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Nonlinear skew Lie triple centralizers (derivations) on *-algebras

Changjing Li*", Xiaoyi Li?, Jingxuan Wang?®

?School of Mathematics and Statistics, Shandong Normal University, [inan 250014, P. R. China

Abstract. Let A be a unital -algebra over the complex field C. In this paper, we prove that every
nonlinear skew Lie (triple) centralizer on A is a linear *-centralizer. Under some mild conditions on A,
we also prove that a map ® on A is a nonlinear skew Lie triple derivation if and only if ® is an additive
+-derivation. As applications, nonlinear skew Lie triple derivations on prime *-algebras, von Neumann

algebras with no central summands of type I;, factor von Neumann algebras and standard operator algebras
are characterized.

1. Introduction

Let A be a *-algebra over the complex field C. For A, B € A, denote by [A, B]. = AB — BA" the skew Lie
product of A and B. The skew Lie product is found playing a more and more important role in some research
topics, and its study has recently attracted many authors” attention (for example, see[3, 7, 11-15, 19]).
The product was extensively studied because it naturally arises in the problem of representing quadratic
functionals with sesquilinear functionals (see, for example, [12-14]) and in the problem of characterizing
ideals (see, for example, [3, 11]).

Recall that an additive map @ : A — A is said to be an additive derivation if ®(AB) = P(A)B + AD(B)
for all A,B € A. We say that @ is an additive *-derivation if it is an additive derivation and satisfies
D(A") = O(A)* for all A € A. Amap @ : A — Ais said to be a nonlinear skew Lie derivation if

O([A, B].) = [©(A), B]. + [A, ©(B)].
for all A, B € A. More generally, we say that a map ® : A — Ais a nonlinear skew Lie triple derivation if
O([[A, Bl., Cl.) = [[®(A), B]., Cl. + [[A, ®(B)]., Cl. + [[A, B]., ®(C)]«

for all A,B,C € A. Many authors have paid more attentions on the problem about nonlinear skew Lie
derivations and nonlinear skew Lie triple derivations (see [4-6, 9, 10, 17-19, 22]). Yu and Zhang in [19]
proved that every nonlinear skew Lie derivation between factor von Neumann algebras is an additive
+-derivation. In [9], Li et al. showed that if A C B(H) is a von Neumann algebra without central abelian
projections, then @ : A — B(H) is a nonlinear skew Lie derivation if and only if ® is an additive *-derivation.
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Li et al. [10] proved that every nonlinear skew Lie triple derivation between factor von Neumann algebras
is an additive #-derivation. Fu and An [6] proved every nonlinear skew Lie triple derivation between
von Neumann algebras without central abelian projections is an additive *-derivation. In this paper, we
characterize nonlinear skew Lie triple derivations on general #-algebras. Our main conclusion generalizes
all known results above.

A linear map @ : A — Ais called a centralizer if ®(AB) = ®(A)B = AD(B) holds for all A, B € A. We say
that @ is a *+-centralizer if it is a centralizer and satisfies ®(A*) = P(A)* for all A € A. Centralizers are very
important both in theory and applications and have been investigated intensively by many mathematicians
(see [2, 8, 20, 21] and references therein). In this paper, we introduced the definition of nonlinear skew Lie
(triple) centralizers. Let A be a #-algebra. A map ® : A — Ais said to be a nonlinear skew Lie centralizer if

O([A, B].) = [©(A), B].
for all A, B € A. More generally, we say that a map ® : A — A is a nonlinear skew Lie triple centralizer if
O([[A, B]., Cl.) = [[®(A), B]., C].

for all A, B,C € A. Obviously, every *-centralizer is a nonlinear Lie (triple) centralizer. In this paper, we
prove that every nonlinear skew Lie (triple) centralizer on general unital *-algebras is a *-centralizer.

2. Nonlinear skew Lie (triple) centralizers

In this section, we will give the characterization of nonlinear skew Lie (triple) centralizers on unital
+-algebras. The following is our main result in this section.

Theorem 2.1. Let A be a unital +-algebra with the unit I having the center Z(A). If a map @ : A — A satisfies
@([[A, B]., C].) = [[®(A), B]., C].

for all A,B,C € A, then @ is a =centralizer. Moreover, there exists an element T = T* € Z(A) such that
D(A) =AT =TAforall A € A.

Proof. Since —%il = [[—%il, —%I]*, —%I]* , where i is the imaginary unit, we have

1 1 1

1
(D(_EH) = @([[—Eil, _EI]*' _EH*)
= [[(D(—%il), —%I]*, —%I]*

1 1. 1 1., 1
= [—ECD(—EZI) + E@(—EZI) ,—EI]*
1 1. 1 1.,
= ECD(—EZI) - Eq)(—zll) ,
which implies
1., 1.
D(=5il)" = ~0(=3l). 1)
Noticing that —3I = [[-1iI, -11]., 1iI]. , we have

CD(—%I) = q)([[—lil, —%I]*, %il]*)

2
1 1 1
= [[D(—=i]), —=1]., =iI].
[~ 2i1), ~2 11, 2l
1 1. 1 1.1,
= [—Eq)(—zll) + ECD(—EII) , 211]*

1. 1., 1. 1.
= EI(D(_EH) - EZ@(—EID
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By (1), we get
CD(—%I) = —iCI)(—%iI).
Let A € R be arbitrary, where R is the real field. Note that
@(0) = @([[0, 0], 0].) = [[®(0), 0], 0]. = 0.
Hence

0 = O([[AL Al I].)
= [[®(A), Al., I].
= O(A(A + A7) — (A + A)YD(AD)"
holds true for all A € A. That is,
DA (A + AY) = (A + A )D(AD)”

holds true for all A € A. So
O(ADA = AD(AD"

holds true for all A = A* € A. Since for every B € A, B = By +iB, with B; =
that
®(AI)B = BO(AI)”

holds true for all B € A. Letting B = I, we see that
DAL = D(AD).

Now we get
D(AI)B = BD(AI)

holds true for all B € A. Hence
DO(AI) € Z(A)

for all A € R. By equation (2), we have

(IJ(—%iI) € Z(A).

6415

% and B, = %, it follows

)

For every A € A, since iA = [[—%il, —%IL,A]*, by equations (5) and (1), we see that

D(A) = O([[—~il,— 211, AL)

2 2
= [[(D(—%il), —%I]*,A]*

1, 1.,
= —@(—Ezl)A + (D(—Ezl) A
1
= —ZCD(—EZ'I)A.
Now by equations (2) and (4), we get

D(iA) = —ZCD(—%iI)A = —2i<D(—%I)A = —ZiACD(—%I).
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On the other hand, by equation (6), we also have

D(I) = D(i(—il)) = —21'(—1'1)@(—%1) = —2@(—%1). (7)
So by equations (6) and (7), we see that

D(iA) = iD()A = iAD(]). (8)
Replacing A by —iA in the above equation, we have

D(A) = D(i(—iA)) = DA = AD(]). 9)

Furthermore, by by equation (3), we get that
D(A) = (PNA) = A"D(I)" = A"D(I) = D(AY) (10)

forallA e A LetT = ®(). ThenT = T* € Z(A) and O(A) = AT = TA for all A € A. Hence, O is a linear
scentralizer. [

Clearly, every nonlinear skew Lie centralizer is a nonlinear skew Lie triple centralizer. Then we have
the following corollary.

Corollary 2.2. Let A be a unital +-algebra with the unit 1. If a map ®© : A — A satisfies
([A, B].) = [(A), B].

forall A, B € A, then @ is a »-centralizer. Moreover, there exists an element T = T* € Z(A) such that ®(A) = AT =
TAforall A e A.

3. Nonlinear skew Lie triple derivations

The aim of this section is to characterize nonlinear skew Lie triple derivations on unital *-algebras. The
following theorem is the main result of this section.

Theorem 3.1. Let A be a unital -algebra with the unit I and P be a nontrivial projection in A. Assume that A
satisfies
() XAP =0 implies X =0

and
(#) XAI-P)=0 implies X =0.

Then a map @ : A — A satisfies
O([[A, Bl., Cl.) = [[®(A), Bl., Cl. + [[A, ©(B)]., C]. + [[A, B]., D(O)].
forall A, B,C € Aif and only if © is an additive »-derivation.

In the following, let Py = P and P, = I — P. Denote A;; = PiAP;,i,j = 1,2. Then A = Zijzl Ajj. For

every A € A, we may write A = Ziz,jzl Ajj. In all that follows, when we write A;;, it indicates that A;; € A;;.
Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 3.2. ®(0) = 0.
Proof. Indeed,
D(0) = &([[0, 0]., 01.) = [[®(0), O], O]« + [[0, 5(0)]., 0. + [[0, 0L, 5(0)]. = .
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Lemma 3.3. ®(I)* = O(I) € Z(A).
Proof. It follows from Lemma 3.2 that

0 =9d([1,Al, I].)
= [[®(1), AL, 1], + [[1, 6(A)]., 11, + [[I, AL, 6(D)].
= [[®(), Al., I].
= O(I)(A + A") — (A + A)D()
holds true for all A € A. Thatis,
DA + A™) = (A + A)D()

holds true for all A € A. So
O(I)B = BO(I)*

holds true for all B = B* € A. Since for every C € A, C = C; +iC; with C; = CEC' and C, = %, it follows
that

O(C = CO(I)*
holds true for all C € A. Letting C = I, we have
()" = d(I).

Now we get
D(I)C = CP(I)

holds true for all C € A. Hence ®(I) € Z(A). O
Lemma 3.4. Forall A = A* € A, we have D(A) = D(A)".
Proof. Using Lemma 3.3, we have that

0 = O([[A,I1.,1].)

= [[D(A), I]., 1]. + [[A, (D], I]. + [[A, I]., D(D)].
= [[@(A), I]., 1]

= 2D(A) — 2D(A)".

Hence ®(A) = ®(A)*. O
Lemma 3.5. Forany A;; € Ajj, 1 <i# j <2, we have
P;®(A;j)P; = 0.
Proof. Let A;; € Ajj, 1 <i# j<2. Forany X;; € Ayj, since 0 = [[A;, Xij]., Pj]., we have

0 = O([[Aij, Xijl., Pjl.)

= [[D(Ai), Xijl, Pils + [[Aij, ©(Xipls, Pjls + [[Aij, Xijle, (Pl
= O(A)X;j — Xy ®(Ay)'P; — X (A" + PjO(A)X],

+ Aijq)(X,'j)P]‘ - P]'(D(Xi]‘)*A:j - Xi]‘A;j(D(P]‘) + (D(P]')A,']'X:j.

Multiplying the above equation by P; from both sides, we get that

0 = Pj®(Ai)Xi — X;;P(Ay) P;. (11)
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Replacing X;; with iX;; in the above equation yields that
0= P]‘CD(A,']‘)Xij + X:]-CD(A,']')*P]‘. (12)

Combing (11) and (12), we see that

for any X;; € A;;. It follows from (&%) and (s) that P;®(A;;)P; = 0.
|

Similar to the proof method of Claims 4-8 in [10], we can prove the following lemma.
Lemma 3.6. O is additive.
Lemma 3.7. O(I) =0.
Proof. For1 <k # j <2,by Lemma 3.4, we have

0 = O([[iP, Pj]., Pt].)
= [[D(iPx), Pjl+, Pils + [iPx, D(P))], Pil. + [iPx, Pjl., D(P)]-
= —ij)(ipk)*Pk + qu)(ipk)P]‘ + 2iPk(D(P]‘)Pk + iq)(P]')Pk + ipkq)(Pj).
Multiplying both sides of the above equation by Pk, we obtain that
0=PDP))Pr, 1 <k#j<2. (13)
For any Ajx € Ay, 1 <k # j <2, it follows from Lemma 3.6 that
D(Aji) = D(A) = C([[Ajk, Prl, Pr].)
= [[®(Aj), Pels, Pl + [[Aje, P(P)ls, Pels + [[Ajk, Pele, P(Pr)]
= O(A )Py — Pr®(Aj) Py — Pr®(Aji)* + Pr®(A jx)Pr
+ A D(Pi)Pr — PO(Pr) A% + AjD(Py)
- A;kq)(Pk) - (D(Pk)A;k + CD(Pk)A]k

Multiplying both sides of the above equation by P; and Py from the left and right respectively, we obtain
that

—Pj(IJ(A;k)Pk = 2A 3 @(Px)Px + P;D(Py)A . (14)
It follows from (13) that

—PjCD(A;k)Pk = 2Ax D(Px)Py. (15)
By Lemma 3.5, we arrive at

0 = AjD(Py)Pyx (16)
for any Ajx € Aj. It follows from (&) and () that

0 = Pd(Py)Ps k = 1,2. (17)
Adding (13) and (17), we get

0 = PyO(I)Py, k =1,2. (18)

By Lemma 3.3, we have 0 = Py®(I),k = 1,2. Hence ®(I) = 0.
U
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Lemma 3.8. Forall A € A, we have D(A*) = O(A)".
Proof. Using Lemma 3.6 and Lemma 3.7 , we have that

2D(A) — 2D(A") = DA — 247
= O([[A,11.,11.)
= [[P(A), I]., 1]
= 2D(A) — 2D(A)".

Hence ®(A*) = D(A)*. O
Lemma 3.9. O(iI) = 0.
Proof. By Lemma 3.7 and Lemma 3.8 , we see that

0 = —4d(I) = B(—4) = D([[iL, I]., iI.)
= [[®(l), I1., ], + [[iL, I]., D(D)].
= 8id(il).

Sod(l)=0. O
Lemma 3.10. Forall A € A, we have O(iA) = iD(A).
Proof. By Lemma 3.7 and Lemma 3.9 , we obtain

4D(iA) = D4iA) = O([[L, I1., Al.)
= [[iL, 1]., D(A)].
= 4iD(A).

So ®(iA) = i®(A). O
Lemma 3.11. @ is a derivation.
Proof. For all A, B € A, on one hand, by Lemma 3.9 and Lemma 3.10, we have

2iD(AB) + 2iD(BA*) = O(2i(AB + BA*))
= @([[il, Al., B].)
= [[il, ©®(A)]., B]. + [[i, A]., D(B)].
= 2i(P(A)B + AD(B) + O(B)A* + BO(A)").

From this, we get
D(AB) + D(BA") = D(A)B + AD(B) + D(B)A™ + BO(A)". (19)
On the other hand, by Lemma 3.10 and equation (19), we also have

D(AB) — D(BA*) = O((iA)(~iB)) + D((—iB)(iA)")
= O(iA)(~iB) + (iA)D(=iB) + D(=iB)(iA)" + (~iB)D(iA)*
= O(A)B + AD(B) — ®(B)A* — BD(A)".

From this, we get
D(AB) — O(BA™) = D(A)B + AD(B) — O(B)A* — BO(A)". (20)
Summing (19) with (20), we get ®(AB) = ®(A)B + AD(B). O
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Recall that an algebra A is prime if AAB = {0} for A, B € A implies either A = 0 or B = 0. It is easy to see
that prime *-algebras satisfy (#) and (%). Applying Theorem 3.1 to prime *-algebras, we have the following
corollary.

Corollary 3.12. Let Abe a prime s-algebra with unit I and P be a nontrivial projection in A. Thenamap ® : A — A
satisfies
O([[A, Bl., Cl.) = [[®(A), B]., C]. + [[A, ©(B)]., C]. + [[A, B]., P(O)].

forall A,B,C € A if and only if @ is an additive »-derivation.

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H and ¥ (H) € B(H)
be the subalgebra of all bounded finite rank operators. A subalgebra A C B(H) is called a standard operator
algebra if it contains ¥ (). Now we have the following corollary.

Corollary 3.13. Let A be a standard operator algebra on an infinite dimensional complex Hilbert space H containing
the identity operator 1. Suppose that A is closed under the adjoint operation. Then ® : A — A satisfies

®([[A, B]., Cl.) = [[®(A), Bl., C]. + [[A, ©(B)]., C]. + [[A, B]., P(C)].

forall A,B,C € A if and only if O is a linear +-derivation. Moreover, there exists an operator T € B(H) satisfying
T + T = 0such that ®(A) = AT —TA forall A € A, i.e., D is inner.

Proof. Since A is prime, we have that @ is an additive *-derivation. It follows from [16] that @ is a linear
inner derivation, i.e., there exists an operator S € B(H) such that ®(A) = AS — SA. Since P(A*) = D(A)*, we
have

A'S — SA* = D(AY) = D(A) = —A'S" + S'A"

forall A € A. Hence A*(S + S*) = (S + S*)A*, and then S + §* = Al forsome A € R. Let T = S — %AI. It is easy
to see that T + T* = 0 such that ®(A) = AT -TA. O

A von Neumann algebra M is a weakly closed, self-adjoint algebra of operators on a Hilbert space H
containing the identity operator I. M is a factor von Neumann algebra if its center only contains the scalar
operators. It is well known that a factor von Neumann algebra is prime. Now we have the following
corollary.

Corollary 3.14. [10] Let M be a factor von Neumann algebra with dim(M) > 2. Then a map @ : M — M satisfies
O([[A, B, C].) = [[©(A), B]., Cl. + [[A, ©(B)]., Cl. + [[A, Bl., D(C)].
if and only if @ is an additive +-derivation.

It is shown in [9] that if a von Neumann algebra has no central summands of type I;, then M satifies (#)
and (#). Now we have the following corollary.

Corollary 3.15. [6] Let M be a von Neumann algebra with no central summands of type I. Thenamap @ : M — M
satisfies
O([[A, B]., Cl.) = [[®(A), B., Cl. + [[A, ®(B)]., C]. + [[A, Bl., ®(C)].

if and only if © is an additive +-derivation.
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