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Abstract. In this study, we introduce the concept of strongly lacunary (H, 1) convergence in the neutro-
sophic normed spaces. We investigate a few fundamental properties of this new concept.

1. Introduction

The neutrosophic set (NS) was investigated by Smarandache [22] who defined the degree of indetermi-
nacy (i) as independent component. In [23], neutrosophic logic was firstly examined. It is a logic where
each proposition is determined to have a degree of truth (T), falsity (F), and indeterminacy (I). Neutrosophic
set and neutrosophic logic has used by applied sciences and theoretical science such as decision making,
robotics and summability theory.

The new concept of a neutrosophic metric space (NMS) was defined by Kirişçi and Şimşek [3]. Also,
they investigated neutrosophic normed space (NNS) and statistical convergence in NNS [4]. The various
convergence properties of the sequences on this space were investigated after NNS was defined. Lacunary
statistical convergence and lacunary ideal convergence of sequences in NNS were presented by Kişi ([5, 6]).
Some works related to this concept can be found ([2, 7–10, 14–16]).

The harmonic means of the sequence x = (xk) is defined by

τn =
1
ℓn

n∑
k=1

xk

k
, where ℓn =

n∑
i=1

1
i
≈ log n for n = 1, 2, ....

A sequence x = (xk) is named (H, 1)−summable to ℓ if

lim
n−→∞

1
ℓn

n∑
k=1

xk

k
= ℓ.

By a lacunary sequence we mean an increasing integer sequence θ = (kr) of non-negative integers such
that k0 = 0 and hr = (kr − kr−1)→∞ as r→∞. The intervals determined by θwill be denoted by Ir = (kr−1, kr]
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and the ratio kr
kr−1

will be abbreviated by qr, and q1 = k1 for convenience. In recent years, lacunary sequences
have been studied in ([1, 17–20]).

The set of all (H, 1)−summable sequences is denoted by H and the set of all real sequences which is
(H, 1)−summable to 0 by H0. It is well known that ordinary convergence does imply harmonic summa-
bility. However, the converse implication holds only under additional conditions. Recently, harmonically
summability was studied in ([12, 13, 21]).

The lacunary harmonic means of the sequence x = (xi) is defined by

Tr =
1
Lr

∑
k∈Ir

xk

k
, where Lr =

∑
k∈Ir

1
k

for r = 1, 2, ....

2. Preliminaries

Now, we give definition of triangular norms (TN) and its dual operations known as triangular conorms
(TC) which are important for fuzzy operations.

Definition 2.1. ([11]) Let ∗ : [0, 1] × [0, 1]→ [0, 1] be an operation. If the conditions are satisfied;
(i) p ∗ 1 = p,
(ii) If p ≤ r and q ≤ s, then p ∗ q ≤ r ∗ s, for all p, q, r, s ∈ [0, 1],
(iii) ∗ is continuous,
(iv) ∗ associative and commutative,

then the operation ∗ is called continuous TN.

Definition 2.2. ([11]) Let ^ : [0, 1] × [0, 1]→ [0, 1] be an operation. If the conditions are satisfied;
(i) p^0 = p,
(ii) If p ≤ r and q ≤ s, then p^q ≤ r^s for all p, q, r, s ∈ [0, 1],
(iii) ^ is continuous,
(iv) ^ associative and commutative,

then the operation ^ is said to be continuous TC (Triangular conorms (t-conorms)).

The concepts of the neutrosophic norm and the neutrosophic normed space were defined as the follow-
ing:

Definition 2.3. ([4]) Let F be a vector space and N : F×R+ → [0, 1] such that N = {⟨e,G(e),B(e),Y(e)⟩ : e ∈ F}
be a normed space (NS). Let ∗ and ^ be the continuous TN and continuous TC, respectively. Provided the
following conditions are satisfied, V = (F,N, ∗,^) is said to be NNS. For each e, f ∈ F and λ, µ > 0 and for all
σ , 0,

(i) 0 ≤ G (e, λ) ≤ 1, 0 ≤ B (e, λ) ≤ 1, 0 ≤ Y (e, λ) ≤ 1, ∀λ ∈ R+,
(ii) G (e, λ) + B (e, λ) + Y (e, λ) ≤ 3, ∀λ ∈ R+,
(iii) G (e, λ) = 1 (for λ > 0) if and only if e = 0,
(iv) G (σe, λ) = G

(
e, λ
|σ|

)
,

(v) G
(
e, µ

)
∗ G

(
f , λ

)
≤ G

(
e + f , µ + λ

)
,

(vi) G (e, .) is non-decreasing continuous function,
(vii) limλ→∞ G (e, λ) = 1,
(viii) B (e, λ) = 0 (for λ > 0) if and only if e = 0,
(ix) B (σe, λ) = B

(
e, λ
|σ|

)
,

(x) B
(
e, µ

)
^B

(
f , λ

)
≥ B

(
e + f , µ + λ

)
,

(xi) B (e, .) is non-increasing continuous function,
(xii) limλ→∞ B (e, λ) = 0,
(xiii) Y (e, λ) = 0 (for λ > 0) if and only if e = 0,
(xiv) Y (σe, λ) = Y

(
e, λ
|σ|

)
,
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(xv) Y
(
e, µ

)
^Y

(
f , λ

)
≥ Y

(
e + f , µ + λ

)
,

(xvi) Y (e, .) is non-increasing continuous function,
(xvii) limλ→∞ Y (e, λ) = 0,
(xviii) If λ ≤ 0, then G (e, λ) = 0,B (e, λ) = 1 and Y (e, λ) = 1.

Then N = (G,B,Y) is called neutrosophic norm (NN).

Example 2.4. ([4]) Let (F, ||.||) be a NS. Give the operations ∗ and ^ as TN e ∗ f = e f ; TC e^ f = e+ f − e f . For
λ > ||e||,

G(e, λ) =
λ

λ + ||e||
, B(e, λ) =

||e||
λ + ||e||

, Y(e, λ) =
||e||
λ
,

∀e, f ∈ F and λ > 0. If we take λ ⩽ ||e||, then G(e, λ) = 0, B(e, λ) = 1 and Y(e, λ) = 1. Then, (F,N, ∗,^) is NNS
such that N : F ×R+ → [0, 1].

Definition 2.5. ([4]) Let V be an NNS, the sequence (xk) in V, ε ∈ (0, 1) and λ > 0. Then, the sequence (xk) is
converges to ζ if and only if there is N ∈ N such that G (xk − ζ, λ) > 1 − ε,B (xk − ζ, λ) < ε,Y (xk − ζ, λ) < ε.
That is, limk→∞ G (xk − ζ, λ) = 1, limk→∞ B (xk − ζ, λ) = 0 and limk→∞ Y (xk − ζ, λ) = 0 as λ > 0. In this case,
the sequence (xk) is named a convergent sequence in V. A convergent sequence in NNS is indicated by
N − lim xk = ζ.

Definition 2.6. ([4]) Let V be an NNS. For λ > 0, w ∈ F and ε ∈ (0, 1),

OB(w, ε, λ) = {u ∈ F : G(w − u, λ) > 1 − ε,B(w − u, λ) < ε,Y(w − u, λ) < ε}

is called open ball with center w, radius ε.

Definition 2.7. ([4]) The set A ⊂ F is called neutrosophic-bounded (NB) in NNS V, if there exist λ > 0, and
ε ∈ (0, 1) such that G(u, λ) > 1 − ε, B(u, λ) < ε and Y(u, λ) < ε for each u ∈ A.

3. Main results

In this section we give the main results of this article.

Definition 3.1. Take an NNS V. Let θ be a lacunary sequence. The sequence x = (xk) is said to be strongly
lacunary (H, 1)−convergent (or (G,B,Y)θ-convergent) to ζ ∈ F with regard to (or w.r.t., briefly) NN (LC−NN),
provided that for every λ > 0 and ε ∈ (0, 1), there is r0 ∈N such that

1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
> 1 − ε and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ, λ

)
< ε,

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ, λ

)
< ε

for all r ≥ r0. In this case, we write (G,B,Y)θ − lim x = ζ. In case of θ = (2r), (G,B,Y) − lim x = ζ is obtained.

Theorem 3.2. Let V be an NNS and θ be a lacunary sequence. If a sequence x is (G,B,Y)θ-convergent to ζ w.r.t.
the NN, then (G,B,Y)θ − lim x is unique.

Proof. Let (G,B,Y)θ − lim x = ζ1, (G,B,Y)θ − lim x = ζ2 and ζ1 , ζ2. For a given ε > 0, select ρ ∈ (0, 1) such
that (1 − ρ) ∗ (1 − ρ) > 1 − ε and ρ^ρ < ε . Then, for each λ > 0, there is r1 ∈N such that

1
Lr

∑
k∈Ir

G
(xk

k
− ζ1, λ

)
> 1 − ρ and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ1, λ

)
< ρ,
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1
Lr

∑
k∈Ir

Y
(xk

k
− ζ1, λ

)
< ρ

for all r ≥ r1. Also, there is r2 ∈N such that

1
Lr

∑
k∈Ir

G
(xk

k
− ζ2, λ

)
> 1 − ρ and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ2, λ

)
< ρ,

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ2, λ

)
< ρ

for all r ≥ r2. Assume that r0 = max {r1, r2}. Then, for r ≥ r0, we can find a positive integer m ∈N such that

G(ζ1 − ζ2, λ) = G
(
ζ1 +

xm

m
−

xm

m
− ζ2, λ

)
≥ G

(xm

m
− ζ1,

λ
2

)
∗ G

(xm

m
− ζ2,

λ
2

)
> (1 − ρ) ∗ (1 − ρ) > 1 − ε,

B(ζ1 − ζ2, λ) ≤ B
(xm

m
− ζ1,

λ
2

)
^B

(xm

m
− ζ2,

λ
2

)
< ρ^ρ < ε,

and
Y(ζ1 − ζ2, λ) ≤ Y

(xm

m
− ζ1,

λ
2

)
^Y

(xm

m
− ζ2,

λ
2

)
< ρ^ρ < ε.

Since ε > 0 is abritrary, we have G(ζ1 − ζ2, λ) = 1, B(ζ1 − ζ2, λ) = 0 and Y(ζ1 − ζ2, λ) = 0 for all λ > 0,
which yields ζ1 = ζ2.

We show the sequence x = (xk) is strongly lacunary (H, 1)−convergence in an NNS with an example.
Let (F, ||.||) be a NS. For e, f ∈ [0, 1] and e ∗ f = e f ; TC e^ f = min{e + f , 1}. For all x ∈ F and every λ > 0

we take

G(x, λ) =
λ

λ + ||x||
, B(x, λ) =

||x||
λ + ||x||

, Y(x, λ) =
||x||
λ
.

Then, V is an NNS. Let us take a sequence defined by

xk

k
=

{
1, if k = t2(t ∈N)
0, otherwise ,

and consider

A =
{
k ∈ Ir : G

(xk

k
, λ

)
> 1 − ε and B

(xk

k
, λ

)
< ε,Y

(xk

k
, λ

)
< ε

}
.

So, the following set for any λ > 0 and for all ε ∈ (0, 1),

A =

k ∈ Ir :
λ

λ +
∣∣∣∣∣∣ xk

k

∣∣∣∣∣∣ > 1 − ε, and

∣∣∣∣∣∣ xk
k

∣∣∣∣∣∣
λ +

∣∣∣∣∣∣ xk
k

∣∣∣∣∣∣ < ε,
∣∣∣∣∣∣ xk

k

∣∣∣∣∣∣
λ
< ε


=

{
k ∈ Ir :

∣∣∣∣∣∣∣∣xk

k

∣∣∣∣∣∣∣∣ ≤ λε
1 − ε

, and
∣∣∣∣∣∣∣∣xk

k

∣∣∣∣∣∣∣∣ < λε}
⊂

{
k ∈ Ir :

∣∣∣∣∣∣∣∣xk

k

∣∣∣∣∣∣∣∣ = 1
}
=

{
k ∈ Ir : k = t2

}
i.e.,

Ar(ε, λ) =

r ∈N :
1
Lr

∑
k∈Ir

G
(xk

k
, λ

)
> 1 − ε and

1
Lr

∑
k∈Ir

B
(xk

k
, λ

)
< ε,

1
Lr

∑
k∈Ir

Y
(xk

k
, λ

)
< ε


will be a finite set.
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Theorem 3.3. Let V be an NNS and θ be a lacunary sequence. If (G,B,Y)θ− lim x = ζ1 and (G,B,Y)θ− lim y = ζ2,
then (G,B,Y)θ − lim(x + y) = ζ1 + ζ2 and c ∈ F, (G,B,Y)θ − lim cx = cζ.

Proof. For every λ > 0 and ε ∈ (0, 1), there is r0 ∈N such that

1
Lr

∑
k∈Ir

G
(xk

k
− ζ1, λ

)
> 1 − ρ and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ1, λ

)
< ρ,

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ1, λ

)
< ρ

for all r ≥ r1. Also, there is r2 ∈N such that

1
Lr

∑
k∈Ir

G
( yk

k
− ζ2, λ

)
> 1 − ρ and

1
Lr

∑
k∈Ir

B
( yk

k
− ζ2, λ

)
< ρ,

1
Lr

∑
k∈Ir

Y
( yk

k
− ζ2, λ

)
< ρ

for all r ≥ r2. Assume that r0 = max {r1, r2}. Now, for r ≥ r0 we get

1
Lr

∑
k∈Ir

G
(

(xk + yk)
k

− (ζ1 + ζ2), λ
)
=

1
Lr

∑
k∈Ir

G
(xk

k
− ζ1 +

yk

k
− ζ2, λ

)

⩾
1
Lr

∑
k∈Ir

G
(xk

k
− ζ1,

λ
2

)
∗ G

( yk

k
− ζ2,

λ
2

)
> (1 − ρ) ∗ (1 − ρ) > 1 − ε

and
1
Lr

∑
k∈Ir

B
(

(xk + yk)
k

− (ζ1 + ζ2), λ
)
=

1
Lr

∑
k∈Ir

B
(xk

k
− ζ1 +

yk

k
− ζ2, λ

)
⩽

1
Lr

∑
k∈Ir

B
((xk

k
− ζ1

)
,
λ
2

)
^B

(( yk

k
− ζ2

)
,
λ
2

)
< ρ^ρ < ε.

Further,
1
Lr

∑
k∈Ir

Y
((xk + yk

k

)
− (ζ1 + ζ2), λ

)
=

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ1 +

yk

k
− ζ2, λ

)
⩽

1
Lr

∑
k∈Ir

Y
((xk

k
− ζ1

)
,
λ
2

)
^Y

(( yk

k
− ζ2

)
,
λ
2

)
< ρ^ρ < ε.

Similarly we can show that (G,B,Y)θ − lim cx = cζ.

Theorem 3.4. Let V be an NNS and θ be a lacunary sequence. Then there is a subsequence (xρk ) of x such that
(G,B,Y)θ − lim xρk = ζ, if (G,B,Y)θ − lim x = ζ.

Proof. Assume that (G,B,Y)θ − lim x = ζ, for every λ > 0 and ε ∈ (0, 1), there is r0 ∈N such that

1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
> 1 − ε and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ, λ

)
< ε,

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ, λ

)
< ε
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for all r ≥ r0. Clearly, we choose ρk ∈ Ir such that,

G
(xρk

k
− ζ, λ

)
>

1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
> 1 − ε

B
(xρk

k
− ζ, λ

)
<

1
Lr

∑
k∈Ir

B
(xk

k
− ζ, λ

)
< ε

Y
(xρk

k
− ζ, λ

)
<

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ, λ

)
< ε

for each r ≥ r0. Therefore (G,B,Y)θ − lim xρk = ζ.

Theorem 3.5. Let V be an NNS and θ be a lacunary sequence. Then (G,B,Y) ⊆ (G,B,Y)θ, if lim infr
ℓkr
ℓkr−1
> 1.

Proof. Assume that (G,B,Y) − lim x = ζ. Since ℓkr
ℓkr−1
> 1, then there exists δ > 0 such that 1 + δ ⩽ ℓkr

ℓkr−1
for all

r ≥ 1,we have
1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
=

1
Lr

kr∑
k=1

G
(xk

k
− ζ, λ

)
−

1
Lr

kr−1∑
k=1

G
(xk

k
− ζ, λ

)

=
ℓkr

Lr

 1
ℓkr

kr∑
k=1

G
(xk

k
− ζ, λ

) − ℓkr−1

Lr

 1
ℓkr−1

kr−1∑
k=1

G
(xk

k
− ζ, λ

)
>
ℓkr

Lr

 1
ℓkr

kr∑
k=1

G
(xk

k
− ζ, λ

) >
 1
ℓkr

kr∑
k=1

G
(xk

k
− ζ, λ

) > 1 − ε.

Since Lr = ℓkr − ℓkr−1 ,we can write
ℓkr

Lr
≤

(1 + δ)
δ

and
ℓkr−1

Lr
≤

1
δ
.

It gives that (G,B,Y)θ−lim x = ζ.From here, 1
Lr

∑
k∈Ir

B
(

xk
k − ζ, λ

)
< ε and 1

Lr

∑
k∈Ir

Y
(

xk
k − ζ, λ

)
< ε are obtained.

Theorem 3.6. Let V be an NNS and θ be a lacunary sequence. Then (G,B,Y)θ ⊆ (G,B,Y), if lim infr
ℓkr
ℓkr−1
= 1.

Proof. Assume that (G,B,Y)θ − lim x = ζ. For λ > 0, we have

Gr =
1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
→ 1

as r→∞. Then for ε > 0, there exists r0 ∈N such that Gr < 1+ ε for all r ⩾ r0. Also, we can find P > 0 such
that Gr < P, r = 1, 2, .... Let n be an integer with ℓkr−1 < ℓn ⩽ ℓkr . Then

1
ℓn

n∑
k=1

G
(xk

k
− ζ, λ

)
⩽

1
ℓkr−1

kr∑
k=1

G
(xk

k
− ζ, λ

)

=
1
ℓkr−1

∑
k∈I1

G
(xk

k
− ζ, λ

)
+ · · · +

∑
k∈Ir

G
(xk

k
− ζ, λ

)
⩽ sup

1⩽r⩽r0

Gr
ℓkr0

ℓkr−1

+
Lr0+1

ℓkr−1

Gr0+1 + · · · +
Lr

ℓkr−1

Gr
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< P
ℓkr0

ℓkr−1

+ (1 + ε)
ℓkr − ℓkr0

ℓkr−1

.

Since ℓkr−1 →∞as n→∞, it follows that 1
ℓn

n∑
k=1

G
(

xk
k − ζ, λ

)
→ 1. Similarly we can show that 1

ℓn

n∑
k=1

B
(

xk
k − ζ, λ

)
→

0 and 1
ℓn

n∑
k=1

Y
(

xk
k − ζ, λ

)
→ 0.

Theorem 3.7. Let V be an NNS and θ = (kr) and θ′ = (sr) be two lacunary sequences such that Ir ⊆ Jr for all r ∈N.
If

lim
r→∞

L′r
(Lr)
= 1 (1)

holds and A ⊂ F is neutrosophic-bounded (NB) in NNS V then (G,B,Y)θ ⊂ (G,B,Y)θ′ , where Ir = (kr−1, kr] ,
Jr = (sr−1, sr] , Lr =

∑
k∈Ir

1
k , L

′
r =

∑
k∈Jr

1
k .

Proof. Assume that x ∈ (G,B,Y)θ and (1) holds. Because of A ⊂ F is neutrosophic-bounded (NB) in NNSV,
then there exists someλ > 0 such that 1

Lr

∑
k∈Ir

G
(

xk
k − ζ, λ

)
> 1−ε and 1

Lr

∑
k∈Ir

B
(

xk
k − ζ, λ

)
< ε, 1

Lr

∑
k∈Ir

Y
(

xk
k − ζ, λ

)
<

ε for each
(

xk
k − ζ

)
∈ A . Now, since Ir ⊆ Jr and Lr ≤ L′r for all r ∈N,we may write

1
Lr

∑
k∈Ir

G
(xk

k
− ζ, λ

)
≤

1
Lr

∑
k∈Jr

G
(xk

k
− ζ, λ

)

=
L′r
Lr

1
L′r

∑
k∈Jr

G
(xk

k
− ζ, λ

)
for all r ∈N. Therefore,

1
L′r

∑
k∈Jr

B
(xk

k
− ζ, λ

)
=

1
L′r

∑
k∈Jr−Ir

B
(xk

k
− ζ, λ

)
+

1
L′r

∑
k∈Ir

B
(xk

k
− ζ, λ

)

≤
L′r − Lr

L′r
ε +

1
L′r

∑
k∈Ir

B
(xk

k
− ζ, λ

)
≤

L′r − Lr

Lr
ε +

1
Lr

∑
k∈Ir

B
(xk

k
− ζ, λ

)
≤

(
L′r
Lr
− 1

)
ε +

1
Lr

∑
k∈Ir

B
(xk

k
− ζ, λ

)
.

Therefore 1
L′r

∑
k∈Jr

G
(

xk
k − ζ, λ

)
> 1−ε and 1

L′r

∑
k∈Jr

B
(

xk
k − ζ, λ

)
< ε. It is demonstrable to be 1

L′r

∑
k∈Jr

Y
(

xk
k − ζ, λ

)
<

ε by similar operations. Hence (G,B,Y)θ ⊂ (G,B,Y)θ′ .

Definition 3.8. Let V be a NNS and θ be a lacunary sequence. A sequence x = (xk) is said to be strongly
lacunary (H, 1) Cauchy (or (G,B,Y)θ-Cauchy) w.r.t. the NN N (LCa −NN) if, for every ε ∈ (0, 1) and λ > 0,
there is p = p(ε) ∈N satisfying

1
Lr

∑
k∈Ir

G
(

xk

k
−

xp

p
, λ

)
> 1 − ε and

1
Lr

∑
k∈Ir

B
(

xk

k
−

xp

p
, λ

)
< ε,

1
Lr

∑
k∈Ir

Y
(

xk

k
−

xp

p
, λ

)
< ε.
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Theorem 3.9. If a sequence x is (G,B,Y)θ-convergent to ζ w.r.t. the NN N , then it is strongly lacunary (H, 1)
Cauchy w.r.t. the NN N .

Proof. Assume that (G,B,Y)θ − lim x = ζ. Choose ε > 0 then for a given ρ ∈ (0, 1), (1− ρ) ∗ (1− ρ) > 1− ε and
ρ^ρ < ε. Then, we have

1
Lr

∑
k∈Ir

G
(xk

k
− ζ,
λ
2

)
> 1 − ρ and

1
Lr

∑
k∈Ir

B
(xk

k
− ζ,
λ
2

)
< ρ,

1
Lr

∑
k∈Ir

Y
(xk

k
− ζ,
λ
2

)
< ρ.

We have to show that

1
Lr

∑
k∈Ir

G
(xk

k
−

xm

m
, λ

)
> 1 − ε and

1
Lr

∑
k∈Ir

B
(xk

k
−

xm

m
, λ

)
< ε,

1
Lr

∑
k∈Ir

Y
(xk

k
−

xm

m
, λ

)
< ε.

There are three possible situations.
Case (i) we have for λ > 0

G
(xk

k
−

xm

m
, λ

)
≥ G

(xk

k
− ζ,
λ
2

)
∗ G

(xm

m
− ζ,
λ
2

)
> (1 − ρ) ∗ (1 − ρ) > 1 − ε.

Case (ii) we obtain

B
(xk

k
−

xm

m
, λ

)
≤ B

(xk

k
− ζ,
λ
2

)
^B

(xm

m
− ζ,
λ
2

)
< ρ^ρ < ε.

Case (iii) we have

Y
(xk

k
−

xm

m
, λ

)
≤ Y

(xk

k
− ζ,
λ
2

)
^Y

(xm

m
− ζ,
λ
2

)
< ρ^ρ < ε.

This shows that (xk) is strongly Cauchy with regards to NN N.

Acknowledgement

The authors acknowledge that some of the results were presented at the 7th International Conference of
Mathematical Sciences, July 5-9, 2023, (ICMS 2023), Maltepe University, Istanbul, Turkey.

References
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