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On minimum generalized ABC index of graphs
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Abstract. The generalized ABC index of a graph G, denoted by ABC,, is defined as the sum of the terms
[(d(@) + d(u) — 2)/d(v)d(u)]* over all pairs of adjacent vertices, where d(u) is the degree of the vertex # and a
is a real number. In this paper, we prove that for & < -1, the balanced double broom is the unique tree that
minimizes ABC, among trees of order n with diameter d, and trees of order n with k pendent vertices.

1. Introduction

= n and
|[E(G)| = m. Denote by d(v), the degree of the vertex v in G. The maximum degree of G is denoted by A. A

pendent vertex is a vertex of degree one. For v € V(G), N(v) denotes the set of neighbors of v. A tree of

order n with maximum degree two is called a path and is denoted by P,,. A tree of order n with maximum

degree n — 1 is called a star and is denoted by S,. Denote by C;, a cycle of length g. For a subset E of E(G),

we denote by G — E the subgraph of G obtained from G by deleting the edges in E. Similarly, we denote by

G + E the supergraph of G obtained from G by adding the edges in E. If E = {¢}, we write G—eand G +e.
The atom-bond connectivity index (ABC) of a graph G is defined as

~ /d(u) +d(v) -2
ABC(G) = m,;(‘@ i

This degree-based graph invariant was introduced at the end of the 1990s by Estrada et al. [12]. Its
chemical and mathematical properties are being intensively studied ever since. For a recent review on the
mathematical propertires of the ABC index see [1]; details of its chemical applications are found in [11, 14].

A long time puzzling problem was the characterization of graphs with minimum ABC-value (which
must be trees). Dozens of papers on this matter were published, containing partial results and (false)

Let G be a simple connected graph with vertex set V(G) and edge set E(G), where |V(G)| =
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conjectures. Finally, the problem was completely solved in 2023 [9, 10], revealing that the structure of the
minimum ABC trees is rather perplexed.

Of the numerous other studies of ABC index, we mention the following. Shao et al. [21] characterized
the graphs with n vertices, without pendent vertices, and m edges for m = 2n — 4 and m = 2n — 3, having
maximum ABC index. Zhang et al. [24] described the structural properties of graphs having minimum ABC
index among connected graphs with a given degree sequence. Moreover, they characterized the extremal
graphs having minimum ABC among unicyclic and bicyclic graphs with a given degree sequence. Lower
and upper bounds on ABC in terms of Randi¢ indeX, first Zagreb index, second Zagreb index, and modified
second Zagreb index were reported in [6]. Chen and Das [4] proved that among n-vertex graphs with given
chromatic number, the Turdn graph is the unique graph having the maximum ABC index. Shao et al. [22]
reported a sharp upper bound for bipartite graphs of order n > 6, size 2n — 3, and with no pendent vertex,
and characterized all extreme bipartite graphs. Wu and Zhang [23] determined the minimum ABC index
and its structural properties for chemical trees with n vertices and k pendent vertices for n > 3k — 2.

In order to obtain better correlation abilities of ABC index for the heat of formation of alkanes, Furtula
et al. [13] proposed a generalization of this index as:

(d(u) +d(v) — 2)“

ABC,(G) = Z d(u) d(v)

vu€eE(G)

where «a is some non-zero real number. They established that &« = -3 yields the best correlation results, and
named the respective index “augmented Zagreb index”, AZI,

( d(u) d(v) )3

420 = ), \dwrvdw 2

vucE(G)

Chen and Hao [5] characterized the graphs with maximal ABC,-value for « < 0 among connected graphs
with given order and vertex connectivity, edge connectivity, or matching number. Das et al. [7] obtained
some optimization results on ABC, for connected graphs. Prakasha et al. [20] calculated the atom-bond
connectivity index of some derived graphs, such as double graphs, subdivision graphs and complements
of some standard graphs. A generalized version of ABC, was studied in [3].

Evidently, ABC, is the generalization of the augmented Zagreb index AZI = ABC_3. Furtula et al. [13]
proved that S, is the unique extremal tree of order n with minimal AZI. Lin et al. [18] conjectured that the
balanced double star is the unique tree of order n with maximum AZI for n > 19. Eventually, Lin et al. [19]
proved this conjecture. Further results related to AZI can be found in the review [2], the papers, [8, 15-17],
and the references cited therein.

In this paper, we prove that for @ < —1, the balanced double broom is the unique tree minimizing ABC,
among trees of order n and diameter d, as well as trees of order n with k pendent vertices.

2. Preliminaries

Let x1, xo and a be positive real numbers such that x1,x;, @ > 1 and x7 + x, > 3. Consider the function
fa(x1,x2) = [x1 x2/(x1 + x2 — 2]*. For a = 3, some properties of this function were studied in [17-19]. In this
section, we prove that analogous results hold for f,(x1,x;) when a > 1, and state some previously known
results needed in the subsequent sections.

Lemma 2.1. Let a > 1.
(i) The function f,(x1,1) strictly decreases for x1 > 2 and f,(x1,2) = 2.
(ii) For given x > 3, the function f,(x1,x2) strictly increases for x1 > 2.

Proof. (i) From the definition of f,(x1, x2), we have

fn = (5] = (1 5]
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and
2x 1

fa(x1,2) = (m)a =2%

From the first equation, one can easily see that f,(x1, 1) strictly decreases with x; > 2.

(ii) Also, we have
2 o
_ X1X2 a _ X5 — 2x7
falr1,x2) = (x1 + X —2) B (xz X1+x-2]"

Since x; > 3, we have x% — 2x, > 0 and it follows that f,(x1, x2) strictly increases with x; > 2. O
The following result immediately follows from the above lemma.
Lemma 2.2. Ifa >0, x1,x2,x3 > 3 and x4 > 2, then
1 < falxs,1) < fo(3,1) = (3/2)" < fa(2,1) = fa(2,x4) =27
< (9/4)" = fu(3,3) < falx1, x2),
with equalities if and only if x3 = 3 and x1 = x, = 3, respectively.
Lemma 2.3. [5] Let G be a connected graph with non-adjacent vertices u and v. If a < 0, then ABCy(G + uv) >
ABC,(G).

Let x = (x1,x2,...,x,) and y = (y1, Y2, - .., Yn) be two sequences of real numbers. If the sequences x and y
satisfy the following three conditions

(i)x1 sz2‘~2xnandy1 2= 2 Yy,

(ii)x1+x2+~--+xk2y1+y2+--~+yk,foralll SkST’l—l,

(i) x; +xp+ -+ X, =y1 + Y2+ + Yy,
then one says that the sequence x majorizes the sequence y, which is denoted by x > y or y < x.

Lemma 2.4. (Karamata’s inequality) Let x = (x1,X2,...,X,) and y = (Y1, Y2, . . ., Yn) be sequences of real numbers
on the interval (t1,t). If x > y, and f : (t1,t2) — R is a strictly convex function, then

fOe) + fl2) + -+ fn) = f(y2) + f(y2) + - + f(yn)
with equality if and only if x; = y; forall i, 1 <i <n.

Lemma 2.5. (Power mean inequality) Let > 1 be a real number and x1,x2, . . ., X, be non-negative real numbers.
Then

5
xf+x§+---+x/r >(x1+x2+--~+xr)5
r - r ’
with equality if and only if xy = xp = -+ =x, 0r f = 1.

Lemma 2.6. Let cand t > t, > 1 be positive integers such that t +t, = c. If > 1, then
2 A [c/21F Lc/2)f
+ > +
(=11 (=1F1 7 ([e/21-1)F1  (le/2] - 1)F!
with equality if and only if t1 = [c¢/2] and t, = [c/2].

Proof. Consider a function f(t) = t#/(t — 1)f~! for t > 2. Then we have
t=1(t - B) BB —1)tF2 S
(t-1)F (t-1ppt =

since B > 1 and ¢t > 1. It follows that f(t) is strictly convex on (1,0). Also, one can easily see that (t1, f2)
majorizes ([c/2], [c/2]),i. e.,

() = and f7(t) =

(t1, 12) > ([c/2],Le/2)),

since t; > t, are integers such that t; +t, = c. Hence by Karamata’s inequality we get the required result. [
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3. Graphs of order n with diameter d

A double broom DB, ; is a tree obtained from P,;_; by attaching a—1 and b—1 pendent edges, respectively,
to its end vertices. If |a — b| < 1 then the double broom is said to be balanced. If d = 3, then a double broom
DB, ;3 is called a double star and is denoted by DS, ;. Denote by 7, 4 the set of trees of order n with diameter
d. Then it is easy to check that DB, ;4 € 7, whena + b = n —d + 3, and any tree in 7,3 is a double star.

Theorem 3.1. Let T be a tree in T3 and o < —1. Then

2 n—3\"
ABCA(T) 2 5 + (1 —3)(n _2)
with equality if and only if T is isomorphic to the double star DS, ».
Proof. Since T € 7,3, there exist positive integers a > b > 2, such thata+b = nand T = DS,;. For
convenience, we denote f = —a. Then > 1 and from the definition of ABC,, we have

2 b ab \°
ABCa(DSa,b) - (lZ _ 1)!3-1 + (b _ 1)ﬁ—1 + (n —_ 2) /

because a + b = n. Therefore, it suffices to prove that

af bP ( ab

+ + n-— Z)ﬁ
(@a-1F1 (-1 \n-2 ’

b
) zzﬁ+1+(n—3)(n_3

If =1, thenab > 2(n —2) since b > 2 and a + b = n. Hence, we easily get the required result from (1).

Letnow $ > 1. If b = 2. then one can easily see that the equality in (1) holds. Thus, we assume thatb > 3
and prove that the strict inequality in (1) holds. Froma+b=nanda >b > 3, wehaven—-2>a > b > 3 and
it follows that

a

(a—l)(m)ﬁ+(b—2)(%)ﬁ >(n—3)(

n—Z)ﬁ )

n-3

by Lemma 2.1 and a + b = n. Since b > 3, we have n > 6.
Letn > 8. If b = 3, then ab = 3(n — 3) and we have

b ab 3 3mn-3) 9 3 9 3
— =+ =c- >- -2 =4,
b-1 n-2 2 n—2 2 n-2"2 6
If b > 4, then ab > 4(n — 4) and we get
b ab n/2 4(n —4) 6 6
> =5 - >5Hh—-——-—=
b1t o2 -1 wo2 T w-22°Tg t

since b < n/2 and ab > 4(n — 4). Hence, by Lemma 2.5,

b\ o(a V[t b ab \]
v il R p+1
(b—l) +(n—2) 22[2(1:1—1+n—2)] 227 ©)

since § > 1. Bearing in mind the inequalities (2) and (3), we arrive at the strict inequality in (1).

Consider now the casesn =6 orn =7. Thena =b =3 or b = 3, a = 4. Therefore, we need to prove that

3\ 9\ 4\
2 2 p+1 2
4(2) +(4) =2 +3(3)
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and
3V (4 12y 5\
2(= = =) =28 4(—) :
) +3(5) +(5) =27 +4(y

By direct numerical calculations, we check that the above inequalities hold for all > 1. This completes the
proof. [J

If d > 4, then by using Lemma 2.1, we can directly calculate that

_ _1a+1 b_1a+1
2 -1 -t

d
ABCQ(DBa,h,d) = 2[y a® ba

The above equation and a + b = n — d + 3 imply the following lemma.

Lemma 3.2. Let n and d be positive integers such that n > d > 4. If T is a double broom in T, 4, then
ABC(T)=n+d-1.
Theorem 3.3. Let n and d be positive integers such that n > d > 4 and T be a tree in T, 4. If a < =1, then

d-2 [(mn-d+1)/21""" |(n—d+1)/2]*!

2 " Tm—d+a2r T lm=d<3)2r )

ABCH(T) >

with equality if and only if T is isomorphic to a double broom in T, 4 when o = —1, and T is isomorphic to the balanced
double broom in T, 4 when a < —1.

Proof. For convenience, denote § = —a. Let v1v; - 1441 be a diameter of T and u be a maximum degree
vertexin T. Also let N(u) = {wq, wo, ..., wa}, d(w1) > 2 and A1 be the maximum degree in V(T) \ {u}. Clearly
A1 2 2. For all i such that 2 < i < d, we have d(v;) > 2 and by Lemma 2.2 it follows that

fo(d(v:),d(vi1)) > 2F forall 2<i<d-1.

In addition, by Lemma 2.1,

it ) = ( )ﬂ forall 2<i<A.

A-1

For any edge xy in E(T), different from v,v3, 0374, ...,04-174 and
UWy, UWs, . . ., U, we have

p
e, d > ()

by the definition of A; and Lemma 2.1. On the other hand, one can easily see that A; < n—d—A+3. Denote
M = {003,030, ...,04-104} and N = {uw,, uws, ..., uwas}. Then, from the above mentioned inequalities we



get

ABC4(T)

[\

[\

[\

+
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28 |M) + (INT - |M“N')(%1)ﬁ

A
(-1 mon) (525
2 @=2)+ (1) (52 )~ N (2]
(o1 - o) (2

2ﬂ<d—2)+(A—1)(i)ﬁ+<n—d_/;+z)( A )ﬁ

A-1 A1—1
A \P
B (] — _ i
26 (d—2)+ (A 1)(A—l)
(n_d_A+2)wﬁ
—d—A+2

by EM =n-1,IM=d-2,[N|[=A=1,Ay <A A <n—d—A+3.

Now we distinguish the following two cases.

Case 1. Let f = 1. Then from (7), we get

ABC1(T)=22(d-2)+A+(n—d-A+3)=n+d-1,

6644

(7)

which is our required result. If the equality in (5) holds, then the equality in (7) holds, and it follows that
A1 =n—d—A+3. Also the equality in (6) holds. Hence, all edges in E(T) \ M are pendent and are adjacent
to u or v, where v is the vertex such that d(v) = A;. Hence, one can easily see that T is isomorphic to a double
broom in 75, 4. Conversely, if T is isomorphic to a double broom in 77, 4 then

by Lemma 3.2.

ABC_{(T)=n+d-1,

Case 2. Let § > 1. Then from (7) and Lemma 2.6, we get

ABC,(T) > (d —2)2 +

\%

(d—-2)2F +

N o S
A=1FT " (n—d—A+2)1

[(n-d+3)/21  Ln-d+3)/2)f
[(n—d+1)/21~1  [(n—d+1)/2)~

d-2 N [(n—d+1)/21%  |(n—d+1)/2]H

2&

[(i—d+3)21  Ln—-d+3)2F

(8)

If the equality in (5) holds, then also the equalities in (6) and (7) must hold. Hence, T is isomorphic to a
double broom by Case 1. Also, the equality in (8) holds, and it follows that

A=[(n—-d+3)/2] and A =[(n—d+3)/2].

Therefore, T is isomorphic to the balanced double broom in 75, 4. O
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Corollary 3.4. [15] Let T be a tree of order n with diameter d > 4. Then

[(n—-d+3)/2 L(n-d+3)/2]
[(n—d+1)/217  L(n—d+1)/2

AZI(T) > 8(d - 2) +

with equality if and only if T is isomorphic to the balanced double broom in T, 4.

Theorem 3.5. Let T be a tree of order n. If « < —1 then

ABC,(T) = (n 1) (%)

with equality if and only if T is isomorphic to the star S,,.

Proof. Let p = —a and d be the diameter of T. From Lemma 2.1, we have

(n—1)ﬁ<(n—2)ﬁ< [(n—d+3)/2'|’g< L(n—d+3)/2]\
n—2 n-3 [n—d+1)/2]) ~\lmn-d+1)/2]

sincen—1>n—-2>[(n—-d+3)/2] > [(n—d+3)/2]. Hence, we get
[(n—d+3)/21 N L(n —d +3)/2)
[(n—d+1)/21F7"  [(n—d+1)/2)f!

>2.zﬁ+(n—3)(2:§)ﬁ>(n—1)(Z_1)ﬁ

(d-2)2F +

since 2 > 2=2 > =1 On the other hand,

n—lf

ABC(S:) = (n - 1) (5=

By this, the proof is complete. [J
From the proof of the Theorem 3.5, we arrive at the following theorem.

Theorem 3.6. Let T (# S,) be a tree of order n. If a < —1, then

ABCA(T) = 23 +(n—3)(”_3)a

n-2
with equality if and only if T is isomorphic to the double star DS, ,,—>.
Theorem 3.7. Let G be a graph of order n with diameter d > 4. If « < —1 then

2 [(n—d+1)/21"""  |(n—d+1)/2)"
[(n—d+3)/21*  L(n—-d+3)/2)

d—-
ABC4(G) 2 —;

with equality if and only if G is isomorphic to a double broom in T, 4 when a = =1 and G is isomorphic to the balanced
double broom in T, 4 when a < —1.

Proof. Let T be any spanning tree of G and d; be the diameter of T. Clearly, d; > d. Set § = —q,
a=[n-d+1)/2],b=1(n—-d+1)/2],
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a1 =[(n—dy+1)/2],and by = | (n —dy +1)/2]. Thena >a;,b > by and (a —a1) + (b —b1) =d; —d. By Lemma

2.3 and Theorem 3.3, we have

ABC,(G) > ABC,(T)

di=2  [(n=di+ /21" |0 = dy+1)/2)"!
2 T T = d 321 T L —di +3)/2]

v

(a+1F (b +1)F
[
& b,

= (d-2)2%+

= @-2)2+@a-a)2+m (”1;1
1

B B
) + (b—by) 2P +b1(b1b+1)
1

\%

a2 ()

B B
+(b—b1)(b+Tl) +b1(b21)

B B
- (d—2)2ﬁ+a(a:1) +b(b%1)

d-2 [(n=d+1)/21"*  |(n=d+1)/2p"
20 " [m—d+3)21* = ln—d+3)/2)*

where, in addition, we used Lemma 2.1 and 2 > (x + 1)/x for x > 1. If the equality holds, then G must be a
tree and by Theorem 3.3, G is isomorphic to a double broom in 75, ; when a = -1, and G is isomorphic to

the balanced double broom in 7, ; when a < =1. [

4. Graphs of order n with k pendent vertices

Denote by 7} the set of trees of order n with k pendent vertices. Then one can easily check that
DBuy4 € Tf ifa+b=k+2anda+b+d=n+3. If k =n—1, then there is only one tree in ‘7’,?’1, that is the
star S,,. Therefore, we assume that k < n — 2. Clearly, each tree in 7772 is a double star. Hence by Theorem

3.1, we arrive at the following lemma.

Lemma 4.1. Let T be a tree in 7.2 and a < —1. Then

2
ABCA(T) 2 = + (1 - 3)(n —~

with equality if and only if T is isomorphic to the double star DS,,_5 5.

Theorem 4.2. Let T bea tree in TX and k <n — 3. If a < —1, then

n—-k-1 rk/z'laﬂ Lk/2J¢x+1

ABC(D) 2 ——+ [k+2)/27  [k+2)/2)5’

n—SY

©)

with equality if and only if T is isomorphic to a double broom in T when a = =1, and T is isomorphic to the balanced

double broom in T when a < —1.
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Proof. For convenience, denote f = —a. Let u be a maximum degree vertexin T and v be the maximum degree
vertexin V(T) \ {u}. Alsoletuy, us,...,u, and v1,vs,...,9, be pendent neighbors of  and v, respectively. As
before, d(u) = A and d(v) = A1. Thenp < A—-1and q < A; — 1. Since T has exactly k pendent vertices, we
have A+ A; <k+2and A > Ay > 2. For any non-pendent edge xy in T, we have

f(d(x), d(y)) > 2

by d(x) > 2, d(y) > 2 and Lemma 2.2. It is easy to see that if x;y; is a pendent edge in T different from uu;,
1<i<pandwwj1<j<gq,then

B
fdee),dn) > (5 )

by Lemma 2.2. From the above inequalities and definition of ABC,, we have

ABC,(T) ZP(A61)ﬁ+q(A1Ai1)ﬁ
+ (k—P—Q)(ﬁ)ﬁﬂn—l—k)Z’g

ol e R et | R e R R

> (A-1) [(ﬁ)ﬁ—(ﬁil)ﬁ] +k(A1Ail)ﬁ +(n-1-K2
- (A—1)(ﬁ)ﬁ+(k—A+l)(ﬁ)ﬁ+(n—l—k)zﬁ
> (A—1)(ﬁ)ﬁ+(k—A+1)(%)ﬁ+(n—1—k)zﬁ

sincep <A—-1,(A/(A-1))f —(A/(Ay — 1)) <Oand A <k—A+2.

If B = 1, then we get
ABCy(T) 2k+2+2(n—-1-k) =2n-k. (10)

If the equality in (10) holds, then clearly A+ Ay = k+2 and it follows that any pendent vertex in T is adjacent
to either u or v. Let P be the path from u to v. Then a degree of any vertex on P, different from u and v, is 2.
Namely, if it were greater than 2, then there would exists a pendent vertex that is not adjacent to u and v.
Hence, T is isomorphic to a double broom in 7. Conversely, if T is isomorphic to a double broom in 7,
then the diameter of T is n — k + 1. Then by Lemma 3.2, we have

ABC_i(T)=n+n—-k+1)-1=2n—-k.
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If B > 1 then by Lemma 2.6, we have

A (k=A+2y
(A—1F1 " (k=A+1)F1

ABC(T) > 2Pmn-k-1)+

[(k+2)/21F  L(k+2)/2)f
[k/21F-1 Lk/2)F1

v

2m-k-1)+

(11)

n—-k—-1 N |'k/2'|a+1 Lk/chH—l
2¢ [(k+2)/217 ~ L(k+2)/2)*

Suppose now that equality in (9) holds. Then A + A; = k + 2 and it follows that T is isomorphic to a double
broom in 7. Also the equality in (11) holds. Hence, we have A = [(k+2)/2]and A; = | (k+2)/2]. Therefore,
T is isomorphic to the balanced double broom in 7. Conversely, if T is isomorphic to the balanced double
broom in 7, then one can easily see that the equality in (9) holds. [

Corollary 4.3. [16] Let T be a tree in T)F and k < n — 3. Then

[(k+2)/21  L(k+2)/2]

AZI(T) > 8(n—-k—1) + T T

with equality if and only if T is isomorphic to the balanced double broom in TX.
Theorem 4.4. Let G be a graph of order n with k cut edges. If k <n -3 and o < -1, then

k k+1\"
+k(k+2) !

ABCL(G) > =

2&
with equality if and only if G is isomorphic to the graph obtained from C,_ by attaching k pendent vertices to one

vertex of Cp_.

Proof. Let m be the number of edges of G. Since k < n — 3, G is not isomorphic to a tree and it follows that
m > n. If m > n, then there exist at least n — k + 1 non-pendent edges in G. Therefore,

ABCL(G) > ”_z#m-(ﬂ)a
> nz_ak+2’“+k~(n:1)_a
> ”2—_ak+(k+1)(2+k("k_j)1/("_2))_a
- () = i) @

since Lemma 2.5, (n — 1)/(n —2) > 1 and a < —1. Thus, G is unicyclic. Then, it is easy to see that A < k + 2.
Since there exist exactly #n — k non-pendent edges in G, we have

n—k A-1\ _n-k  (k+1)"
ABCL(G) = = ke (S ) 2 +k(k+2) (13)

and the equality holds if and only if G is isomorphic to the graph obtained from C,_ by attaching k pendent
vertices to one vertex of C,,_x. O
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Theorem 4.5. Let G be a unicyclic graph of order n with girth g. If @ < 0 then

n—g+1f

I -
ABCo(G) 2 5 + (n g)(n_g+2

with equality if and only if G is isomorphic to the graph obtained from C, by attaching n — g pendent vertices to one

vertex of Cg.
Proof. Since the number of cut edges in G is n — g and the extremal graph in Theorem 4.4 is unicyclic, we
get the required result by Theorem 4.4. O
The same argument as in the proof of Theorem 4.4 yields the following result.
Theorem 4.6. Let G be a cyclic graph of order n with k pendent vertices and 0 < k <n —3. If a < -1, then

k k+1\"
+k(_k+2) .

n

ABC4(G) > 2;
with equality if and only if G is isomorphic to the graph obtained from C,_y by attaching k pendent vertices to one
vertex of Cp_y.
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