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Abstract. The generalized ABC index of a graph G, denoted by ABCα, is defined as the sum of the terms
[(d(v) + d(u) − 2)/d(v)d(u)]α over all pairs of adjacent vertices, where d(u) is the degree of the vertex u and α
is a real number. In this paper, we prove that for α ≤ −1, the balanced double broom is the unique tree that
minimizes ABCα among trees of order n with diameter d, and trees of order n with k pendent vertices.

1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G), where |V(G)| = n and
|E(G)| = m. Denote by d(v), the degree of the vertex v in G. The maximum degree of G is denoted by ∆. A
pendent vertex is a vertex of degree one. For v ∈ V(G), N(v) denotes the set of neighbors of v. A tree of
order n with maximum degree two is called a path and is denoted by Pn. A tree of order n with maximum
degree n − 1 is called a star and is denoted by Sn. Denote by C1 a cycle of length 1. For a subset E of E(G),
we denote by G − E the subgraph of G obtained from G by deleting the edges in E. Similarly, we denote by
G + E the supergraph of G obtained from G by adding the edges in E. If E = {e}, we write G − e and G + e.

The atom-bond connectivity index (ABC) of a graph G is defined as

ABC(G) =
∑

vu∈E(G)

√
d(u) + d(v) − 2

d(u) d(v)
.

This degree-based graph invariant was introduced at the end of the 1990s by Estrada et al. [12]. Its
chemical and mathematical properties are being intensively studied ever since. For a recent review on the
mathematical propertires of the ABC index see [1]; details of its chemical applications are found in [11, 14].

A long time puzzling problem was the characterization of graphs with minimum ABC-value (which
must be trees). Dozens of papers on this matter were published, containing partial results and (false)
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conjectures. Finally, the problem was completely solved in 2023 [9, 10], revealing that the structure of the
minimum ABC trees is rather perplexed.

Of the numerous other studies of ABC index, we mention the following. Shao et al. [21] characterized
the graphs with n vertices, without pendent vertices, and m edges for m = 2n − 4 and m = 2n − 3, having
maximum ABC index. Zhang et al. [24] described the structural properties of graphs having minimum ABC
index among connected graphs with a given degree sequence. Moreover, they characterized the extremal
graphs having minimum ABC among unicyclic and bicyclic graphs with a given degree sequence. Lower
and upper bounds on ABC in terms of Randić index, first Zagreb index, second Zagreb index, and modified
second Zagreb index were reported in [6]. Chen and Das [4] proved that among n-vertex graphs with given
chromatic number, the Turán graph is the unique graph having the maximum ABC index. Shao et al. [22]
reported a sharp upper bound for bipartite graphs of order n ≥ 6, size 2n − 3, and with no pendent vertex,
and characterized all extreme bipartite graphs. Wu and Zhang [23] determined the minimum ABC index
and its structural properties for chemical trees with n vertices and k pendent vertices for n ≥ 3k − 2.

In order to obtain better correlation abilities of ABC index for the heat of formation of alkanes, Furtula
et al. [13] proposed a generalization of this index as:

ABCα(G) =
∑

vu∈E(G)

(
d(u) + d(v) − 2

d(u) d(v)

)α
,

where α is some non-zero real number. They established that α = −3 yields the best correlation results, and
named the respective index “augmented Zagreb index”, AZI,

AZI(G) =
∑

vu∈E(G)

(
d(u) d(v)

d(u) + d(v) − 2

)3

.

Chen and Hao [5] characterized the graphs with maximal ABCα-value forα < 0 among connected graphs
with given order and vertex connectivity, edge connectivity, or matching number. Das et al. [7] obtained
some optimization results on ABCα for connected graphs. Prakasha et al. [20] calculated the atom-bond
connectivity index of some derived graphs, such as double graphs, subdivision graphs and complements
of some standard graphs. A generalized version of ABCα was studied in [3].

Evidently, ABCα is the generalization of the augmented Zagreb index AZI = ABC−3. Furtula et al. [13]
proved that Sn is the unique extremal tree of order n with minimal AZI. Lin et al. [18] conjectured that the
balanced double star is the unique tree of order n with maximum AZI for n ≥ 19. Eventually, Lin et al. [19]
proved this conjecture. Further results related to AZI can be found in the review [2], the papers, [8, 15–17],
and the references cited therein.

In this paper, we prove that for α ≤ −1, the balanced double broom is the unique tree minimizing ABCα
among trees of order n and diameter d, as well as trees of order n with k pendent vertices.

2. Preliminaries

Let x1, x2 and α be positive real numbers such that x1, x2, α ≥ 1 and x1 + x2 ≥ 3. Consider the function
fα(x1, x2) = [x1 x2/(x1 + x2 − 2]α. For α = 3, some properties of this function were studied in [17–19]. In this
section, we prove that analogous results hold for fα(x1, x2) when α ≥ 1, and state some previously known
results needed in the subsequent sections.

Lemma 2.1. Let α ≥ 1.
(i) The function fα(x1, 1) strictly decreases for x1 ≥ 2 and fα(x1, 2) = 2α.
(ii) For given x2 ≥ 3, the function fα(x1, x2) strictly increases for x1 ≥ 2.

Proof. (i) From the definition of fα(x1, x2), we have

fα(x1, 1) =
( x1

x1 − 1

)α
=

(
1 +

1
x1 − 1

)α
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and

fα(x1, 2) =
( 2x1

2 + x1 − 2

)α
= 2α.

From the first equation, one can easily see that fα(x1, 1) strictly decreases with x1 ≥ 2.
(ii) Also, we have

fα(x1, x2) =
( x1x2

x1 + x2 − 2

)α
=

(
x2 −

x2
2 − 2x2

x1 + x2 − 2

)α
.

Since x2 ≥ 3, we have x2
2 − 2x2 > 0 and it follows that fα(x1, x2) strictly increases with x1 ≥ 2.

The following result immediately follows from the above lemma.

Lemma 2.2. If α > 0, x1, x2, x3 ≥ 3 and x4 ≥ 2, then

1 < fα(x3, 1) ≤ fα(3, 1) = (3/2)α < fα(2, 1) = fα(2, x4) = 2α

< (9/4)α = fα(3, 3) ≤ fα(x1, x2),

with equalities if and only if x3 = 3 and x1 = x2 = 3, respectively.

Lemma 2.3. [5] Let G be a connected graph with non-adjacent vertices u and v. If α < 0, then ABCα(G + uv) >
ABCα(G).

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two sequences of real numbers. If the sequences x and y
satisfy the following three conditions

(i) x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn ,
(ii) x1 + x2 + · · · + xk ≥ y1 + y2 + · · · + yk, for all 1 ≤ k ≤ n − 1 ,
(iii) x1 + x2 + · · · + xn = y1 + y2 + · · · + yn ,

then one says that the sequence x majorizes the sequence y, which is denoted by x ≻ y or y ≺ x.

Lemma 2.4. (Karamata’s inequality) Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be sequences of real numbers
on the interval (t1, t2). If x ≻ y, and f : (t1, t2)→ R is a strictly convex function, then

f (x1) + f (x2) + · · · + f (xn) ≥ f (y1) + f (y2) + · · · + f (yn)

with equality if and only if xi = yi for all i , 1 ≤ i ≤ n.

Lemma 2.5. (Power mean inequality) Let β ≥ 1 be a real number and x1, x2, . . . , xr be non-negative real numbers.
Then

xβ1 + xβ2 + · · · + xβr
r

≥

(x1 + x2 + · · · + xr

r

)β
,

with equality if and only if x1 = x2 = · · · = xn or β = 1.

Lemma 2.6. Let c and t1 ≥ t2 > 1 be positive integers such that t1 + t2 = c. If β > 1, then

tβ1
(t1 − 1)β−1 +

tβ2
(t2 − 1)β−1 ≥

⌈c/2⌉β

(⌈c/2⌉ − 1)β−1 +
⌊c/2⌋β

(⌊c/2⌋ − 1)β−1

with equality if and only if t1 = ⌈c/2⌉ and t2 = ⌊c/2⌋.

Proof. Consider a function f (t) = tβ/(t − 1)β−1 for t ≥ 2. Then we have

f ′(t) =
tβ−1(t − β)

(t − 1)β
and f ′′(t) =

β(β − 1)tβ−2

(t − 1)β+1 > 0,

since β > 1 and t > 1. It follows that f (t) is strictly convex on (1,∞). Also, one can easily see that (t1, t2)
majorizes (⌈c/2⌉, ⌊c/2⌋), i. e.,

(t1, t2) ≻ (⌈c/2⌉, ⌊c/2⌋),

since t1 ≥ t2 are integers such that t1+ t2 = c. Hence by Karamata’s inequality we get the required result.
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3. Graphs of order n with diameter d

A double broom DBa,b,d is a tree obtained from Pd−1 by attaching a−1 and b−1 pendent edges, respectively,
to its end vertices. If |a − b| ≤ 1 then the double broom is said to be balanced. If d = 3, then a double broom
DBa,b,3 is called a double star and is denoted by DSa,b. Denote byTn,d the set of trees of order n with diameter
d. Then it is easy to check that DBa,b,d ∈ Tn,d when a + b = n − d + 3, and any tree in Tn,3 is a double star.

Theorem 3.1. Let T be a tree in Tn,3 and α ≤ −1. Then

ABCα(T) ≥
2
2α
+ (n − 3)

(n − 3
n − 2

)α
with equality if and only if T is isomorphic to the double star DSn−2,2.

Proof. Since T ∈ Tn,3, there exist positive integers a ≥ b ≥ 2, such that a + b = n and T � DSa,b. For
convenience, we denote β = −α. Then β ≥ 1 and from the definition of ABCα, we have

ABCα(DSa, b) =
aβ

(a − 1)β−1 +
bβ

(b − 1)β−1 +

(
ab

n − 2

)β
,

because a + b = n. Therefore, it suffices to prove that

aβ

(a − 1)β−1 +
bβ

(b − 1)β−1 +

(
ab

n − 2

)β
≥ 2β+1 + (n − 3)

(n − 2
n − 3

)β
. (1)

If β = 1, then ab ≥ 2(n − 2) since b ≥ 2 and a + b = n. Hence, we easily get the required result from (1).

Let now β > 1. If b = 2. then one can easily see that the equality in (1) holds. Thus, we assume that b ≥ 3
and prove that the strict inequality in (1) holds. From a+ b = n and a ≥ b ≥ 3, we have n− 2 > a ≥ b ≥ 3 and
it follows that

(a − 1)
( a

a − 1

)β
+ (b − 2)

(
b

b − 1

)β
> (n − 3)

(n − 2
n − 3

)β
(2)

by Lemma 2.1 and a + b = n. Since b ≥ 3, we have n ≥ 6.
Let n ≥ 8. If b = 3, then ab = 3(n − 3) and we have

b
b − 1

+
ab

n − 2
=

3
2
+

3(n − 3)
n − 2

=
9
2
−

3
n − 2

≥
9
2
−

3
6
= 4 .

If b ≥ 4, then ab ≥ 4(n − 4) and we get

b
b − 1

+
ab

n − 2
≥

n/2
n/2 − 1

+
4(n − 4)

n − 2
= 5 −

6
n − 2

≥ 5 −
6
6
= 4 .

since b ≤ n/2 and ab ≥ 4(n − 4). Hence, by Lemma 2.5,(
b

b − 1

)β
+

(
ab

n − 2

)β
≥ 2

[
1
2

(
b

b − 1
+

ab
n − 2

)]β
≥ 2β+1, (3)

since β > 1. Bearing in mind the inequalities (2) and (3), we arrive at the strict inequality in (1).

Consider now the cases n = 6 or n = 7. Then a = b = 3 or b = 3, a = 4. Therefore, we need to prove that

4
(3

2

)β
+

(9
4

)β
≥ 2β+1 + 3

(4
3

)β
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and

2
(3

2

)β
+ 3

(4
3

)β
+

(12
5

)β
≥ 2β+1 + 4

(5
4

)β
.

By direct numerical calculations, we check that the above inequalities hold for all β ≥ 1. This completes the
proof.

If d ≥ 4, then by using Lemma 2.1, we can directly calculate that

ABCα(DBa,b,d) =
d − 2

2α
+

(a − 1)α+1

aα
+

(b − 1)α+1

bα
. (4)

The above equation and a + b = n − d + 3 imply the following lemma.

Lemma 3.2. Let n and d be positive integers such that n > d ≥ 4. If T is a double broom in Tn,d, then

ABC−1(T) = n + d − 1 .

Theorem 3.3. Let n and d be positive integers such that n > d ≥ 4 and T be a tree in Tn,d. If α ≤ −1, then

ABCα(T) ≥
d − 2

2α
+
⌈(n − d + 1)/2⌉α+1

⌈(n − d + 3)/2⌉α
+
⌊(n − d + 1)/2⌋α+1

⌊(n − d + 3)/2⌋α
(5)

with equality if and only if T is isomorphic to a double broom inTn,d when α = −1, and T is isomorphic to the balanced
double broom in Tn, d when α < −1.

Proof. For convenience, denote β = −α. Let v1v2 · · · vd+1 be a diameter of T and u be a maximum degree
vertex in T. Also let N(u) = {w1,w2, . . . ,w∆}, d(w1) ≥ 2 and ∆1 be the maximum degree in V(T) \ {u}. Clearly
∆1 ≥ 2. For all i such that 2 ≤ i ≤ d, we have d(vi) ≥ 2 and by Lemma 2.2 it follows that

fβ(d(vi), d(vi+1)) ≥ 2β for all 2 ≤ i ≤ d − 1 .

In addition, by Lemma 2.1,

fβ(d(u), d(wi)) ≥
(
∆

∆ − 1

)β
for all 2 ≤ i ≤ ∆ .

For any edge xy in E(T), different from v2v3, v3v4, . . . , vd−1vd and
uw2,uw3, . . . ,uw∆, we have

fβ(d(x), d(y)) ≥
(
∆1

∆1 − 1

)β
,

by the definition of ∆1 and Lemma 2.1. On the other hand, one can easily see that ∆1 ≤ n− d−∆+ 3. Denote
M = {v2v3, v3v4, . . . , vd−1vd} and N = {uw2,uw3, . . . ,uw∆}. Then, from the above mentioned inequalities we
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get

ABCα(T) ≥ 2β |M| +
(
|N| − |M ∩N|

) ( ∆
∆ − 1

)β
+

(
n − 1 − |M ∪N|

) ( ∆1

∆1 − 1

)β
(6)

≥ 2β (d − 2) + (∆ − 1)
(
∆

∆ − 1

)β
− |M ∩N|

(
∆1

∆1 − 1

)β
+

(
n − 1 − |M ∪N|

) ( ∆1

∆1 − 1

)β
= 2β (d − 2)+(∆−1)

(
∆

∆−1

)β
+(n−d−∆+2)

(
∆1

∆1−1

)β
≥ 2β (d − 2) + (∆ − 1)

(
∆

∆ − 1

)β
+ (n − d − ∆ + 2)

(
n − d − ∆ + 3
n − d − ∆ + 2

)β
(7)

by |E(T)| = n − 1, |M| = d − 2, |N| = ∆ − 1, ∆1 ≤ ∆, ∆1 ≤ n − d − ∆ + 3.

Now we distinguish the following two cases.

Case 1. Let β = 1. Then from (7), we get

ABC−1(T) ≥ 2(d − 2) + ∆ + (n − d − ∆ + 3) = n + d − 1 ,

which is our required result. If the equality in (5) holds, then the equality in (7) holds, and it follows that
∆1 = n− d−∆+ 3. Also the equality in (6) holds. Hence, all edges in E(T) \M are pendent and are adjacent
to u or v, where v is the vertex such that d(v) = ∆1. Hence, one can easily see that T is isomorphic to a double
broom in Tn,d. Conversely, if T is isomorphic to a double broom in Tn,d then

ABC−1(T) = n + d − 1,

by Lemma 3.2.

Case 2. Let β > 1. Then from (7) and Lemma 2.6, we get

ABCα(T) ≥ (d − 2)2β +
∆β

(∆ − 1)β−1 +
(n − d − ∆ + 3)β

(n − d − ∆ + 2)β−1

≥ (d − 2)2β +
⌈(n − d + 3)/2⌉β

⌈(n − d + 1)/2⌉β−1 +
⌊(n − d + 3)/2⌋β

⌊(n − d + 1)/2⌋β−1 (8)

=
d − 2

2α
+
⌈(n − d + 1)/2⌉α+1

⌈(n − d + 3)/2⌉α
+
⌊(n − d + 1)/2⌋α+1

⌊(n − d + 3)/2⌋α
.

If the equality in (5) holds, then also the equalities in (6) and (7) must hold. Hence, T is isomorphic to a
double broom by Case 1. Also, the equality in (8) holds, and it follows that

∆ = ⌈(n − d + 3)/2⌉ and ∆1 = ⌊(n − d + 3)/2⌋ .

Therefore, T is isomorphic to the balanced double broom in Tn, d.
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Corollary 3.4. [15] Let T be a tree of order n with diameter d ≥ 4. Then

AZI(T) ≥ 8(d − 2) +
⌈(n − d + 3)/2⌉3

⌈(n − d + 1)/2⌉2
+
⌊(n − d + 3)/2⌋3

⌊(n − d + 1)/2⌋2

with equality if and only if T is isomorphic to the balanced double broom in Tn, d.

Theorem 3.5. Let T be a tree of order n. If α ≤ −1 then

ABCα(T) ≥ (n − 1)
(n − 2

n − 1

)α
with equality if and only if T is isomorphic to the star Sn.

Proof. Let β = −α and d be the diameter of T. From Lemma 2.1, we have

(n − 1
n − 2

)β
<

(n − 2
n − 3

)β
<

(
⌈(n − d + 3)/2⌉
⌈(n − d + 1)/2⌉

)β
≤

(
⌊(n − d + 3)/2⌋
⌊(n − d + 1)/2⌋

)β
since n − 1 > n − 2 > ⌈(n − d + 3)/2⌉ ≥ ⌊(n − d + 3)/2⌋. Hence, we get

(d − 2)2β +
⌈(n − d + 3)/2⌉β

⌈(n − d + 1)/2⌉β−1 +
⌊(n − d + 3)/2⌋β

⌊(n − d + 1)/2⌋β−1

> 2 · 2β + (n − 3)
(n − 2

n − 3

)β
> (n − 1)

(n − 1
n − 2

)β
since 2 > n−2

n−3 >
n−1
n−2 . On the other hand,

ABCα(Sn) = (n − 1)
(n − 1

n − 2

)β
.

By this, the proof is complete.

From the proof of the Theorem 3.5, we arrive at the following theorem.

Theorem 3.6. Let T (, Sn) be a tree of order n. If α ≤ −1, then

ABCα(T) ≥
2
2α
+ (n − 3)

(n − 3
n − 2

)α
with equality if and only if T is isomorphic to the double star DSn,n−2.

Theorem 3.7. Let G be a graph of order n with diameter d ≥ 4. If α ≤ −1 then

ABCα(G) ≥
d − 2

2α
+
⌈(n − d + 1)/2⌉α+1

⌈(n − d + 3)/2⌉α
+
⌊(n − d + 1)/2⌋α+1

⌊(n − d + 3)/2⌋α

with equality if and only if G is isomorphic to a double broom inTn,d when α = −1 and G is isomorphic to the balanced
double broom in Tn,d when α < −1.

Proof. Let T be any spanning tree of G and d1 be the diameter of T. Clearly, d1 ≥ d. Set β = −α,
a = ⌈(n − d + 1)/2⌉, b = ⌊(n − d + 1)/2⌋,
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a1 = ⌈(n − d1 + 1)/2⌉, and b1 = ⌊(n − d1 + 1)/2⌋. Then a ≥ a1, b ≥ b1 and (a − a1) + (b − b1) = d1 − d. By Lemma
2.3 and Theorem 3.3, we have

ABCα(G) ≥ ABCα(T)

≥
d1 − 2

2α
+
⌈(n − d1 + 1)/2⌉α+1

⌈(n − d1 + 3)/2⌉α
+
⌊(n − d1 + 1)/2⌋α+1

⌊(n − d1 + 3)/2⌋α

= (d1 − 2) 2β +
(a1 + 1)β

aβ−1
1

+
(b1 + 1)β

bβ−1
1

= (d − 2) 2β+(a−a1) 2β+a1

(a1+1
a1

)β
+ (b−b1) 2β + b1

(
b1+1

b1

)β

≥ (d − 2) 2β+(a − a1)
(a + 1

a

)β
+ a1

(a + 1
a

)β
+(b − b1)

(
b + 1

b

)β
+ b1

(
b + 1

b

)β

= (d − 2) 2β + a
(a + 1

a

)β
+ b

(
b + 1

b

)β

=
d − 2

2α
+
⌈(n − d + 1)/2⌉α+1

⌈(n − d + 3)/2⌉α
+
⌊(n − d + 1)/2⌋α+1

⌊(n − d + 3)/2⌋α
,

where, in addition, we used Lemma 2.1 and 2 ≥ (x + 1)/x for x ≥ 1. If the equality holds, then G must be a
tree and by Theorem 3.3, G is isomorphic to a double broom in Tn,d when α = −1, and G is isomorphic to
the balanced double broom in Tn,d when α < −1.

4. Graphs of order n with k pendent vertices

Denote by T k
n the set of trees of order n with k pendent vertices. Then one can easily check that

DBa,b,d ∈ T
k
n if a + b = k + 2 and a + b + d = n + 3. If k = n − 1, then there is only one tree in T n−1

n , that is the
star Sn. Therefore, we assume that k ≤ n − 2. Clearly, each tree in T n−2

n is a double star. Hence by Theorem
3.1, we arrive at the following lemma.

Lemma 4.1. Let T be a tree in T n−2
n and α ≤ −1. Then

ABCα(T) ≥
2
2α
+ (n − 3)

(n − 3
n − 2

)α
,

with equality if and only if T is isomorphic to the double star DSn−2,2.

Theorem 4.2. Let T be a tree in T k
n and k ≤ n − 3. If α ≤ −1, then

ABCα(T) ≥
n − k − 1

2α
+
⌈k/2⌉α+1

⌈(k + 2)/2⌉α
+
⌊k/2⌋α+1

⌊(k + 2)/2⌋α
, (9)

with equality if and only if T is isomorphic to a double broom in T k
n when α = −1, and T is isomorphic to the balanced

double broom in T k
n when α < −1.
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Proof. For convenience, denoteβ = −α. Let u be a maximum degree vertex in T and v be the maximum degree
vertex in V(T) \ {u}. Also let u1,u2, . . . ,up and v1, v2, . . . , vq be pendent neighbors of u and v, respectively. As
before, d(u) = ∆ and d(v) = ∆1. Then p ≤ ∆ − 1 and q ≤ ∆1 − 1. Since T has exactly k pendent vertices, we
have ∆ + ∆1 ≤ k + 2 and ∆ ≥ ∆1 ≥ 2. For any non-pendent edge xy in T, we have

fβ(d(x), d(y)) ≥ 2β

by d(x) ≥ 2, d(y) ≥ 2 and Lemma 2.2. It is easy to see that if x1y1 is a pendent edge in T different from uui,
1 ≤ i ≤ p and vv j, 1 ≤ j ≤ q, then

fβ(d(x1), d(y1)) ≥
(
∆1

∆1 − 1

)β
,

by Lemma 2.2. From the above inequalities and definition of ABCα, we have

ABCα(T) ≥ p
(
∆

∆ − 1

)β
+ q

(
∆1

∆1 − 1

)β
+ (k − p − q)

(
∆1

∆1 − 1

)β
+ (n − 1 − k) 2β

= p
[(
∆

∆ − 1

)β
−

(
∆1

∆1 − 1

)β]
+ k

(
∆1

∆1 − 1

)β
+ (n − 1 − k) 2β

≥ (∆−1)
[(
∆

∆−1

)β
−

(
∆1

∆1−1

)β]
+ k

(
∆1

∆1−1

)β
+ (n − 1 − k) 2β

= (∆ − 1)
(
∆

∆ − 1

)β
+ (k − ∆ + 1)

(
∆1

∆1 − 1

)β
+ (n − 1 − k) 2β

≥ (∆ − 1)
(
∆

∆ − 1

)β
+ (k − ∆ + 1)

(
k − ∆ + 2
k − ∆ + 1

)β
+ (n − 1 − k) 2β

since p ≤ ∆ − 1, (∆/(∆ − 1))β − (∆1/(∆1 − 1))β ≤ 0 and ∆1 ≤ k − ∆ + 2.

If β = 1, then we get

ABCα(T) ≥ k + 2 + 2(n − 1 − k) = 2n − k . (10)

If the equality in (10) holds, then clearly∆+∆1 = k+2 and it follows that any pendent vertex in T is adjacent
to either u or v. Let P be the path from u to v. Then a degree of any vertex on P, different from u and v, is 2.
Namely, if it were greater than 2, then there would exists a pendent vertex that is not adjacent to u and v.
Hence, T is isomorphic to a double broom in T k

n . Conversely, if T is isomorphic to a double broom in T k
n ,

then the diameter of T is n − k + 1. Then by Lemma 3.2, we have

ABC−1(T) = n + (n − k + 1) − 1 = 2n − k .
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If β > 1 then by Lemma 2.6, we have

ABCα(T) ≥ 2β(n − k − 1) +
∆β

(∆ − 1)β−1 +
(k − ∆ + 2)β

(k − ∆ + 1)β−1

≥ 2β(n − k − 1) +
⌈(k + 2)/2⌉β

⌈k/2⌉β−1 +
⌊(k + 2)/2⌋β

⌊k/2⌋β−1 (11)

=
n − k − 1

2α
+
⌈k/2⌉α+1

⌈(k + 2)/2⌉α
+
⌊k/2⌋α+1

⌊(k + 2)/2⌋α
.

Suppose now that equality in (9) holds. Then ∆ + ∆1 = k + 2 and it follows that T is isomorphic to a double
broom inT k

n . Also the equality in (11) holds. Hence, we have ∆ = ⌈(k+2)/2⌉ and ∆1 = ⌊(k+2)/2⌋. Therefore,
T is isomorphic to the balanced double broom in T k

n . Conversely, if T is isomorphic to the balanced double
broom in T k

n , then one can easily see that the equality in (9) holds.

Corollary 4.3. [16] Let T be a tree in T k
n and k ≤ n − 3. Then

AZI(T) ≥ 8(n − k − 1) +
⌈(k + 2)/2⌉3

⌈k/2⌉2
+
⌊(k + 2)/2⌋3

⌊k/2⌋2
,

with equality if and only if T is isomorphic to the balanced double broom in T k
n .

Theorem 4.4. Let G be a graph of order n with k cut edges. If k ≤ n − 3 and α ≤ −1, then

ABCα(G) ≥
n − k

2α
+ k

(
k + 1
k + 2

)α
,

with equality if and only if G is isomorphic to the graph obtained from Cn−k by attaching k pendent vertices to one
vertex of Cn−k.

Proof. Let m be the number of edges of G. Since k ≤ n − 3, G is not isomorphic to a tree and it follows that
m ≥ n. If m > n, then there exist at least n − k + 1 non-pendent edges in G. Therefore,

ABCα(G) ≥
n − k + 1

2α
+ k ·

(
∆ − 1
∆

)α
≥

n − k
2α
+ 2−α + k ·

(n − 1
n − 2

)−α
≥

n − k
2α
+ (k + 1)

(
2 + k(n − 1)/(n − 2)

k + 1

)−α
>

n − k
2α
+ k

(
k + 2
k + 1

)−α
=

n − k
2α
+ k

(
k + 1
k + 2

)α
(12)

since Lemma 2.5, (n − 1)/(n − 2) > 1 and α ≤ −1. Thus, G is unicyclic. Then, it is easy to see that ∆ ≤ k + 2.
Since there exist exactly n − k non-pendent edges in G, we have

ABCα(G) ≥
n − k

2α
+ k ·

(
∆ − 1
∆

)α
≥

n − k
2α
+ k

(
k + 1
k + 2

)α
(13)

and the equality holds if and only if G is isomorphic to the graph obtained from Cn−k by attaching k pendent
vertices to one vertex of Cn−k.
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Theorem 4.5. Let G be a unicyclic graph of order n with girth 1. If α < 0 then

ABCα(G) ≥
1

2α
+ (n − 1)

(
n − 1 + 1
n − 1 + 2

)α
,

with equality if and only if G is isomorphic to the graph obtained from C1 by attaching n − 1 pendent vertices to one
vertex of C1.

Proof. Since the number of cut edges in G is n − 1 and the extremal graph in Theorem 4.4 is unicyclic, we
get the required result by Theorem 4.4.

The same argument as in the proof of Theorem 4.4 yields the following result.

Theorem 4.6. Let G be a cyclic graph of order n with k pendent vertices and 0 ≤ k ≤ n − 3. If α ≤ −1, then

ABCα(G) ≥
n − k

2α
+ k

(
k + 1
k + 2

)α
.

with equality if and only if G is isomorphic to the graph obtained from Cn−k by attaching k pendent vertices to one
vertex of Cn−k.
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