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Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear skew Lie triple centralizers (derivations) on ∗-algebras
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Abstract. Let A be a unital ∗-algebra over the complex field C. In this paper, we prove that every
nonlinear skew Lie (triple) centralizer on A is a linear ∗-centralizer. Under some mild conditions on A,
we also prove that a map Φ on A is a nonlinear skew Lie triple derivation if and only if Φ is an additive
∗-derivation. As applications, nonlinear skew Lie triple derivations on prime ∗-algebras, von Neumann
algebras with no central summands of type I1, factor von Neumann algebras and standard operator algebras
are characterized.

1. Introduction

LetA be a ∗-algebra over the complex field C. For A,B ∈ A, denote by [A,B]∗ = AB − BA∗ the skew Lie
product of A and B. The skew Lie product is found playing a more and more important role in some research
topics, and its study has recently attracted many authors’ attention (for example, see[3, 7, 11–15, 19]).
The product was extensively studied because it naturally arises in the problem of representing quadratic
functionals with sesquilinear functionals (see, for example, [12–14]) and in the problem of characterizing
ideals (see, for example, [3, 11]).

Recall that an additive map Φ : A → A is said to be an additive derivation if Φ(AB) = Φ(A)B + AΦ(B)
for all A,B ∈ A. We say that Φ is an additive ∗-derivation if it is an additive derivation and satisfies
Φ(A∗) = Φ(A)∗ for all A ∈ A. A map Φ : A→A is said to be a nonlinear skew Lie derivation if

Φ([A,B]∗) = [Φ(A),B]∗ + [A,Φ(B)]∗

for all A,B ∈ A. More generally, we say that a map Φ : A→A is a nonlinear skew Lie triple derivation if

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

for all A,B,C ∈ A. Many authors have paid more attentions on the problem about nonlinear skew Lie
derivations and nonlinear skew Lie triple derivations (see [4–6, 9, 10, 17–19, 22]). Yu and Zhang in [19]
proved that every nonlinear skew Lie derivation between factor von Neumann algebras is an additive
∗-derivation. In [9], Li et al. showed that if A ⊆ B(H) is a von Neumann algebra without central abelian
projections, thenΦ : A→ B(H) is a nonlinear skew Lie derivation if and only ifΦ is an additive ∗-derivation.
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Li et al. [10] proved that every nonlinear skew Lie triple derivation between factor von Neumann algebras
is an additive ∗-derivation. Fu and An [6] proved every nonlinear skew Lie triple derivation between
von Neumann algebras without central abelian projections is an additive ∗-derivation. In this paper, we
characterize nonlinear skew Lie triple derivations on general ∗-algebras. Our main conclusion generalizes
all known results above.

A linear map Φ : A→A is called a centralizer if Φ(AB) = Φ(A)B = AΦ(B) holds for all A,B ∈ A. We say
that Φ is a ∗-centralizer if it is a centralizer and satisfies Φ(A∗) = Φ(A)∗ for all A ∈ A. Centralizers are very
important both in theory and applications and have been investigated intensively by many mathematicians
(see [2, 8, 20, 21] and references therein). In this paper, we introduced the definition of nonlinear skew Lie
(triple) centralizers. LetA be a ∗-algebra. A mapΦ : A→A is said to be a nonlinear skew Lie centralizer if

Φ([A,B]∗) = [Φ(A),B]∗

for all A,B ∈ A. More generally, we say that a map Φ : A→A is a nonlinear skew Lie triple centralizer if

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗

for all A,B,C ∈ A. Obviously, every ∗-centralizer is a nonlinear Lie (triple) centralizer. In this paper, we
prove that every nonlinear skew Lie (triple) centralizer on general unital ∗-algebras is a ∗-centralizer.

2. Nonlinear skew Lie (triple) centralizers

In this section, we will give the characterization of nonlinear skew Lie (triple) centralizers on unital
∗-algebras. The following is our main result in this section.

Theorem 2.1. LetA be a unital ∗-algebra with the unit I having the centerZ(A). If a map Φ : A→A satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗

for all A,B,C ∈ A, then Φ is a ∗-centralizer. Moreover, there exists an element T = T∗ ∈ Z(A) such that
Φ(A) = AT = TA for all A ∈ A.
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By (1), we get

Φ(−
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2

I) = −iΦ(−
1
2

iI). (2)

Let λ ∈ R be arbitrary, where R is the real field. Note that

Φ(0) = Φ([[0, 0]∗, 0]∗) = [[Φ(0), 0]∗, 0]∗ = 0.

Hence

0 = Φ([[λI,A]∗, I]∗)
= [[Φ(λI),A]∗, I]∗
= Φ(λI)(A + A∗) − (A + A∗)Φ(λI)∗

holds true for all A ∈ A. That is,
Φ(λI)(A + A∗) = (A + A∗)Φ(λI)∗

holds true for all A ∈ A. So
Φ(λI)A = AΦ(λI)∗

holds true for all A = A∗ ∈ A. Since for every B ∈ A, B = B1 + iB2 with B1 =
B+B∗

2 and B2 =
B−B∗

2i , it follows
that
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holds true for all B ∈ A. Letting B = I, we see that
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Now we get
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for all λ ∈ R. By equation (2), we have
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On the other hand, by equation (6), we also have

Φ(I) = Φ(i(−iI)) = −2i(−iI)Φ(−
1
2

I) = −2Φ(−
1
2

I). (7)

So by equations (6) and (7), we see that

Φ(iA) = iΦ(I)A = iAΦ(I). (8)

Replacing A by −iA in the above equation, we have

Φ(A) = Φ(i(−iA)) = Φ(I)A = AΦ(I). (9)

Furthermore, by by equation (3), we get that

Φ(A)∗ = (Φ(I)A)∗ = A∗Φ(I)∗ = A∗Φ(I) = Φ(A∗) (10)

for all A ∈ A. Let T = Φ(I). Then T = T∗ ∈ Z(A) and Φ(A) = AT = TA for all A ∈ A. Hence, Φ is a linear
∗-centralizer.

Clearly, every nonlinear skew Lie centralizer is a nonlinear skew Lie triple centralizer. Then we have
the following corollary.

Corollary 2.2. LetA be a unital ∗-algebra with the unit I. If a map Φ : A→A satisfies

Φ([A,B]∗) = [Φ(A),B]∗

for all A,B ∈ A, then Φ is a ∗-centralizer. Moreover, there exists an element T = T∗ ∈ Z(A) such that Φ(A) = AT =
TA for all A ∈ A.

3. Nonlinear skew Lie triple derivations

The aim of this section is to characterize nonlinear skew Lie triple derivations on unital ∗-algebras. The
following theorem is the main result of this section.

Theorem 3.1. Let A be a unital ∗-algebra with the unit I and P be a nontrivial projection in A. Assume that A
satisfies

(♠) XAP = 0 implies X = 0

and
(♣) XA(I − P) = 0 implies X = 0.

Then a map Φ : A→A satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

for all A,B,C ∈ A if and only if Φ is an additive ∗-derivation.

In the following, let P1 = P and P2 = I − P. Denote Ai j = PiAP j, i, j = 1, 2. Then A =
∑2

i, j=1Ai j. For
every A ∈ A, we may write A =

∑2
i, j=1 Ai j. In all that follows, when we write Ai j, it indicates that Ai j ∈ Ai j.

Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 3.2. Φ(0) = 0.

Proof. Indeed,

Φ(0) = Φ([[0, 0]∗, 0]∗) = [[Φ(0), 0]∗, 0]∗ + [[0, δ(0)]∗, 0]∗ + [[0, 0]∗, δ(0)]∗ = 0.
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Lemma 3.3. Φ(I)∗ = Φ(I) ∈ Z(A).

Proof. It follows from Lemma 3.2 that

0 = Φ([[I,A]∗, I]∗)
= [[Φ(I),A]∗, I]∗ + [[I, δ(A)]∗, I]∗ + [[I,A]∗, δ(I)]∗
= [[Φ(I),A]∗, I]∗
= Φ(I)(A + A∗) − (A + A∗)Φ(I)∗

holds true for all A ∈ A. That is,
Φ(I)(A + A∗) = (A + A∗)Φ(I)∗

holds true for all A ∈ A. So
Φ(I)B = BΦ(I)∗

holds true for all B = B∗ ∈ A. Since for every C ∈ A, C = C1 + iC2 with C1 =
C+C∗

2 and C2 =
C−C∗

2i , it follows
that

Φ(I)C = CΦ(I)∗

holds true for all C ∈ A. Letting C = I, we have

Φ(I)∗ = Φ(I).

Now we get
Φ(I)C = CΦ(I)

holds true for all C ∈ A. Hence Φ(I) ∈ Z(A).

Lemma 3.4. For all A = A∗ ∈ A, we have Φ(A) = Φ(A)∗.

Proof. Using Lemma 3.3, we have that

0 = Φ([[A, I]∗, I]∗)
= [[Φ(A), I]∗, I]∗ + [[A,Φ(I)]∗, I]∗ + [[A, I]∗,Φ(I)]∗
= [[Φ(A), I]∗, I]∗
= 2Φ(A) − 2Φ(A)∗.

Hence Φ(A) = Φ(A)∗.

Lemma 3.5. For any Ai j ∈ Ai j, 1 ≤ i , j ≤ 2, we have

P jΦ(Ai j)Pi = 0.

Proof. Let Ai j ∈ Ai j, 1 ≤ i , j ≤ 2. For any Xi j ∈ Ai j, since 0 = [[Ai j,Xi j]∗,P j]∗, we have

0 = Φ([[Ai j,Xi j]∗,P j]∗)
= [[Φ(Ai j),Xi j]∗,P j]∗ + [[Ai j,Φ(Xi j)]∗,P j]∗ + [[Ai j,Xi j]∗,Φ(P j)]∗
= Φ(Ai j)Xi j − Xi jΦ(Ai j)∗P j − X∗i jΦ(Ai j)∗ + P jΦ(Ai j)X∗i j

+ Ai jΦ(Xi j)P j − P jΦ(Xi j)∗A∗i j − Xi jA∗i jΦ(P j) + Φ(P j)Ai jX∗i j.

Multiplying the above equation by P j from both sides, we get that

0 = P jΦ(Ai j)Xi j − X∗i jΦ(Ai j)∗P j. (11)
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Replacing Xi j with iXi j in the above equation yields that

0 = P jΦ(Ai j)Xi j + X∗i jΦ(Ai j)∗P j. (12)

Combing (11) and (12), we see that
P jΦ(Ai j)Xi j = 0

for any Xi j ∈ Ai j. It follows from (♣) and (♠) that P jΦ(Ai j)Pi = 0.

Similar to the proof method of Claims 4-8 in [10], we can prove the following lemma.

Lemma 3.6. Φ is additive.

Lemma 3.7. Φ(I) = 0.

Proof. For 1 ≤ k , j ≤ 2, by Lemma 3.4 , we have

0 = Φ([[iPk,P j]∗,Pk]∗)
= [[Φ(iPk),P j]∗,Pk]∗ + [iPk,Φ(P j)]∗,Pk]∗ + [iPk,P j]∗,Φ(Pk)]∗
= −P jΦ(iPk)∗Pk + PkΦ(iPk)P j + 2iPkΦ(P j)Pk + iΦ(P j)Pk + iPkΦ(P j).

Multiplying both sides of the above equation by Pk, we obtain that

0 = PkΦ(P j)Pk, 1 ≤ k , j ≤ 2. (13)

For any A jk ∈ A jk, 1 ≤ k , j ≤ 2, it follows from Lemma 3.6 that

Φ(A jk) −Φ(A∗jk) = Φ([[A jk,Pk]∗,Pk]∗)

= [[Φ(A jk),Pk]∗,Pk]∗ + [[A jk,Φ(Pk)]∗,Pk]∗ + [[A jk,Pk]∗,Φ(Pk)]∗
= Φ(A jk)Pk − PkΦ(A jk)∗Pk − PkΦ(A jk)∗ + PkΦ(A jk)Pk

+ A jkΦ(Pk)Pk − PkΦ(Pk)A∗jk + A jkΦ(Pk)

− A∗jkΦ(Pk) −Φ(Pk)A∗jk + Φ(Pk)A jk.

Multiplying both sides of the above equation by P j and Pk from the left and right respectively, we obtain
that

−P jΦ(A∗jk)Pk = 2A jkΦ(Pk)Pk + P jΦ(Pk)A jk. (14)

It follows from (13) that

−P jΦ(A∗jk)Pk = 2A jkΦ(Pk)Pk. (15)

By Lemma 3.5, we arrive at

0 = A jkΦ(Pk)Pk (16)

for any A jk ∈ A jk. It follows from (♣) and (♠) that

0 = PkΦ(Pk)Pk, k = 1, 2. (17)

Adding (13) and (17), we get

0 = PkΦ(I)Pk, k = 1, 2. (18)

By Lemma 3.3, we have 0 = PkΦ(I), k = 1, 2. Hence Φ(I) = 0.
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Lemma 3.8. For all A ∈ A, we have Φ(A∗) = Φ(A)∗.

Proof. Using Lemma 3.6 and Lemma 3.7 , we have that

2Φ(A) − 2Φ(A∗) = Φ(2A − 2A∗)
= Φ([[A, I]∗, I]∗)
= [[Φ(A), I]∗, I]∗
= 2Φ(A) − 2Φ(A)∗.

Hence Φ(A∗) = Φ(A)∗.

Lemma 3.9. Φ(iI) = 0.

Proof. By Lemma 3.7 and Lemma 3.8 , we see that

0 = −4Φ(I) = Φ(−4I) = Φ([[iI, I]∗, iI]∗)
= [[Φ(iI), I]∗, iI]∗ + [[iI, I]∗,Φ(iI)]∗
= 8iΦ(iI).

So Φ(iI) = 0.

Lemma 3.10. For all A ∈ A, we have Φ(iA) = iΦ(A).

Proof. By Lemma 3.7 and Lemma 3.9 , we obtain

4Φ(iA) = Φ(4iA) = Φ([[iI, I]∗,A]∗)
= [[iI, I]∗,Φ(A)]∗
= 4iΦ(A).

So Φ(iA) = iΦ(A).

Lemma 3.11. Φ is a derivation.

Proof. For all A,B ∈ A, on one hand, by Lemma 3.9 and Lemma 3.10, we have

2iΦ(AB) + 2iΦ(BA∗) = Φ(2i(AB + BA∗))
= Φ([[iI,A]∗,B]∗)
= [[iI,Φ(A)]∗,B]∗ + [[iI,A]∗,Φ(B)]∗
= 2i(Φ(A)B + AΦ(B) + Φ(B)A∗ + BΦ(A)∗).

From this, we get

Φ(AB) + Φ(BA∗) = Φ(A)B + AΦ(B) + Φ(B)A∗ + BΦ(A)∗. (19)

On the other hand, by Lemma 3.10 and equation (19), we also have

Φ(AB) −Φ(BA∗) = Φ((iA)(−iB)) + Φ((−iB)(iA)∗)
= Φ(iA)(−iB) + (iA)Φ(−iB) + Φ(−iB)(iA)∗ + (−iB)Φ(iA)∗

= Φ(A)B + AΦ(B) −Φ(B)A∗ − BΦ(A)∗.

From this, we get

Φ(AB) −Φ(BA∗) = Φ(A)B + AΦ(B) −Φ(B)A∗ − BΦ(A)∗. (20)

Summing (19) with (20), we get Φ(AB) = Φ(A)B + AΦ(B).
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Recall that an algebraA is prime if AAB = {0} for A,B ∈ A implies either A = 0 or B = 0. It is easy to see
that prime ∗-algebras satisfy (♠) and (♣). Applying Theorem 3.1 to prime ∗-algebras, we have the following
corollary.

Corollary 3.12. LetA be a prime ∗-algebra with unit I and P be a nontrivial projection inA. Then a mapΦ : A→A
satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

for all A,B,C ∈ A if and only if Φ is an additive ∗-derivation.

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert spaceH and F (H) ⊆ B(H)
be the subalgebra of all bounded finite rank operators. A subalgebraA ⊆ B(H) is called a standard operator
algebra if it contains F (H). Now we have the following corollary.

Corollary 3.13. LetA be a standard operator algebra on an infinite dimensional complex Hilbert spaceH containing
the identity operator I. Suppose thatA is closed under the adjoint operation. Then Φ : A→A satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

for all A,B,C ∈ A if and only if Φ is a linear ∗-derivation. Moreover, there exists an operator T ∈ B(H) satisfying
T + T∗ = 0 such that Φ(A) = AT − TA for all A ∈ A, i.e., Φ is inner.

Proof. Since A is prime, we have that Φ is an additive ∗-derivation. It follows from [16] that Φ is a linear
inner derivation, i.e., there exists an operator S ∈ B(H) such that Φ(A) = AS − SA. Since Φ(A∗) = Φ(A)∗, we
have

A∗S − SA∗ = Φ(A∗) = Φ(A)∗ = −A∗S∗ + S∗A∗

for all A ∈ A. Hence A∗(S + S∗) = (S + S∗)A∗, and then S + S∗ = λI for some λ ∈ R. Let T = S − 1
2λI. It is easy

to see that T + T∗ = 0 such that Φ(A) = AT − TA.

A von Neumann algebraM is a weakly closed, self-adjoint algebra of operators on a Hilbert space H
containing the identity operator I. M is a factor von Neumann algebra if its center only contains the scalar
operators. It is well known that a factor von Neumann algebra is prime. Now we have the following
corollary.

Corollary 3.14. [10] LetM be a factor von Neumann algebra with dim(M) ≥ 2. Then a map Φ :M→M satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

if and only if Φ is an additive ∗-derivation.

It is shown in [9] that if a von Neumann algebra has no central summands of type I1, thenM satifies (♠)
and (♣). Now we have the following corollary.

Corollary 3.15. [6] LetM be a von Neumann algebra with no central summands of type I1. Then a mapΦ :M→M
satisfies

Φ([[A,B]∗,C]∗) = [[Φ(A),B]∗,C]∗ + [[A,Φ(B)]∗,C]∗ + [[A,B]∗,Φ(C)]∗

if and only if Φ is an additive ∗-derivation.
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