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A general form for precise asymptotics for the stochastic wave equation

Jingyu Li% Yong Zhang**

?School of Mathematics, Jilin University, Changchun 130012, P. R. China

Abstract. Consider the stochastic wave equation driven by a general Gaussian multiplicative noise,
which is temporally white and colored in space including the cases of the spatial covariance given by a
fractional noise, a Riesz kernel, and an integrable function that satisfies Dalang’s condition. In this paper,
we present the precise asymptotics for complete convergence and complete moment convergence for the
spatial averages of the solution to the equation over a Euclidean ball, as the radius of the ball diverges to
infinity. Some general results on precise asymptotics are obtained, which can describe the relations among
the boundary function, weighted function, convergence rate and the limit value.

1. Introduction

Consider the following stochastic wave equation (SWE for short):

2
8—:(15, ) = Ault,x) + o(u(t, ))W(t,x), t>0,xeR,

u0,x)=1, xeR? (1.1)

(;_1:(0/ x) = O/ X € Rd!

where A stands for the Laplacian operator in space variables and W denotes a centered, generalized
Gaussian noise whose covariance is given by

E(W(t, x)W(s, y)) = 6ot —s)f(x—y), s,t=0,x,y€R (1.2)

The coefficient o is a Lipschitz function. In order to avoid triviality, we assume that o(1) # 0.
In this paper, we are interested in the following three cases:

Case 1.1. The Gaussian noise behaves as a fractional noise in space with Hurst parameter H € [1/2,1), that is,
f(x) = |x*72 for H € (1/2,1), and f(x) = So(x) for H = 1/2.
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Case 1.2. The Gaussian noise has a spatial covariance described by the Riesz kernel, that is, d = 2 and f(x) = |x|7#,
B e (0,2).

Case 1.3. f isatempered nonnegative and nonnegative definite function, whose Fourier transform u satisfies Dalang’s
condition:

p(dz)
f]Rd 15 12P < 00 (1.3)

ford =1,2. Suppose also that f satisfies f € L'(R) ifd = 1 and f € L! (]RZ) NL¢ (IRz)for some € > 1ifd =2.

Notice that following Dalang [4], under Case 1.1, Case 1.2 or Case 1.3, we can interpret the solution to
(1.1) in the following mild form:

t
ult,x) =1+ f f Gi—s(x — y)o(u(s, y))W(ds, dy), (1.4)
0 JR?

where the above stochastic integral is understood in the sense of Dalang-Walsh and G;_s(x — y) denotes the
fundamental solution to the corresponding deterministic wave equation, that is,

Gi(x) %1{le<t|, ifd=1; N
X) = 1 . - |
t ml{lxkt}, ifd =2.

There have been many achievements for limit theorems for spatial averages of the solutions to SWEs.
Delgado-Vences et al. [5] obtained a quantitative central limit theorem (CLT for short) and a functional
CLT for spatial average of the one-dimensional SWE driven by a Gaussian multiplicative noise, which is
white in time and has the covariance of a fractional Brownian motion with Hurst parameter H € [1/2,1)
in the spatial variable. Bolafios Guerrero et al. [3] considered the case that 4 = 2 and the Gaussian noise
is temporally white and spatially colored described by the Riesz kernel. Fix d € {1,2}, Nualart and Zheng
[15] studied the d-dimensional SWE driven by a Gaussian noise, which is temporally white and colored in
space such that the spatial correlation function is integrable and satisfies Dalang’s condition. Nualart and
Zheng [14] investigated the spatial ergodicity for a class of SWEs with spatial dimension less than or equal
to 3. We refer to Balan et al. [1], Balan et al. [2] and Li and Zhang [9-12] for several other investigations on
stochastic partial differential equations.

In this paper, we are interested in the asymptotic behavior of the spatial averages of the solution to
(1.1). Specifically, we aim to study the precise asymptotics for complete convergence and complete moment
convergence for the stochastic wave equation.

The concept of complete convergence was first introduced by Hsu and Robbins [7], since then there
have been extensions in several directions. One important topic of them is to discuss the precise rate and
limit value of

Y EEIXP (X, > evm)]

n=np
as¢ — a,a > 0, where p > 0, (x) and v(x) are the positive functions defined on [n, ), X;, = .7, {; forn > 1
and {C,, n > 1} is a sequence of independent and identically distributed random variables with [E(; = 0 and

]EC% < 00. We call i(x) and v(x) weighted function and boundary function, respectively. A first result in this
direction was given by Heyde [6], who proved that

lime? )" P{|X,| > en) = EC.
n=1
The research in this field is called the precise asymptotics. For analogous results in more general case, see
Lu et al. [13], Wu and Jiang [16], Wu and Wang [17], Zhang et al. [18], Zhao et al. [19] and the references
therein.
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The main objective of this paper is to study the general form of precise asymptotics for the stochastic
wave equation. The rest of the paper is organized as follows. In Section 2, we establish the precise
asymptotics for complete convergence for the stochastic wave equation. And the precise asymptotics for
complete moment convergence for the stochastic wave equation are given in Section 3. Finally, we put some
technical lemmas into the Appendix. Throughout the paper, C represents a positive constant although its
value may change from one appearance to the next, N denotes the standard normal random variable, and
forevery Z € L¥(Q), we write || Z||x instead of {IE(|Z[F)}V/¥.

2. Precise asymptotics for complete convergence

In order to state the main results, let us introduce

Srr= | (u(t,x)—1)dx, forall R > 0, fixed t > 0, 21)
Br

where B = {x eR?: x| < R} and |-| denotes the Euclidean norm on R?. Here and in the sequel, 1y represents
a non-negative constant although its value may change as the function g changes in the main results.
The following two results concern the precise asymptotics for complete convergence.

Theorem 2.1. Let h(x) be a positive and differentiable function defined on [ny, 00), which is strictly increasing to co.
Let f be a kernel of Cases 1.1-1.3, then for any O > 0 and fixed t > 0, we have

° Srt‘
lim /¢ f W (r)P |— > eh®(r)  dr = EIN|V. (2.2)
e=0 no \[Var (Sr,t)

Theorem 2.2. Let h(x) be a positive and differentiable function defined on [ny, o), which is strictly increasing to co.
Let f be a kernel of Cases 1.1-1.3, then for any 6 > 0 and fixed t > 0, we have

1 o, 1S 0 !
lim f p >eh?Nldr==. 23
e—0 — loge 1o ]’1(7’) { \/\m ( ) 0 ( )

Remark 1. In our main results, it is only assumed that h(x) is positive, differentiable and strictly increasing.
Actually, it is quite easy to be satisfied. For example, h(x) = x*, (log x)?, (log log x)? with some suitable conditions
ofa>0,B>0,y > 0and some others all satisfy these conditions. In the following, some typical examples are given.

2

In Theorem 2.1, let h(x) = x%_l,no =1,0= 2(%;), where 0 < p < a <2, we have

Corollary 2.1. Let f be a kernel of Cases 1.1-1.3, then for 0 < p < o < 2 and fixed t > 0,

* S
lim sz(“‘f’)/(z"")f r“/P‘ZP{L > err 7t
1

dr
20 v/ Var (S;) }

In Theorem 2.1, let h(x) = (log xX)* g =e,0 =

= P _pnpe-niep,
a-p

m, where b > —1, we have

Corollary 2.2. Let f be a kernel of Cases 1.1-1.3, for any b > —1 and fixed t > 0,

* (logr)® |Sr,t| 1
lim ez(b“)f ( P > eflogr’dr = —ENPEHD,
e=0 e r 4/ Var (Sr,t) & b+1

In Theorem 2.1, let h(x) = (loglog x)* g = ¢, 0 , where b > —1, we have

_ 1
= 20+
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Corollary 2.3. Let f be a kernel of Cases 1.1-1.3, for any b > —1 and fixed t > 0,

* (logl b S,
lim £20+D (loglog 1) P{ | 't| > ¢ +/loglog 1’} dr = 1 }_ 1]E|N|2(b+1),

e—0 e r 10g r 4/ Var (Sr,t)

In Theorem 2.2, let h(x) = x,ny =1,0 = 22—_;, where 0 < p < 2, we have

Corollary 2.4. Let f be a kernel of Cases 1.1-1.3, for 0 < p < 2 and fixed t > 0,

1 . 1 |Sr,t‘ 1_1 Zp
lim—f —P{————>e¢err"23d .
-0 —loge J; 1 { v/ Var (S,;) } 2-p
In Theorem 2.2, let h(x) = logx,,ng = ¢,0 = 1, we have
Corollary 2.5. Let f be a kernel of Cases 1.1-1.3, for fixed t > 0,

1™ Sl _
lﬂ—loggf; rlogrp{mzts\/logr}dr—z

In Theorem 2.2, let h(x) = loglogx,,ng = €%, 0 = %, we have

Corollary 2.6. Let f be a kernel of Cases 1.1-1.3, for fixed t > 0,

1 1 |S|

g% —loge L rlogrloglog TP{ v/ Var (S;)

> ¢ 4/loglog r} dr =2.

2.1. Proof of Theorem 2.1
In the following propositions, we will denote 9(¢) = h™* (Me‘ %) ,M > 0,and h~!(x) is the inverse function

of h(x).

Proposition 2.1. Under the assumptions of Theorem 2.1, for any 0 > 0 and fixed t > 0, we have

lim ¢*/7 f I (r)P{IN| 2 eh®(r)} dr = EIN|".

0

Proof. Using the change of variable 7 = ¢h%(r), we can get that

lim el/o f h’(r)P{|N| > ehe(r)}dr = lim 1 Fo 1PN > FdF = % f Fo L P(IN| > 7)dF = EIN|Y°.
£ 1o E— Ege(no) 0

O

Proposition 2.2. Under the assumptions of Theorem 2.1, for any M > 1 and fixed t > 0, we have

S(¢€)
lim £'/9 f W (r) dr=0.
=0 1o

p ﬂ > eh(r)} — P{|N| 2 fhg(r)}
VVar (S,)

Proof. Set
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By Lemmas 1-3, we have I%im Agr = 0. Note that

3(c)
f W (r)dr = g(3(e)) = Me ™9,
no

where A(x) = B(x) means that there exist positive constants C; < C; such that C;A(x) < B(x) < CA(x). Thus,
by Stolz’s theorem,

d(¢e)
lim £!/¢ f 1 (r)
=0

no

3(¢€)
dr < ljns el/o f W (r)a.dr = 0.

np

P A > eh’(r) { - P{IN1 2 eh’(r)}
yVar (S;y)

O

Proposition 2.3. Under the assumptions of Theorem 2.1, for any 0 > 0 and fixed t > 0, uniformly with respect to
0 < e <1, we have

lim &!/? f W (NP{IN| 2 eh®(r)} dr = 0.
S

M—oo 5

Proof. Using the change of variable 7 = ¢h%(r), we can get that

00 C 00 1
. 1/6 ’ 0 = ~1l_1 A7 —
]\}grloe L(s)h (r)P{lNI > ch (r)}dr 5 A}{lglo » 7o P{N| = 7}d7 = 0.
|

Proposition 2.4. Under the assumptions of Theorem 2.1, for any 6 > 0 and fixed t > 0, uniformly with respect to
0 < e <1, we have
. 1/6 = |S’rt) 0
lim ¢ H(r)P{ ————= = eh”(r) ; dr = 0.
M—eo 3(e) Var (S;+)

Proof. By Markov inequality, the asymptotic variances (see Lemmas 1-3) and moment bounds for spatial
averages (see Lemmas 4-6), for some g > 2 such that g0 > 1, we conclude that

lim &!/¢ f ) W (r)P L > eh®(r) t dr
M—co 9(e) /Var (S;) a
oo q
< lim sl/ef W (r) EISy Zdr
Mo s (eht(r)|Var (S,))

00 h/
<C lim el/e_qf Q(T) dr
M—oo 9e) g ‘7(1”)

|
SC lim El/e_qf ?df
M- ME_% 74

M—-oo Jp 799
=0.
O

Proof. [Proof of Theorem 2.1] Theorem 2.1 is proved by Propositions 2.1-2.4 and the triangular inequality. [
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2.2. Proof of Theorem 2.2
Proposition 2.5. Under the assumptions of Theorem 2.2, for any 6 > 0 and fixed t > 0, we have

! fm h/(r)P{lNI > eh’(r)) dr = %.

llg}—loge , h()

Proof. Using the change of variable 7 = ¢h%(r), we can get that

1 © 1 (r) . | f"" 1 o1
> = = - > = —.
iy Sz [, Gy P Mz o= g [ 2Rz ner =

O
Proposition 2.6. Under the assumptions of Theorem 2.2, for any M > 1, 6 > 0 and fixed t > 0, we have

T
«—0 —log e h(r)

no

dr=0.

p 1S+ > eh’(r) b~ P{INI = eh®(r))
v Var (S;;)

Proof. Similarly to Proposition 2.2, we have that

S(¢€) h’(r)
[1 ) dr ~ —loge.

0

Thus, by Stolz’s theorem,

lim — > f 0!
eli%—logs h(r)

np

3(€) 1.7
dr < lim — f "0, ar=o.
=0 —loge J,,  h(r)

p 1S+ > eh’(r) § ~ P{IN1 > (1))
v/ Var (S,;)

O

Proposition 2.7. Under the assumptions of Theorem 2.2, for any M > 1, 6 > 0 and fixed t > 0, we have

1 A 10 _
lim o fs(g) e P{INI 2 eh()} dr = 0.

Proof. Using the change of variable 7 = ¢h?(r), we can get that

1 e . . C 1f"°1 . C
> . - - - Z > m =0.
lim —loge j;(s) h(r) P{lNl = (r)}dr gt —loge 0 Jyo FHINT 27 < [y ~loge ’

O

Proposition 2.8. Under the assumptions of Theorem 2.2, for any M > 1, 6 > 0 and fixed t > 0, we have

1 e, 1S o
lim f P >eh’(r)ydr =0.
e=0 —loge Jg h(r) { v/Var (S, ;)

Proof. By Markov inequality, the asymptotic variances (see Lemmas 1-3) and moment bounds for spatial
averages (see Lemmas 4-6), for some q > 2, we conclude that

1 [Si]

lim f QAU
e=0 —loge Jy) h(r) | ([Var(S,,)

> ehg(r)} dr
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o 1 E|S,,|
<lim — fh(r) [S4 dr
9

=0 =Toge Juo H0) (e \Var (8,00 ()
-q 00 /
<Clim —& f "0 g,
e—0 — log & NG) h1+9q(7’)
<Clim e’ f"" Ld?
=m0 — ].Og e Me-1/0 1’/’1+9q

<Clim ! f - ! dr
>0 —loge Jy 71407
=0.

O

Proof. [Proof of Theorem 2.2] Theorem 2.2 is proved by Propositions 2.5-2.8 and the triangular inequality. [

3. Precise asymptotics for complete moment convergence

The following two results concern the precise asymptotics for complete moment convergence.

Theorem 3.1. Let h(x) be a positive and differentiable function defined on [ny, o), which is strictly increasing to co.
Set & > p > 0. Let f be a kernel of Cases 1.1-1.3, then for fixed t > 0, we have

o p
lim eé‘pf h’ér) E S I |Sy't) > eh(r) p|dr = L]E|N|1/9. (3.1)
-0 ny W) || \/Var (S,)) \/Var (S;;) 1-p6

Theorem 3.2. Let h(x) be a positive and differentiable function defined on [ng, o), which is strictly increasing to co.
Let f be a kernel of Cases 1.1-1.3, then for any 6 > 0 and fixed t > 0, we have
1/6
Sr SV,
! I {—' 1, ehs(r)}] dr = é]ElNl”G. (32)

. 1 < W (r)
lim f E
=0 —loge J,, h(r) v/ Var (S;) v/ Var (S;¢)
In Theorem 3.1, let h(x) = x,,ny = 1,60 = %,0 <p <2,wehave

Corollary 3.1. Let f be a kernel of Cases 1.1-1.3, for fixed t > 0,
Sr,t

s 2 = e ’ |Srrf‘
lime pf r2E I > er
=0 1 VVar (S,) VVar (S;)

In Theorem 3.1, let h(x) = (log x)* g =e,60 =

2

dr:—z_p

sasmy P = 2, where b > 0, we have

Corollary 3.2. Let f be a kernel of Cases 1.1-1.3, for fixed t > 0,

(] b—1
lim &2 f (Og:) E

dr = %]EINIZ(M).

e—0

2
Syt |Sr,t| f
g [ ———— > ¢4/l
y/Var (S,;) { yVar (S, Vet

In Theorem 3.2, let h(x) = x,ny =1,0 = %, we have

Corollary 3.3. Let f be a kernel of Cases 1.1-1.3, for fixed t > 0,

1 ™1 [ lsd
lim f “E I — > eVrp|dr=2.
e=0 —loge J; yVar (S;;)

S 1t
\/Var (Sr,t)
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3.1. Proof of Theorem 3.1

. 1 ,
Proposition 3.1. Under the assumptions of Theorem 3.1, for g>P> 0 and fixed t > 0, we have

) i 00 ]’l,(f’) 00 » pe 1
P p - /0
lim eo fno ) Jower pxP7 P{IN| = x}dxdr T p6E|N| .

Proof. Noting that $ > p, using change of variables, we have that

L1l n(r) _
lim e? pf px” IPUN| = x}dxdr
=0 ny 1PO(r) Jenogr)

=lime® ”f f pa” IP{IN| > x}dxd7
=0 h(ng) 7‘

~1im 2 f PN = x}dxdF

e—0 O h0 (1) rp+1—f

=2 f f P 'P{IN| = x}dxd7
p+1——
Pf p1p|N|>x}f —drdx
]7 +1 a9

1 L1
-7 pef LA TPIN 2 vdx

1
Proposition 3.2. Under the assumptions of Theorem 3.1, for any M > 1, g>P> 0 and fixed t > 0, we have

O (r) S|

lim ¢9 pf L P ———>
e—0 1o hp@(r) Ehe(r)p [ {vVar(S,,t)

Proof. Obviously,

dxdr=0

X} — P{N| = x}

: S|
px”_1 P{———— >x; — P{IN| > x}|dx
‘fehﬁ(r) [ {\/Var (Srp) }

< fo ) plx+ ehe(r))p_l P {ﬂ > (x+ ehe(r))} = P{IN| 2 (x + n’(r))}| dx

v/ Var (S;)

<[ pleraco)” P{& Z(x+eh9(r))}_P{|N| >+ e’ ()} dx

v Var (S,;)
+ f:p p (x + ehe(r) P{ )SH| x + ehe(r))}
fim

Var( t)
fmlp p(x + éhG(T)) P

=Dy + Dy + CDg.

(x + she(r))}
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Since r < 9(¢) implies eh’(r) < M?, we have

1
%

Ay _ _1 14 1 1\P
O, < f p(x+en’n) " adx<a, (A, i ghe(r)) < (Af” ; M%;’) . (3.3)
0

Now we estimate ®,. By Markov inequality, the asymptotic variances (see Lemmas 1-3) and moment
bounds for spatial averages (see Lemmas 4-6), we have

O, < Cfml £ |SV,t|
A

T (VVarS) o+ eho ()

For I's, by Markov inequality, we have

2+p

0 1
dx < Cf_l ;de <Ca/l. (3.4)
8" (x + ehf(r))

D; < Cfmzl %dx < CAE. 3.5
2,7 (x + eh(r))
From (3.3)-(3.5) and the fact A, — 0 as ¥ — oo, we can get
D1 + Dy + D3 — 0. (3.6)
Then by (3.6) and Stolz’s theorem,

S(€) 1,7 00
lim eé"’f ") pxP!
ny hro (7") ehO(r)

Sl
P{—————— >x; — P{IN| = x}|dxd
{\/Var(Sr,t) =7 NI xj] dxdr

9(¢) h’(?’)
L1l
<limeoP jn‘o o) (D1 + Dy + D3)dr

1 . .
Proposition 3.3. Under the assumptions of Theorem 3.1, for any g>P> 0 and fixed t > 0, uniformly with respect

to 0 < ¢ < 1, we have

Il (o) f°° 9 S|
lim €9 pf X' P{——— >x3ydxdr=0.
M—co se) PPO(r) Jenogr) P v/ Var (S,))

Proof. By Markov inequality, the asymptotic variances and moment bounds (see Lemmas 1-3) for spatial
averages (see Lemmas 4-6), for some q > 2 + p such that g6 > 1, we have that

G S

lim €@ ”f wlpl ——
M—eo ey PO (1) sh@(r)p { \/Var (S,/)

S o E|S,|
< lim Ceflﬁ’f # xp‘1|—'t|qudr
Moo o) PPO0) Jeww” (Var (S,4))? x4

00 h, (o] 1
< lim Cfé_pf 9(7) _—dedr
Moo 8(e) MPO(r) Jenory X777

: 1, [T W ()
< lim Ceb71 —d
= fS(s) o0

1_

> x} dxdr
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|

. 1 -

< lim Ceo qf ﬁdr
M- Mf_l 74

0

< lim Cf _idf
M- M rqe

=0.

O

1
Proposition 3.4. Under the assumptions of Theorem 3.1, for any g>P> 0 and fixed t > 0, uniformly with respect
to 0 < ¢ < 1, we have

. i, (W@ (T -
lim 77 f PN 2 xdxdr = 0.
M—oo se) hPO(r) sho(r)p

Proof. Similarly to Proposition 3.3, by Markov inequality, for some g > 2 + p such that g0 > 1, we have that
lim ¢97 f LAY e(r)
M- 3(e) MPO(r) Jenor)

1 W ® 1
< lim Ce?7* f # px’”‘lwdxdr
M—oo (o) BPO(r) Jenor) X1

00 h, 00 1
< lim Ceé”f # ——dxdr
Lt (o) 1PO(r) Jenogry 177

px”_lP{INI > x}dxdr

=0.
O
Proof. [Proof of Theorem 3.1] Since

S 1t

\Var (S;y)

T 1] [S
I . > eh? =P{——— >¢h'@r)},
{\/Var(Sr,t) - m}l {Warwm) - (r)}

1
when p = 0, by (2.2) we can get Theorem 3.1. Therefore we just need to discuss the case 5>P> 0. Note

that
P
00 ’ Sr
f he(r) E I 1S+ > eh®(rn) b dr
1o hp (1’) \/Var(Sr,t)
: S| ~ W) (T S|
:epf W (r)P{ ———— > ¢h%(r) dr+f — xPIPd ———— > x} dxdr.
no {VVar (Sr,t) 1o hp@(r) ehe(r)p \/Var (Sr,t)
From Theorem 2.1, it suffices to show

! < W * S, 0
lim e37 f a0 pxr’lp{i Zx} dxdr = 1p—lE|N|1/9. (3.7)

hro (1’) eh?(r) \/Var (Sm) - PQ

(3.7) can be proved by Propositions 3.1-3.4 and the triangular inequality. [

Sr,t
\/Var (Sr,t)

0
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3.2. Proof of Theorem 3.2
Proposition 3.5. Under the assumptions of Theorem 3.2, for any 6 > 0 and fixed t > 0, we have

. 1 W (] ) 1 11 — 1/6
—Y0 > = — .
é‘lﬂn(} —1Ic Dg & fo h(r) Lﬂ(y) Qx P{|N| = X}dXdT ]E|N|

Proof. Using change of variables, we conclude that

) W o
im — f () L 41PN > x)dxdr
e—0 — IOgE 1o I’l(?’) he(r) 6

f f —xo “IPYN| > x}dxd7
&—>0 —loge hng) T

—x7 'P{IN]| = x}dxdF
6—>0—10g69fh9(”0) rf x! INT 2 x}dxdr

= Zyo1 >
?i’%efhs(no) ng PIINT 2 xjdx

_]E 1/ .
D

Proposition 3.6. Under the assumptions of Theorem 3.2, for any M > 1, 6 > 0 and fixed t > 0, we have

dxdr = 0.

li

1 fS(é) h'(l’) 1 14 ‘ r,t|
m —X0 P P ¢ _P{|N|2x}
e=0 —loge J,,  h(r) Joneq O yVar (S;;)

Proof. Obviously,

foo lx%‘1 P ﬂ >xp—P{N| = x}|dx
ehO(r) 0 4/ Var (Sr/t) - B

f ) l(x +ehf(r)e P A > (x + eh?(r)) b = PUN| > (x + eh®(r))} | d
o 0 v/ Var (S;¢)

< f N l(x + ehf(r)) 0! P{& > (x + she(r))} —P{IN| > (x + eh®(r))}| dx
0

0 v/ Var (S;y)

+ fm = (x + eh?(r))?'P ﬂ > (x + eh?(r)) V dx
s 0 v/ Var (S;)

+fm =(x + eh?(r) ' PYN| = (x + eh?(r))}dx

=W + W, + s,

Since r < 9(¢) implies ¢h?(r) < MY, we have

NI

1 1

A, : 1
W, < f é(x T+ eh0()h adx < A, (A; iy ghe(r))o < (AQ + M%?)“ . (3.8)
0
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Now we estimate W,. By Markov inequality, the asymptotic variances (see Lemmas 1-3) and moment
bounds for spatial averages (see Lemmas 4-6), we have

W, < Cfoo ]E'Sr,t|
A

. (w/Var (Sy/t))2+1/6 (x + ehf(r))3

For W3, by Markov inequality, we have

2+1/6

dx < Ca?, (3.9)

NI

00

W; < CLQ mdx < Cal. (3.10)
From (3.8)-(3.10) and the fact A, — 0 as ¥ — oo, we can get

¥, +¥,+W¥; - 0. (3.11)
Then by (3.11) and Stolz’s theorem,

dxdr

1 One 1, S|
lim f —x071|[P{ ————>x} - P{N| > x}
-0 — log & 1o h(r) eho(r) 0 \/Var (Sr,t)

3(¢€) h’(l’)
<1
_Ll_l’)%_logg fn; h(?’) (‘I’l +‘I]2+‘I]3)d1’
=0.

O

Proposition 3.7. Under the assumptions of Theorem 3.2, for any 6 > 0 and fixed t > 0, uniformly with respect to
0 < e <1, we have

1w f‘*’ 1| 1S4
lim f —xt P{ ———— > x3dxdr =0.
M—e —loge Joy 1) Jenoqr) 0 yVar (S;)

Proof. By Markov inequality, the asymptotic variances (see Lemmas 1-3) and moment bounds for spatial
averages (see Lemmas 4-6), for some g > 2 such that g0 > 1, we have that

L [0 [S41
lim f —xt P{ ——— > xdxdr
Moo —loge Joy 1) Jeno) € yVar(Sy)
00 1/ 00 1 E Sy I
chm ol [(HO (" L ESL
Moeo —1oge Jo M) Jewn 0 (Var (Syy))? x4

00 Py 0o
< lim C— f ") L dxdr
M- — log & 9(e) I’l(?’) eh(r) xq_§+1

,l—q 00 ’
< lim & f w0 g,
N

M—o0 — log & (e) hqe(r)

1
. Ceo™d [ 1
< lim —d7
M—co —loge Jy—% 719

< lim Cf idr’
M—eo  Jy 719

=0.
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Proposition 3.8. Under the assumptions of Theorem 3.2, for any 0 > 0 and fixed t > 0, uniformly with respect to
0 < e <1, we have
00 h, 00
lim ! f 0 lJc%_1P{|N| > x}dxdr = 0.
M—oo — IOg & 3(e) h(?’) eho(r) 0

Proof. Similarly to Proposition 3.7, by Markov inequality, for some g > 2 such that g6 > 1, we have that

00 h/ 00 1
lim ! f ™ f lx§_1P{|N| > x}dxdr
M—oo — log & 9(e) h(r) ehd(r) v}

1

0

0 7.7 ) . q
< lim ! f ) f Zxo ! EIN dxdr
M—oo — log & 9e) h(r) ehO(r) x1q

< lim —C f Ay f L gxdr
M—o0 —IOgE 3(e) I’l(?’) eh(r) xi—a+l

=0.

O

Proof. [Proof of Theorem 3.2] Note that
Sr,t

., 1/0
f h (T’)IE I | r,t| > EhQ(T)
ny () \/Var (S;) \Var (S;;)
0 Sr,t‘ © h’(?’) S |Sr,t|
—1/8 1 (r)P |— h)\d —xo Py ——— dxdr.
‘ ‘fno ) { \/Var (S,;) =¢ (r)} T fno h(r) Jenor) 0" { v/ Var (S,) = e

According to Theorem 2.1, it suffices to prove

1 1 (r) f"" 1., K 1 e
lim f —xi1P{ ————— > x{dxdr = ZE|N|. 3.12
e=0 —loge J,, M(r) Jepogry 0 [Var (S,,) 6 (312)

(3.12) can be proved by Propositions 3.5-3.8 and the triangular inequality. [

dr

Appendix A. Some important lemmas

Appendix A.1. CLT5 for SWEs

Recall that the total variance distance between two random variables F and G is defined by

dry(F,G) := sup |P(F € B)-P(G € B)|,
BeB(R)

where B(IR) is the collection of all Borel sets in IR.
Set &(s) = E [oz(u(s, O))], 1n(s) = E[o(u(s,0))] and kg = fBZ Ix1 — x| ? dx1dx,. The following lemmas are

useful for the proofs of main results.

Lemma 1. (Delgado-Vences et al. [5]) Let u(t, x) be the mild solution to (1.1) under Case 1.1, then for all fixed t > 0,

S
drv (L,N) < CRH! for every R > 0.

v Var Sg
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Moreover, if H =1/2,

R—oo

lim Var(SRf) f (t — 5)2E(s)ds

ifH € (1/2,1),

R—o0 RZH

lim Y2r(Sr1) f (t — 5)21(s)ds.

Lemma 2. (Bolafios Guerrero et al. [3]) Let u(t, x) be the mild solution to (1.1) under Case 1.2, then for all fixed

t>0,
S
dry | ——2—=, N | < CR*2  for every R > 0.
Var S,
Moreover,

V t
fim Yar(Sr1) _ kg f (t - 5)2(s)ds.
0

R—o0 R4_ﬁ

Lemma 3. (Nualart and Zheng [15]) Let u(t, x) be the mild solution to (1.1) under Case 1.3, then for all fixed t > 0,

S
drv (L,NJ < CR™? for every R > 0.

v/ Var Sg

Moreover,
lim Var (Sg, t)
R1—>c>o R

Wy f Cov (u(t,x),u(t,0))dx,
R?

where wy denotes the volume of the unit ball, that is, wg =2 ford = 1 and wg = © ford = 2.

Appendix A.2. Moment bounds for spatial averages of SWEs
Set

s, Y) = f Groax — y)d

Br
Lemma 4. Let u(t, x) be the mild solution to (1.1) under Case 1.1. Then for any p > 2 and fixed t > 0,
E [Sg:| < CRIM. (A1)

Proof. Suppose that H = 1/2. Recalling the definition of Sg; and applying Fubini’s theorem, we can get

SR,t:fB(u(t,x)—l)dx

t
) fB fo fR Gi—s(x — y)o(uls, y)W(ds, dy)dx
t
= fo fR ( fB ! Gis(x = y)a(u(s, y))dx) W(ds, dy).

Set K (t) = supy,, sup,g llo(u(s, y))ll,. Using Burkholder-Davis-Gundy inequality and Minkowski’s in-
equality, we can get that

f ;
E|Sg/| <CE ( fo fR (prels, )Y P (uGs, y»dyds)
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¢ 5
sC( f f (<pR,t(s,y))2||a(u<s,y)>||§dyds)
0 R

¢ 5
sc1<5<t>( fo | (goR,t(s,y))zdyds) -

Notice that 2¢g (s, y) is the length of [-R,RIN [y —t+5s,y +t—5s], so

1
Pri(S,Y) = 5([1{ ANy+t=s)]—[-RV(y—t+9)]+.
As a consequence, we deduce that
Pri(s,y) =0,if [yl > R+t —sand @rs(s,y) < R A (t-5). (A2)

Hence, we have that

P
£ z
E|Sk,| < C( f f (t—s)zdyds) < CR:.
0 |[yI<R+t—s

Suppose that H € (1/2,1). Using Burkholder-Davis-Gundy inequality and Minkowski’s inequality, we
can get that

E(|Swf)

14
' ’ ’ ’ 2H-2 ’ ?
<CE ( [ [ nsts,ppnts, iotuts, miotuts, )y = w7 dyay ds)
0 R

t
<C ( f f PR YIPRAS Y)
0 Jru
t
<c([ [ ot neontsili-y
t
[ o oohs
0 JlyIsRt=s Jlyl<R+i-s

where in the penultimate line we have used the fact that “a(u(s, o (u(s,y'))
Using the fact that (see (3.10) in Huang et al. [8])

|4
2

o(u(s, y)o (u(s,y'))

oLy = dydy’dS)

4
2

72 ydy’ ds)

IA

P
2
C 2 dydy'ds)

|p 5 18 uniformly bounded.

sup | |y +zf"2dy < +o0, (A3)
z€ER B,

we can get

[ B 2

[yl<R+t=s J|y'|<R+t-s

_(R+t—s)2H1f f
2 [yl<R+t—s JB,

<CR+t—-ssup [ |7—x""2dy
xeR Bz

2H-2

dydy

3 2y
y_R+t—s

<CR*H,

Therefore the proof is completed. O
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Lemma 5. Let u(t, x) be the mild solution to (1.1) under Case 1.2. Then for any p > 2 and fixed t > 0,
E|Sg,[" < CRE-PP2, (A4)
Proof. Notice that by Lemma 2.1 in Bolafios Guerrero et al. [3], for 0 < s < f, we have
Pr1(S,Y) < (t = )1y <r+t)- (A.5)

Similarly to the case H € (1/2,1) in Lemma 4, we can get that

t p/2 ¢ p/2
E S| < C( f f Pr(S, VPR, Y)Y — y’l‘ﬁdydy’dS) <C ( f f f ly - y'I"Pdydy’ds
0 JR* 0 Jly|<R+t Jy|<R+t

Using (3.10) in Huang et al. [8], we can get

f f ly -y Pdydy’
|y ISR+t JyI<R+t
_ (R + t)2—l3 f f

2 [y |<R+t J1§I<2

<CR+t*F supf )y - x'_ﬁ djj
By

xelR?

<C(R + t)*P.

-B
~ 1.7

dydy

2y’
R+t

y_

Therefore the proof is completed. O
Lemma 6. Let u(t, x) be the mild solution to (1.1) under Case 1.3. Then for any p > 2 and fixed t > 0,
E [Sg:| < CR¥/2, (A.6)

Proof. According to the fact that (see (2.8) and (2.9) in Nualart and Zheng [15])

Pri(5,Y) < f G- ydx=t-s, (A7)
R
f Pry(s, y)dy = f dx f dyGi_(x — y) < C(t — 5)R?, (A.8)
R4 Br R4

for 0 < s < t, similarly to the case H € (1/2,1) in Lemma 4, we can get that

f p/2
E Sk, <C ( fo fR PRSP Y (Y = y’)dy’dde)

IA

t p/2
C ( fo fR 2d(t —8)pr(s, V) f(y — y)dy’ dyds)

¢ p/2
C (||f||L1(1Rd) f f (t = 5)pru(s, y)dyds)
0 Jre

t p/2
<C (Rd“f”Ll(]Rd) f (t- s)zds)
0

<CR¥/2,

IA
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