. (10) and Eq. (11) are same when the underlying uninorms U1 and
U are same.

3.2. The methods to obtain a 2-uninorm via a t-norm and a null-uninorm on L

In this subsection, we propose two construction methods for a 2-uninorm on L via a order-preserving
mapping, a t-norm and a null-uninorm. We omit the proofs of the following two theorems since their proofs
are similar to those of theorems in the previous subsection.

Theorem 3.4. Let e ∈ L\{0L, 1L}, T be a t-norm on [0L, e] and G be a null-uninorm on [e, 1L] with a neutral element
f and an absorbing element k, h : L→ [0L, e] be an order-preserving mapping such that h(x) = x for any x ∈ [0L, e].
Then HTe : L2

→ L shown by Eq. (12) is a 2-uninorm,

HTe (x, y) =


T(x, y) when x, y in [0L, e],
G(x, y) when x, y in [e, 1L],
T(h(x), h(y)) otherwise.

(12)

if and only if one of the following conditions is true.

(i) Ie = ∅;
(ii) Ie , ∅ and x ∥ k for any x ∈ Ie.

Theorem 3.5. Let e ∈ L\{0L, 1L}, T be a t-norm on [0L, e] and G be a null-uninorm on [e, 1L] with a neutral element
f and an absorbing element k, h : L→ [e, 1L] be an order-preserving mapping such that h(x) = x for any x ∈ [e, 1L].
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Then HGe : L2
→ L shown by Eq. (13) is a 2-uninorm,

HGe (x, y) =


T(x, y) when x, y in [0L, e],
G(x, y) when x, y in [e, 1L],
G(h(x), h(y)) otherwise.

(13)

if and only if one of the following conditions is true.

(i) Ie = ∅;
(ii) Ie , ∅ and x ∥ k for any x ∈ Ie.

0L e 1L Ie

e

1L

Ie

T(x, y)

h(x)

T(x, h(y))

h(y)

G(x, y)

h(y)

T(h(x), y)

h(x)

T(h(x), h(y))

0L e 1L Ie

e

1L

Ie

T(x, y)

G(e, y)

G(e, h(y))

G(x, e)

G(x, y)

G(x, h(y))

G(h(x), e)

G(h(x), y)

G(h(x), h(y))

Figure 5: HTe on L Figure 6: HGe on L

4. Conclusion

In this work, we first provide two ways to obtain a 2-uninorm on L by using a uni-nullnorm and a
t-conorm. By the first method, we can obtain a 2-uninorm on L such that the uninorm on [0L, k] is not
necessarily disjunctive and the uninorm on [k, 1L] is not necessarily conjunctive. In other words, we can
use a conjunctive uninorm on [0L, k] and a disjunctive uninorm on [k, 1L] to construct a 2-uninorm on L
(but it is not necessary). Furthermore, we present another new method for constructing 2-uninorm on L
which differs from all existing ones. Finally, we present two approaches to construct a 2-uninorm on L via
a t-norm and a null-uninorm.

In addition, we will consider the way to construct a 2-uninorm via a uni-nullnorm and a t-conorm (a
t-norm and a null-uninorm) on a more general lattice without restrictions as our future work.
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