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Abstract. In this research article, using the concepts of deferred density and the notion of the ideal I, we
extend the idea of rough convergence by introducing the notion of deferred [-statistical rough convergence
via difference operators in the framework of intuitionistic fuzzy normed spaces. We define a set of limits
of this convergence and prove that the limit set is convex and closed with respect to the intuitionistic fuzzy
norm. Furthermore, we develop the concept of deferred [-statistical Al—cluster point of a sequence in

intuitionistic fuzzy normed spaces and investigate the relations between the set of these cluster points and
the limit set of the aforementioned convergence.

1. Introduction

In the last few decades, fuzzy theory has gained vast popularity in the area of research in many branches
of mathematics and engineering. In 1965, Zadeh [35] first introduced the theory of fuzzy sets to deal with
uncertainty. Based on this theory, Kramosil and Michélek [20] proposed the notion of fuzzy metric space
to extend the notion of ordinary metric space. Later, George and Veeramani [16] reformed the definition of
fuzzy metric due to [20] and defined a Hausdorff topology on the reformed space. As an extension of fuzzy
sets, Atanassov [5] developed the theory of intuitionistic fuzzy sets. In [30], Park generalized the notion
of fuzzy metric and put forward the intuitionistic fuzzy metric space concept. Later, Saadati and Park [31]
developed the concept of intuitionistic fuzzy normed space.

To generalize the classical notion of convergence, the concept of statistical convergence was put forth
by Steinhaus [34] and independently by Fast [15], based only on the convergence criterion for most of the
sequence’s terms. In summability theory, this concept has recently emerged as one of the most active areas
of study. In 2000, Kostyrko et al. [19] extended the notion of statistical convergence and proposed the
concept of [-convergence of sequences. The implementation of statistical convergence and I-convergence
in intuitionistic fuzzy normed spaces has been studied in [17, 25]. Later, Savas and Giirdal [32] proposed
the notion of I-statistical convergence in intuitionistic fuzzy normed spaces as a variant of statistical con-
vergence. As a new method of convergence, the idea of deferred statistical convergence of sequences was
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studied in [21] by considering the deferred density in the definition of statistical convergence. Since then,
many researchers have shown an interest in this topic. Recently, deferred statistical convergence of single
sequences [24] and double sequences [26] has been studied in intuitionistic fuzzy normed spaces.

In addition to numerous generalizations of the notion of sequence convergence, rough convergence is
also a concept of convergence that deals with the approximate solution from a numerical perspective. Phu
[28] first developed the concept of rough convergence of sequences in a finite—-dimensional normed linear
spaces by specifying the degree of roughness and later introduced the same idea to infinite-dimensional
normed linear spaces [29]. Along with the idea of rough convergence, he also looked at analytical charac-
teristics like convexity and the closeness of the set of rough limits. Aytar [6] expanded the concept of rough
convergence into rough statistical convergence and investigated the connection between the set of statistical
cluster points and the set of rough statistical limit points of a sequence. Furthermore, in [7], Aytar inves-
tigated the rough limit set and studied the rough core of a real sequence. The rough convergence served
as the inspiration for numerous authors’ studies of rough convergence and rough statistical convergence
of diverse sequence types. For instance, in [8] and [22, 23], respectively, rough convergence and rough
statistical convergence of double and triple sequences were explored. Both Pal et al. [27] and Diindar et al.
[10] suggested the concept of rough I-convergence and the set of rough I-limit points of a sequence. Later,
Diindar [11] extended the idea of rough I-convergence to the rough I,—convergence and examined the set
of rough I,-limit points of double sequences. In addition, he discovered two rough I,—convergence criteria
related to this limit set. In 2018, Diindar [12] generalized the idea of rough I,—convergence to include the
rough L-lacunary statistical convergence of double sequences and looked at a few characteristics of the
rough D-lacunary statistical limit set. Furthermore, numerous authors have also explored the notion of
rough convergence in various spaces, such as metric spaces [9], 2-normed spaces [4], probabilistic normed
spaces [2], etc. In intuitionistic fuzzy normed spaces, Reena et al. [3] recently suggested the idea of rough
statistical convergence of sequences by restricting the continuous t-norm to the minimum ¢-norm.

One of the most intriguing fields of research in mathematics right now is the study of difference op-
erators and related sequence spaces. Using the forward difference operator A, the first—order difference
sequence space was introduced in [18]. Later, Et and Colak [13] generalized this concept to the situation
of difference sequence spaces with integer order j. The main object of this paper is to develop the concept
of deferred I-statistical rough convergence via difference operators of integer order j in intuitionistic fuzzy
normed spaces.

2. Preliminaries

Throughout this study, we refer to the collections of all natural and real numbers as IN and IR, respec-
tively. For convenience, we recall some definitions as follows:

Let A € IN. The asymptotic (or natural) density of the set A, denoted by 6(A), is defined as:

7

6(A):%Lrl;o%|{nsk:neA}

provided the limit exists. Here, |{,}| denotes the cardinality of the set {,}. A sequence (xx) of numbers is
called statistically convergent to ! if, for every € > 0,

5({k € N : x — 1| > €}) = 0 holds.
For this case, we write x; 31 (see [15], [34]).
Definition 2.1. [14] A real (or complex) valued sequence (xi) is Al—statistically convergent to I if

6({ke]N A — 1) > e}) =0
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for every € > 0, where j € IN and
A% = xp, AVxg = X = Xpa1, o N = A7 (g = Xpa1)

and so that

Ny = Z( 1) ()xkﬂ (k € N).

Definition 2.2. [6, 28] A sequence (xi) in a normed space (X, ||.||) is rough convergent to x € X for some r > 0 if, for
every 1 > 0, A ny € IN so that

llxe — xIl <7+ p, VY k > mny.
The sequence (xi) is rough statistically convergent to x € X for some r > 0 if, for every u > 0,
51k € N : |l — x| = 7+ p}) = 0 holds.

Definition 2.3. [33] A binary operation % on [0, 1] is called continuous t-norm (or CTN) if (a) % is commutative,
associative and continuous, (b) u = p x 1 for any p € [0,1] and (c) for each uy, o, us, pa € [0,1], if uz > pq and
Ua > U2 then Uz * Ug > U1 x Uo.

A binary operation o on [0, 1] is called continuous t—conorm (or CTCN) if (1) o is commutative, associative and
continuous, (2) u = po 0 for any u € [0,1] and (3) for each ui, po, ps, s € [0,1], if p3 > w1 and pg > po then
H3 0 4 2 1 © Up.

Definition 2.4. [31] Assume X is a real vector space, x and o are CTN and CTCN, respectively and @, are fuzzy
subsets of X X (0, 00). The five—tuple (X, ¢, 1, %, o) is called an intuitionistic fuzzy normed space (in short, IFNS) if,
forall x,y,z € X and s, t > 0, the conditions below are met:

(1) p(x,s) + P(x,s) < 1,
(2) p(x,s) > 0and P(x,s) < 1,
(3) p(x,s) =1land Y(x,5) =0 & x =0,
(4) p(ax,s) = (p(x, ﬁ) and Y(ax,s) = ( X, |a|)for any0#a e,
(5) p(x,8) * p(y,t) < p(x +y,s+ t)and P(x,s) o P(y,t) = P(x + y,5 + 1),
(6) p(x,.) : (0,00) — (0, 1] and P(x,.) : (0, 0) — (0, 1] are continuous,
(7) slgg o(x,s) =1and 1;1_1’)% o(x,s) =0,
(8) sl:rg Y(x,s) = 0and Elir(} P(x,s) = 1.
Here, the tuple (¢, ) is known as the intuitionistic fuzzy norm (in short, IFN) on X.
Definition 2.5. Let (X, @, y, %, 0) be an IFNS. The open ball of radius r > 0 and center x € X with regard to
u € (0,1) is the set
B ={yeX:px—y, 1 >1—pand Px -y, 1 < .
Definition 2.6. [31] Let (X, ¢, 1, %, o) be an IFNS. A sequence (xi) in X is convergent to x € X with regard to (¢, 1)
if
%1_{2 o(xx—x,t)=1and 1}1_{?0 Y(xx—x,t)=0

for every t > 0. In this case, we denote the limit by x; 2N



V. A. Khan et al. / Filomat 38:18 (2024), 63336354 6336

Definition 2.7. [19] Let T # 0 set and I C 2¥. Then I is called an ideal in T if(a)@el,(b)A,Bel=AUBeland
()A€, BC A= Bel Anideal I C 2" is nontrivial if I # 2. A nontrivial ideal I C 2 is admissible if I contains
every singleton subset of X.

A subset F C 2" is called filter on T if (c) O ¢ F, (d) ANB € F forall A, B € F and (e) B € F whenever A € F and
B D A. For each ideal I in T, one can find the filter F(I) associated with ideal I such that F(I) = {A cl:Ae I}.

Definition 2.8. [32] Let (X, @, 1, %, 0) be an IFNS and I is nontrivial admissible ideal in IN. A sequence (xy) in X is
I-statistically convergent to some x € X with regard to (@, V) if
1
{ne]N: ;|{k§n:(p(xk—x,t)s l—yor¢(xk—x,t)2y}| Ze} el

forevery e,t > 0and u € (0,1).

For I = Iy, the collection of all finite subsets of IN, the convergence in Definition 2.8 reduces to the
statistical convergence of (xi) with regard to (¢, ¢) [17].

Agnew [1] in 1932 generalizes the notion of Cesaro mean of real (or complex) sequences and defined
deferred Cesaro mean as follows:

Definition 2.9. For a real (or complex) valued sequence (x), the deferred Cesaro mean of (xy) is defined by
1 ¢
qn - Pn

x, n=1,23..,
k=pn+1

(Dhwn), =
where p = (pn) and q = (q,) are sequence of non—negative integers satisfying
Pn < qn and lim g, = oo. (2.1)
n—o0

For K C IN, the deferred density of K is defined by

Di(K) = lim , (2.2)

n— (, — Py

keN:p,<k<gykekK
i N

provided the limit exists.

Definition 2.10. [21] A real (or complex) valued sequence (xy) is deferred statistically convergent to I if

lim ke N:py<k<gu -lzel|=0

n—eo (, — Py
for every € > 0.

For p, = 0 and g, = n, the definition coincides with the statistical convergence of (xx) introduced in [15].

3. DZ((p, ll})g(n (A/)-convergence sequences in IFNS

This section mainly introduces and investigates the notion of DZ (@, lp)g(l)(Af )-convergence of sequences.

Throughout this study, I stands for the non—trivial admissible ideal in IN and A/x; = Z{zo(—l)i (Z) Xesi (j € IN)
for any sequence (x), as well as that (p,) and (g,) are sequences of non-negative integers satisfying (2.1).
Any other restrictions (if needed) on (p,), (9.) and j will be given in the related theorems and examples.

Definition 3.1. Let (X, @, 1), %, 0) be an IFNS. For a sequence (x) in X, we say (x) is Al—rough convergent to some
x with regard to (¢, ) for some v > 0 if, for every t > 0 and u € (0,1), Ang € IN such that

(p(Aka—x,t+r) >1 —pand¢(Aka—x,t+r) <u,Yk=ng.
We write the limit as (¢, ¥)"(A))-1lim x; = x.
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Definition 3.2. Let (X, ¢, 1, *,0) be an IFNS. For a sequence (xi) in X, we say (xi) is deferred I-statistically
difference rough convergent to some x for some v > 0 with regard to (¢, V) (shortly, DZ (@, ¥)g ) (A))-convergent to x)

if, for every €,t > 0and p € (0, 1),

{ne]N: |{k€]N:p,,<k§qn, (p(ijk—x, t+r)s1—yorl,b(Aka—x, t+r)2y}|2€}el (3.1)

qn — Pn

holds. In this case, we denote the limit by DZ((p, V) (AN-limx; = x.

r
S0
Suppose (x¢) is a sequence in an IFNS (X, @, {, x, o).

e Forr = 01in (3.1), the deferred I-statistical difference rough convergence of (xx) is called the deferred
I-statistical difference convergence with regard to (¢, 1).

e If p, =0and g, = nin (3.1), we refer to the deferred I-statistical difference rough convergence of (xx)
as the [-statistical difference rough convergence with regard to (¢, 1).

e If I = I, we call the convergence defined in Definition 3.2 the deferred statistical difference rough
convergence with regard to (¢, ¢).

Remark 3.3. Suppose (x) is a sequence in an IFNS (X, ¢, ¢, %, 0) and r > 0. Then the limit (¢, V) (AV)-1lim x; as
well as the limit DZ((p, 4))2(1)(A1 )—1im xy need not be unique for j € IN, provided they exist. We use the notations
(¢, )" (A)-LTM(xp) = {x € X : (@, )’ (M)-Tim x = x} and

D@, ) (A-LIN(xe) = {x € X - D (0, )} (A))-lim x; = x]

to denote the collection of all (¢, ¥)"(A))-lim x; and Df,((p, ljj)g(l)(Af)— lim xy, respectively.

We say that a sequence (xy) is Ni—rough convergent with regard to (p, ¥) if (, V) (A-LIM(x;) # 0 and a sequence
(yx) is DZ((p, w)g(l)(Af)—convergent ifDZ((p, yb)g(l)(Af)—LIM(yk) # 0 for some r > 0.

If 0 < r1 < 1y, then for any sequence (xy) in X it is clear that
(@, )" (A)-LIN(xK) € (@, )" (A))-LIN(xi)

and
D@, )y (M) -LIN(x) € D@, )2 (A)-LIN(x).

Example 3.4. Consider the IFNS (R, @, ¢, x, o), where (R, ||.||) is the usual normed space, p1 * o = pipla, 10 tp =
min {yl + U2, 1}for all p1, yo € [0,1] and @, ¢ are defined as follows:

t [l

x,t) = —— and Y(x,t) = ——,¥x € Xand t > 0.
PO = o YD =
Define
2 ifk=2n-1,
X = ,n€N.
1 otherwise

Clearly, for j = 1 we have

1 ifk=2n-1,
Alxk = ] ,n€N.
-1 otherwise
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Then

(@, ) (A)-LIM(x) = { E)l -nr=11  ifr>1, }

otherwise.

Assume p, = 0and q, = n for all n € N and take a sequence (yx) in R such that

k, ifk=2"
Aly, = . ,ne€N.
-1, otherwise

Then, for any nontrivial admissible ideal I in IN, we get

[_1—7’,7’—1], lfVZO}

Di(p, ¥)s n(AD-LIM(y) =
Vs (A) ) { 0, otherwise.

We can notice that both the sequences (x;) and () as well as their difference sequences (Alx,) and (Alyy),
respectively, are not convergent in the ordinary sense with regard to (¢, ). Also, (¢, ) (Al)-lim yx does
not exist.

Note 3.5. In contrast to the ordinary convergence in an IFNS (X, ¢, 1, %, 0), the Al-rough convergence of a sequence
(xx) in X with regard to (¢,) does not generally imply the Al—rough convergence of any subsequence of (xy)
with regard to the same. For instance, for the sequence (xi) = (k) in the IFNS defined in Example 3.4, we have
(o, P) (AHN-LIM(xx) = [1 — 1,1+ r] for all r > O, but the subsequence (xy) = (k%) of (xx) is not Al—rough convergent
forany r > 0. The DZ((p, lp)rs(l)(Af)—convergence of a sequence (xx) in X also follows the same reasoning above.

Example 3.6. Consider the IFNS (R, ¢, 1, %, o), where (R, ||.|[) is the usual normed space, p1 * p> = minf{us, o},
p1 © Hp = max{p, po}, ¥ 1, 42 € [0, 1] and @, 1 are defined as

t ||
x,t) = ——, ¥(x,t) = orallx e R, t > 0.
P00t) = s V0o f

b |l
Take p, = 0 and g, = n, ¥ n € N. Define
k  ifk=n?

Xk = f ,neN.
1  otherwise
Then, for any nontrivial admissible ideal I, we get
DZ((PI 1/’)gg)(Al)—LII"[(xk) =[-rr],¥Yr=0.
On the other hand, for the subsequence (x,;2) of (xx), we have
DZ((P/ IP);([)(Al)_LIM(an) =0.

Lemma 3.7. Suppose (X, p,{, x,0) is an IFNS and (xi) is a sequence in X. Let v > 0 be given. Then, for every
€,t>0and p € (0,1), the following are equivalent:

(a) Dy(p, gb)g(l)(N)—lim Xp = X.

(b) {neN:ﬁ{keN:pn<k§qn, (p(Aka—x,t+r)§1—y}(2€}€1and
{neN:ﬁ{keN:pn<kSqn, z,b(Aka—x,t+r)2y}|ze}eI.
(c) {ne]N:qn}pn {ke]N:p,,<kSqn, (p(Aka—x,t+r)sl—por

Y(Aixg —x, t+7) > y}| < e} € F(I).
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|
(@) {neN: L

{ke]N:pn<kSqn, P(Nxg — x, t+r)s1—[u}'<e}el—"(1)and

nelN:—2lkeN:p, <k<qu v(Ax—x, t+1) > pi| < e} € F(I).
P

(e) I—limL{ke]N:pn<k§q,,, PNxg—x, t+71) <1 - porPp(Nxg —x, t+r)2y}(:0,

n—oco qn=Pn

Proof. Due to its obvious nature, the proof has been omitted. [

Theorem 3.8. Let (X, @, 1, %, 0) be an IFNS. Then, for every sequence (xi) in X,
(9, )" (N)-LIM(xe) © D@, ) (A)-LIH(x)
holds.

Proof. Assume that x € (¢, )" (A/)-LIM(x;) for some r > 0. Then, for every > 0 and p € (0,1), 319 € N so
that

P(Nxy —x,t+7)>1—pand p(Axg —x, t+7) < ¥ k > ny.
Therefore,

{ke]N : (p(ijk—x,t+r) <l-por w(Aka—x,t+r) > y} C {1,2,...,n0 —1}.
Since

lim
n—co f; — Py

1{ke N :py <k <gukefl,2,..m —1}}| =0

holds for every € > 0, the set

{nelN: |{ke]N:p,,<k§qn, (p(ka—x, t+r)$1—yor1/1(ijk—x, t+r)2y}(2€}

Qn_pn

belongs to Ir and hence to I. Therefore x € DZ((p, )L - (A)-LIM(xi). As a result, we have

s
(9, )" (N)-LIM(xe) € D@, ) (A-LIH(xp).
|
From Example 3.4, we can see that the above inclusion relation is strict.

Theorem 3.9. Let (X, @, 4, *,0) be an IFNS and (xi) be a sequence in X. Then, for any r > 0, there are no
X,y € DZ((p, )5y (A)-LIM(xy) such that (x — y,sr) <1 = por P(x = y,sr) 2 p for every u € (0,1), where s > 2.

Proof. For any given p € (0,1), 3v € (0,1) such that (1 -v) x (1 -=v) > 1 —pand vov < u. Let on contrary
that there exist x, y € DZ((p, #})g(l)(A] )-LIM(xx) such that for every u € (0,1),

@x—y,st) <1—pory(x—y,sr) >y,

where s > 2. Now, for any ¢ > 0, consider the sets
. t : t
N={ke]N:pn <k<gqy, (p(A]xk—x,E +r) < l—vorlp(AJxk—x,E +r)2v}
and

O:{ke]N:pn<k3qn,(p(Aka—y,é+r)sl—vorw(Aka—y,%+r)2v}.
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Since x, y € DZ((p, V). (A)-LIM(xx), by Lemma 3.7, we have

r
5(D)

I—I}i_r)gqn_ankeN:pn<k$qn,keN})=0
and

I-HQO%_PHerN:pn<kgqn,keo}(:o.
Now

I- lim |{ke]N:pn<ksq,,,keNUO}|

n—oo qn —_ pn

<I-lim
n—oo qn — pn

|{ke]N:pn<k§qn,keN})

+ [- lim
n— g, — Py

ke N:py <k <gukeO)
=0.

Hence for every € > 0,

P:{ne]N:

o [keNp<ksqkenuOf2eer
n= Pn

Letm e P°and € = }1. Then

qm_pm|{ke]N:pm<k§qm,keNUO}|<}L

1

— >1__—§
2 4—4

ke N pu <k < g ke NN OF)

‘7m - Pm
As a result, we have

Q={keN:p, <k<g,keNNO}#0.

Since s > 2, put sr = 2r + t for some t > 0. If p(x — y,sr) <1 — u then for k € Q, we find

1—y2<p(x—y,t+2r)
Z(p(ijk—x,é+r)*(p<ijk—y,§+r)
>A1-v)*x(1-v)
>1-yp,

which is absurd. If {(x — y,sr) > u for some s > 2, then

ySt//(x—y,t+2r)
< llz(Aka —x,% +r) 0¢(ijk - y,é +r)
<vov
<u,

which is again absurd. Consequently, each case leads to an absurd result. The proof of our findings is
finished with this. O
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Proposition 3.10. Let (X, , @, 1, %, 0) bean IFNS. Assume (xi) and (yi) are sequences in X with DZ (p, )2 (A)-limx; =

!
) S
x and DZ((p, w)gz(l)(A])— lim yx = y for some r1, 1, > 0. Then

DZ((P/ l#)(Sr(ll;"z)(Aj)— lim[x; + ]/k] =x+y.

Proof. For given u € (0,1) choose v € (0,1) with 1 -v) *x (1 -v) > 1-pand vov < u. Suppose
DZ((p, gb)gl(l)(Af )-limx; = x and DZ(qo, l,b)gz(l)(Af )-lim y; = y for some r1, 1, > 0. For t > 0, consider the sets

A={kelN:pn<ksqn, go(Aka—x,é+r1)s1—vor¢(Aka—x,§+r1)2v}

and
B={ke]N:p,1<kSqn, (p(Ajyk—y,é+r2)s1—vorlp(Ajyk—y,é+rz)2v}.

Then

{ne]N:

Gn—p {kENZPn<kS%,kGA}|2€}€Iand

{ne]N:

P {ke]N:p,,<k$qn,k€B}’Ze}el

for each € > 0. Therefore,

{nEIN:

Gn—p {ke]N3Pn<kSqn,kGAUB}‘Ze}eI.

Now, choose 0 < A <1sothat0 <1 - A <e. Then

P:=n€]N:

P {keN:pn<kSqn,k€AUB}'Z]—A}eL

Let m € P°. Then

Gm — P ’{kEN:pm<ksqm,kEAUB}’<1_A
m— Pm

-

ke N:py<k<qm ke A°NB°
I )

>1-(1-2A)=A.
qm_Pm

Take k € A° N B°. Then
(p((ijk + Ajyk) —(x+y),t+r+ 1’2) > (p(ijk - X, é + rl) * (p(Afyk -y, é + rz)
>(1-v)x(1-v)
>1—-u
and
w((Aka + Afyk) —(x+y),t+r+ rz) < w(Aka -x, % + rl) o ¢(Afyk -, é + rz)

<vov

< u.
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This implies that
A°NB° Q{kelN:pn <k < gy, (p((ijk+Ajyk)—(x+y), t+rl+rz)> 1—-pand
¢((ijk + Ajyk) —(x+y), t+rn+ rz) < y}.

As a result, for m € P, we have

/\sqmipm|{keN:pm<k5qm,keAcmBC}

<

qm—Pm|=k€N:pm<ksqm' P((Wxe+ Ny = (x+y), t+r +1)>1-p

and lP((Aka + Afyk) —(x+y), t+r+ rz) < lu}|

S

P |{k€lN:pm<kSqm,(p((ijk+A7yk)—(x+y), t+r1+r2)S1—y

or lp((AJ'xk + Afyk) —(x+y), t+n+ rz) > p}‘ <l-A<e
Consequently,

1

qn — Pn

ch{ne]N: '{ke]N:pn<kSqn,(p((ijk+Ajyk)—(x+y), t+r1+r2)§1—y

or ¢((ijk + Afyk) —(x+y), t+rn+ r2> > y}’ < e}.
Since P € F(I), we have

1
Qn_pn

{ne]N:

{ke]N:p,,<ksqn,qo((Aka+Ajyk)—(x+y), t+r1+r2)$1—y

or gb((Aka + A/yk) —(x+y), t+r+ rz) > y}’ < e} e F(I).

(r1+12)

< (AM)-lim[xg + y] =x+y. O

Hence, by Lemma 3.7, we have DZ((p, V)

Remark 3.11. Proposition 3.10 is not true for r, where 0 < r < r1 + 12, if at least one of r1 and r, is non—zero, i.e., for
rn#0o0rr #0if D), V)5 (A)-limxi = x and Dy (e, V)G (A)-lim y, = y then Dy(e, V) (A)=lim[xi + ]
need not be equal to x + y, where 0 < r <1y + 5.

Example 3.12. Consider (R, ¢, 1), %, o), the IFNS, defined in Example 3.6. Define
k ifk = 5",

x=4 0 ifk=2n, ;,nelN

1 ifk#5"2n

and
0 ifk=5",

ye=4 -1 ifk=2n, ;,nelN.
1 ifk#5%,2n

Take py, = 0 and q, = n, ¥ n € N. Then, for any nontrivial admissible ideal I in IN, we get

Dq ) Al [1—1’1,7’1—1] l‘f7’1 > 1,
), —LIM(xi) =
PPy S(D( ) (%) 1] otherwise.
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and

[2=1p,1=2] ifr, > 2,
Dy (@, ), (A)-LIM(ys) ={ 0 v . }

otherwise.
Now,
k ifk =5",
Xe+ye=4 —1 ifk=2n, },nelN.
2 ifk#5",2n
Then

. K [B-rr-3] ifrz3,
) (AD-LIN(x; + v) =
(P, )5 (AY) (¥ + Yi) 0 otherwise.

Letri =1andr, = 2. Then

D(@, §)g(AD-limxc = 0

and
Di(e, lp);z(l)(Al)— lim y; = 0.

Ifwe take r <11 + 1, =3, then DZ((p, V) )(Al)—LIM[xk + k] = 0.

r
(I
Proposition 3.13. Let (X, @, Y, %, o) bean IFNS. Forasequence (xi) in X and somer > 0, if DZ((p, ),

(
5(0)
x then DZ((p, w)lg(l;)(Af )-limaxy = ax for any a € R.

Aj)— lim xy, =
Proof. If a = 0, there is nothing to prove. Suppose a # 0. For given u € (0,1), 3 y € (0,1) such that
1-y2>1-u. For givent > 0, consider
. t ; t
P={ke]N:pn <k<q,, (p(A]xk—x,m+r) < 1—yor¢(A1xk—x,m+r)2y}.

Since DZ (@, ):

S(1)(AJ')— lim x; = x, the set

Q:{ne]N:

{ke]N:pn<k§qn,keP}'<e}eF(I) (3.2)

n— Pn

for each € > 0. Take m € Q. Then

qm_pm’{keN:pm<k5qm,keP}’<e

=

ke N:pu <k <gu keP|21-c

Gm — Pm
Now, for k € P°, we have
. , ¢
Nxy—ax, lalr +t) = o(Nxy —x,r+ —
(p(a X — ax, |a|r ) (p( Xy — X, 1 Ial)

= (p(ijk -x,r+ ﬁ)

>1-y21-u
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and
1p(aAka —ax, |alr + t) = I,D(ijk - X, 7+ |;t|)
< l,b(ijk X, v+ ﬁ)
<y <

Consequently,
P c {k eEN:p, <k<qgy, (p({zAka —ax, |alr + t) >1—-pand 1/J(aAka —ax, |alr + t) < y}.

As a result, for m € Q, it follows that

l-e < qm_pm“ke]N:pm <k < g, ke P
< _pm'{k € N: py <k < g, @(alx; - ax, lalr + £) > 1 -y and
P(atxe - ax lalr + ) < |
This implies that
— (k€ N p < < g, platxe = ax by + 1) < 1= g o lanixe — ax lalr + 1) = )| <
Therefore,
QcfneN: ke N:p, <k <qu, @(ax - ax, lalr +£) <1 -y or

Qn - pn
1,[1(aijk —ax,|alr + t) > /.1}| < e}.

From (3.2), it follows that

{ne]N:

keN:p, <k<g,olaNx—ax,lalr+t)<1-puor
ke N pr <k < g )s1i-u

lp(aAka —ax, |alr + t) > y}| < e} € F().

Hence, by Lemma 3.7, DZ((p, yb)'g(lg)(Af )-limaxy =ax. O

Remark 3.14. Forr > 0, Proposition 3.13 need not be true for 0 < I < |alr, i.e., for somer > Qif DZ((p, )L (A)=lim x; =

.
‘ o)
X then DZ((p, yb)’s(l)(Af )-lim axy need not be equal to ax, where 0 < I < |alr and a € R.

Example 3.15. Consider Example 3.12 and take a = 2. Clearly
2k ifk=>5",
2%, =< 0 ifk=2n, ;,neN.
2 ifk#5"2n

and

D! LAl 2 2=l S
’ -LIM =
p (P )5y (A7) -LIM(2x) 0 otherwise.
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Let r1 = 2, then
Dy(¢, ¥)g(AN-LIN(x) = [-1,1]
and
Dy, )52 (AD)-LTM2x) = [-2,2] = 2[-1,1].

On the other hand, If 2 < | < 4, we get

Dy (@, ¥)g ) (AN-LIMQx) = [2 - 1,1 = 2] # 2[-1,1].
Definition 3.16. Let (X, ¢,, %, 0) be an IFNS. For a sequence (xi) in X, we say (x) is AiF—strongly bounded iff for
every p € (0,1), At > 0 such that (AN xy, t) > 1 — pand P(Nxy, t) < u forall k.

Definition 3.17. Let (X, @, 1), %,0) be an IFNS. For a sequence (xi) in X, we say (xx) is deferred I-statistically
A —strongly bounded iff for every p € (0,1), At > 0 such that

{ne]N: |{ke]N:pn <k<g,, (p(Aka,t) < 1—yor1/;(Aka,t) > ,uH Ze} el

Qn_pn

forany € > 0.

From above definitions, itis evident that if a sequence (xy) is A’I‘F—strongly bounded then (¢, )" (A/)-LIM(x;) #
0 and hence by Theorem 3.8, D;’,((p, gb)g(l)(Af )-LIM(xx) # 0 for any r > 0. The converse implication of this
result is not true. To overcome this situation, we present the theorem as follows:

Theorem 3.18. Let (X, ¢, 1, %, 0) be an IFNS. A sequence (xi) in X is deferred I-statistically AQF—strongly bounded
if and only if Dy (¢, )5, (A)-LIM(xy) # 0 for some r > 0.

Proof. Assume that (xx) is deferred I-statistically AiF—strongly bounded. Thus, for every u € (0,1), 37 >0
so that

{ne]N:

|{k eEN:p, <k<gy,, (p(Aka,r) <l-uor lp(Aka,r) > y}) > e} el

Gn — Pn

for any € > 0. Consider
C= {k €EN:p, <k<gy, (p(ijk,r) <l-por w(ijk,r) > y}.
Clearly

D:@eN:

P (ke N:p, <k <qu,keCl| <e} e F).

Now, for m € D, we obtain

P |{ke]N:pm<kSqm,keC}|<e

=

P (ke N:pw<k<gukeC||z1-e.

On the other hand, take k € C°. Then, for any f > 0, we have

(p(Aka,t +7) > (p(ijk, NHxe0,5)>1-u)*x1=1-y,
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and
YN xg, t+7) < YA xg, 1) 0o (0,8) < o0 = p.
Therefore,
C°c {k eEN:p, <k< qn,(p(ijk,t+ r)>1-pand ¢(Aka,t+ r) < y}.

Hence, for m € D, we find

loe< |{k€]N2Pm<k§qm/kecC})

%1 - pm
<

=y 1;? |{k€Nipm<kSqm, (p(Aka,t+r)>1—yand1/)(Aka,t+r)<y})
m~— Pm

S

P |{kelN:pm <k <gm, (p(Aka,t+r)sl—yor¢(Aka,t+r)2y}|<e.

Consequently,

Dc{neN: (ke N:p, <k <qu @(Axit+r)<1-por

qn - Pn
P(Axi, t+7) 2 pl| < ef € FO).

By Lemma 3.7, it follows that 0 € Dj (¢, L2/ (A))-LIM(xp).

Conversely, suppose Dj (¢, )50 (A))-LIM(x;) # 0 forsomer > 0. Letxbe amember of Dj (¢, gb)g(l)(Af )-LIM(xy).
Then, for every t > 0, e > 0 and u € (0,1), we have

{nelN:q - |{ke]N:p,,<k§qn, (p(Aka—x,Hr)s1—por¢(Aka,t+r)2y}|ze}el,
which implies that
{ne]N: p |{ke]N:pn<kSqn, Aka¢8§¢’¢)(t+r,y)}|Ze}el.

Hence, (xy) is deferred I-statistically AiF—strongly bounded. [

We found that the difference rough convergence limits defined above are sets rather than unique points.
So we provide some topological as well as geometrical properties of the limit set DZ((p, ¢)g(l)(A] )-LIM(xy) as
follows:

Theorem 3.19. Let (X, ¢, 1, %, o) be an IFNS and (x;) be a sequence in X. Then DZ((p, l,b)rs(l)(Af )-LIM(xx) is a closed
set for every r > 0.

Proof. For given u € (0,1), 3v € (0,1) suchthat (1 —v) *x (1 -v) > 1 —-p)and vov < u. Letx €
cl(DZ((p, gb)g(l)(Ai)—LIM(xk)), the closure of Dj(¢, )

r5(1)
DZ((p, sb)g([)(N )-LIM(x) such that z AN x. Thus, for every t > 0, A1y € N so that

(A/)-LIM(xx). Then, there exists a sequence (z;) in

t t
(p(zk—x,z) >1-vand yb(zk—x,z) <v,Y k> ny.
Choose mg > ng. As a result, we have the set

E = {ke]N:(p(ijk—zmo,r+ %) < 1—vor1,b(ijk—sz,r+ %) Zv}
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such that

F={neN: (k€ N:py <k <qu,k € E}| < e} € F),

qn — Pn

for every € > 0. For m € F, we obtain

— ke N:pw<k<qukeE}|<e
m~— Pm

=

keN:py<k<gukeE>1-e€.
Qm_pm

Take k € E°. Then

(p(Aka—x,tJrr)Zqo(Aka—zmo,r+%)*go(zmo—x,£)>(1—v)*(1—v)>1—y

and

¢(ijk —-x,t+ r) < z/)(ijk — Zmg, T+ é) o gb(zmo - X, %) <vov<yu.
As a result,

ECQ{kEN:pn<kSqn, (p(ijk—x,t+r)>1—yand¢(Aka—x,t+r)<y}.

Therefore, for m € F, we get

l1-€e< keN:p,<k<g, keE*
€<qm—}?m|{ €N :py <k <qu keEl|
Sq , |{ke]N:pm<k§qm, (p(ijk—x,t+r)>1—yand¢(ijk—x,t+r)<y}|.
m = Fm
Hence,
|{ke]N:pm<k§qm,(p(ijk—x,t+r)s1—yor1,b(Aka—x,t+r)2y}|<e.
m — Pm

Consequently, we obtain

Fg{nelN: |{k€]N:p,,<k Sqn,(p(Aka—x,t+r)§1—yor

qn — Pn
g[}(Aka —x,t+7)> y}| < e} € F(I).

Therefore, by Lemma 3.7, we have x € Dj (¢, 1/))2(1)(Af )-LIM(x;). Hence, Dj(¢, )5, (A)-LIM(x;) is closed. [

s
Theorem 3.20. Let (X, @, 1, *,0) be an IFNS and (xi) is a sequence in X. Then, for every r > 0, the set
Dl(¢, gb)g(l)(Af )-LIM(xy) is convex.

Proof. Supposex,y € DZ((p, gb)g(l)(Af)—LIM(xk) and u € (0,1)is given. Then, v € (0,1) so that (1-v)x (1-v) >

1—pandvov < u. Weneed to show thatax+ (1 -a)y € DZ((p, l,b)g(l)(N)—LIM(xk) foranya € [0,1]. Fora =0
or 1, the result is obvious. Let a € (0,1). For every ¢ > 0, define

G:{kE]N:pn<kSqn, (p(Aka—x,r+i)sl—vor¢<A]’xk—x,r+ i)Zv}
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and

Hz{kelN:pn<kSqn, (p(ijk—y,r+ )Sl—vortp(ijk—y,r+

t
—2(1 —a)) > v}.

2(1-a)
Then
{nelN:q — {ke]N:p,,<ksqn,keG}|Ze}eI
and
{nelN: {ke]N:p”<k§qn,keH}|2€}eI

Qn_pn

for every € > 0. Therefore,

{ne]N:

Gn—p {kEN:p”<kSqﬂrkeGUH}|Z€}€I.

Choose 0 < A <1sothat0<1- A <e. Hence

J={neN:

q_p{kGme<kSqueGuHHzl—ﬂeL

Let m € J°. Then

p— ’{ke]N:pm<k§qm,keGUH}|<1_/\

Sl

|{kelN:pm<kSqm,keGCch}

>1-(1-A)=A.
qm - Pm
Now, take k € G° N H°. Hence,
o(Ax— [ax + (1= )y], t+7)
= (p((l —a)(Ax — y)+ a(Nxg—x), (1-a)r+ar+ t)

> (p((l —a) (AN — y), 1-a)+ %) * (p(a(ijk —-X), ar+ é)

)*(p(ijk—x, r+ i)

. t
— Ty, —
o(a%x Y oa—a 2

>1-v)*x(1-v)
>1-u

and
¢(ijk— [ax + (1 —-a)y], t+ r)
= (1 - )(WNxe - y) + (A = %), (1 - a)r +ar +1)

< 1{1((1 —a)(ANxg — y), 1—-a)+ é) o ¢(a(ijk —-X), ar + %)

:lp(Aka—y, r+ )o¢(Aka—x, 7+ i)

<vov

<.

t
2(1-a)
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As a result, we have
GCOHCQ{kE]N:pn <k < gy, (p(ijk—[ax+(1—a)y], t+r) >1-pand
¢(Aka —[ax+ (A -a)y], t+ r) < y}.

Hence, for m € |, we have

/\Sqm_pm‘{ke]N:pm<ksqm,keGCmHC}
Sqmipm‘{keN:pm<k§qm, (p(Aka—[ozx+(l—a)y],t+r)>1—y
and ¢<ijk—[ax+(1—a)y], t+r)<y}|
= P |{k€lN:pm<kSqm, (p(ijk—[ax+(1—oz)y],t+r)£1—y
orlp(ijk—[ax+(l—a)y],t+r)2y}’<1—A<e.
Consequently,
]Cg{neIN: {kelN:pn<ksq,,,go(Aka—[ax+(1—a)y],t+r)s1—y

qn - pn
or 1[/(Aka —[ax+ (A -a)y], t+ r) > y}| < e} € F(I).

Hence, by Lemma 3.7, it follows that ax + (1 — a)y € DZ((p, V)L (A)-LIM(xg). O

5(1)(

Theorem 3.21. Let (X, @, 1, %, 0) be an IFNS. Then DZ((p, w)g(l)(Aj)— lim x = x for some r > Q if there is a sequence
(yx) in X such that (yy) is deferred I-statistically difference convergent to x and

P(Nxy — Nyg, 1) > 1 — pand p(Nxy — Ny, r) < u (3.3)
hold for every p € (0,1) and for all k € IN.

Proof. For given u € (0,1), choose v € (0,1) so that (1 =v) * (1 -=v) > 1-pand vov < u. Suppose, the
sequence (yx) is deferred I-statistically difference convergent to x and satisfies (3.3). Then, for every t > 0
and € > 0, we have

L:{ne]N:

np {ke]N:p,,<k$qn, (p(Afyk—x,t)gl—vorgb(Afyk—x,t)ZV}'Ze}el.

Letm € L. Then

P {ke]N:pm<kSqm, (p(Afyk—x,t)sl—vorlp(Afyk—x,t)ZvH<e

= |{k€IN:pm <k < qm, (p(Ajyk—x,t)>1—vand1p(Ajyk—x,t)<v}'Zl—e.

Qm _Pm
Now, define
M= {kelN P <k < qm, (N yx —x,t) > 1—vand p(Alyx — x,t) <v}.
For k € M, we get

P(Nxp —x, t+7) > @(Nxg — Ny, 1) * Ny —x, ) > (1 =) *x(1-v)>1-p
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and
¢(Aka —-x, t+71) < ‘/’(ijk - Afyk, r)o yb(Afyk —-x,t)<vov <.
Therefore,

Mg{kelN:pm<k§qm, (p(ijk—x,t+r)>1—yand¢(ijk—x,t+r)<y}.

This implies that
1-€ < qm_pm|=k€N:pm<k$qm, keM}|
s Gm — P |{k€N:pm<kS‘]m, (P(Aij—X, t+r)>1—[,1

and w(Aka -x, t+ r) < y}’

= |{kelN:pm<kSqm, (p(Aka—x, t+r)s1—yor1p(Aka—x, t+r)2y}|<e.

qm - Pm
Since m € L¢ and L° € F(I), we get

LcfneN:

P {keN:pn<k3qn, (p(ijk—x,t+r)S1—y

or gb(A/xk -x, t+ r) > y}| < e} € F(I).
This implies that Dj (¢, Py (A)-limx = x. O

Theorem 3.22. Let (X, @, 1), %, 0) be an IFNS. If a sequence (xi) in X is deferred I-statistically difference convergent
to x, then there exists v € (0, 1) such that

cl(Bi(P’”b)(r, v)) C Di(¢, Ip)g(l)(Af )-LIM(xy) for some r > 0.

Proof. For given p € (0,1),dv € (0,1)sothat (1 -v) * (1 -v) >1—pandvov < u. Suppose (xx) is deferred
I-statistically difference convergent to x. Then

R:{ne]N: {ke]N:pn<k§qn, (p(Aka—x,t)s1—vor¢(ijk—x,t)2v}‘Ze}el

Qn _pn

for every €,t > 0. For m € R, we have

qm_pmerNYPm<k£ﬂmMﬂA&%—XJ)S1—vomMA&k—xj)2ﬂ|<€

=

qm_Pm|{kelN:Pm <k <qu, (p(Aka—x,t)>1—vand¢(Aka—x,t)<v}‘ >1—e.

Now, letw € cl(BffJ’lp)(r, v)) for some r > 0. Then
px-—w,r)>21-vand p(x —w,r) <.
Define

Sz{keﬂ\l:pm<k§qm, (p(ijk—x,t)>1—vand4}(Aka—x,t)<v}.
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Thus for k € S, similarly to above, we have
P(Nxy —w, t+7)>1 - pand P(Nxy —w, t+7) < .
Therefore,
SQ{kelN:pm <k<qum, qo(Aka—w,t+r)>1—yandz,b(Aka—w,t+r)<y}

and hence

1-€ sqmipm‘{keN:pm<k§qm,kes}‘

<
5];11 - Pm

|{ke]N:pm<k5qm, (p(Aka—w, t+r)>1—y
and ¢(Aka—w, t+r)<y}|.

This implies that

P |{ke]N:pm<kSqm, (p(Aka—w, t+r)s1—yor¢(ijk—w, t+r)2[.1}|<e.

Since m € R° and R¢ € F(I), we obtain

R"Q{nelN:

g {ke]N:pn<kSqn, (p(Aka—w,t+r)§1—y

or l[J(ijk -w, t+ r) > y}| < e} € F(I).

Consequently, w € D (¢, z,b)g(l)(Af )-LIM(x;). As a result cl(Bi(p’w(r, v)) C Di (¢, ) )(Aj FLIM(xe). O

r
s(

Definition 3.23. Let (X, ¢,1, %,0) be an IFNS and (xi) be a sequence in X. A point z € X is called deferred
I-statistical Al—cluster point of (xi) with regard to (¢, V) for some r > 0 if, for any t > 0 and u € (0, 1), we have

{nelN: |{ke]N:p,,<k§qn, PNxy—z, t+71) <1 —porp(Nx -z, t+r)2y}|<e}¢l.

Qn_pn

(RO

We denote the set of all deferred [-statistical A{—cluster point of (xx) by TD;, (Axy).
q

Note 3.24. Forr = 0, the deferred I-statistical Aﬁ—cluster point of (xi) is known as the deferred I-statistical Ai—cluster
point of (xi) and the collections of such cluster points is denoted by FE;,’IP)S(D (Nxy).
q

Theorem 3.25. Let (X, ¢,1, %, 0) be an IFNS. Then the set Fgw)s‘”(Aka) is closed for every sequence (x) in X and
q
eachr > 0.

Proof. For given u € (0,1),Ave(0,1)sothat(1-v)*x (1-v)>1-vandvov < u. Letze cl(FZZ,’w)s(”
q
@

q
P
Dq

(Alxy)).

(p4)

Then, there is a sequence (z) in I’ (Aixy) such that zx —— z. Thus, for every t >0, dnp € N so as

(p(zk—z,%)>l—vandgb(zk—z,é)<v,\!k2n0.

Fix mgy > ng and set

T= {ke]N:pn <k§qn,(p(Aka—zmo,r+ %) < 1—vor1,b(Aka—zm0,r+ %) Zv}.
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As a result, for every € > 0, we obtain

U={neN: ke N:p,<k<qukeT)|<ef ¢l

Gn — Pn

Similarly, as the proof of Theorem 3.19, we get

Ug{ne]N: |{ke]N:pn<kSqn, (p(ijk—z,t+r)Sl—yorlp(ijk—z,t+r)2y}|<e}.

Qn_pn

Since U ¢ I, we have

{ne]N: P |{ke]N:pn <k<gq,, (p(ijk—z,t+r) < 1—yor¢(ijk—z,t+r)2y}| <e}¢I,
n=— Pn
ie,z€ F(Dq:w)s”’ (A/xy). Hence the set r(;tp)s(,) (ANxy) is closed. [

q q

Theorem 3.26. Let (xi) be a sequence in the IFNS (X, @, 1, %, 0) and r > 0 be given. If p(z—y,r) > 1 — pand P(z -
y,7) < w hold for an arbitrary z € T gp’lp)s(” (Alxy) and p € (0,1), then y € l"g;'w)s(” (Alxy).
q q

Proof. The result is direct, so the proof is omitted. [

Theorem 3.27. Let (X, @, 1, %, 0) be an IFNS and (xi) be a sequence in X. Then, for some r > 0 and v € (0,1), we
have

(P i ’
rDZ SO (Alxy) = U cl(Bffo L/))(T, 1/)>.

(Pab)s(

xel S0 (Aixy)

q

Proof. For any given p € (0,1), dv € (0,1) suchthat (1 -v) x (1-v)>1—-pandvov < u. Let

ze U (B, v)),r > 0.

(Y
xer#Vso

o (Axy)

Then, 3 x € F;;P;,’I’U)S"’(Aka) so that z € cl(B;(’j’w)(r, v)), ie, p(x —zr) > 1-vand Y(x — z,¥) < v. Since

q
X € F§/¢)5m (AVxy), we have
q

X={neN: ke N:p, <k<qn pWxc—x, ) <1-vor p(Ax —x, ) 2 v|| <e| g1

qn_Pn

for every €,t > 0. Consider
Xp ={keN:p, <k<gu pNxp—x, t) <1—vor P(Alx;—x, 1) 2 v},
Then, we have
X] {ke N:p, <k<gy, (p(ijk -z, t+1r)>1-pand 1/)(ij;< —-z,t+r)< p}. (3.4)

Now take m € X. Then

P |{k€]N:pm<k§qm,keX1}|<e
m m
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= qm_pm|{kelN:pm<k$qm,keX§}|21_e_

Hence, by (3.4), it follows that

P |{ke]N:pm<k$qm, qo(ijk—z,t+r)>1—yand1,l}(ijk—z,t+r)<y}}Zl—e.

-

p |{k€lN:pm<k5qm, go(Aka—z,t+r)sl—yor¢(Aka—z,t+r)2y}| <e.
As a result, we get

XgheN:

— ){kelN:p,,<k§q”, (p(Aka—z,t+r)s1—yor¢(Aka—z,t+r)2y}|<e}.

Since X ¢ I, it follows that

{ne]N:

7 |{ke]N:pn<k$qn, (p(ijk—z,t+r)Sl—yorlp(Aka—z,t+r)2y}|<e}¢1.

Hencez € Fgfw)s“’ (Afxy). Consequently,
q

(A1) I ,
ré O (Alxg) 2 LJ (B (1, v)). (3.5)

(!"4)5(1 i
e 50 (A

q

Conversely, assume that y € I’((P Vs *"(Alxy). Then y € U cl(Biqj’¢)(r, v)). Otherwise y ¢ cl(i’iﬁf’7 Y, v))
xel Z;ws(l) (Axg)
q

for any x € F;;P,;w)s(” (Alxy), ie.,
q

px—-—yr)<l-vorylx—-yr)>v

Hence, by Theorem 3.26, it follows that y ¢ F((p Wso (A/x;), which contradicts our assumption. Therefore,
(<p Vs .
Ty (W) U (B ). (36)
<({ V)s(1y ( Aixg)

1
From (3.5) and (3.6), the result follows. O

Corollary 3.28. Let (X, @, {, x, o) be an IFNS. If a sequence (xi) in X is deferred I-statistically difference convergent
to x, then F((P W D(Aix) C DZ((p, gb)g(l)(N )-LIM(xy) for some r > 0.

Proof. Suppose (x;) is deferred [-statistically difference convergent to x. Hence x € Fg;’ws“’ (AVxy). Therefore,
by Theorem 3.27, for some r > 0 and u € (0, 1), we have '

o750 (A = (B 1, w). 3.7)
q

Also, from Theorem 3.22, it follows that
(B (1, 1)) € D, )y (A)-LIN(p). (3.8)
Hence, by (3.7) and (3.8), we have

(P ; ;
70 (A xi) € D, )y (A)-LIN(x).

q
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4. Conclusions

Rough convergence and difference operators have been the subjects of extensive investigation in many
areas of mathematics. Since ideals and deferred densities have become increasingly significant in sequence
convergence theory in recent years, in this paper, we extend the intriguing idea of rough convergence to
the context of intuitionistic fuzzy norm spaces via difference operators by incorporating both ideals and
deferred density. Furthermore, we examine some characteristics of the limit set of this new notion of
convergence.

Acknowledgment: We thank the editor and referees for valuable comments and suggestions which helped
in the improvement of the article.
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