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On sequential warped product n-Ricci-Bourguignon solitons

Moctar Traore®*, Hakan Mete Tastan?®

fstanbul University, Faculty of Science, Department of Mathematics, Vezneciler, 34134, Istanbul, Turkey

Abstract. We investigate 1-Ricci-Bourguignon solitons structure on sequential warped product manifolds
and prove that an n-Ricci-Bourguignon soliton sequential warped manifold whose potential vector field
is Killing or conformal must be a quasi-Einstein manifold. Finally, we deduce two applications of -

Ricci-Bourguignon solitons sequential warped product namely standard static space-times and generalized
Robertson-Walker space-times.

1. Introduction

Ricci-Bourguignons flow introduced by J. P. Bourguignon [6] are defined as an extension of Ricci flow
[21]. R. S. Hamilton [22] defined the Ricci solitons as a self-similar solutions of Ricci flow. From there, for
generalizing and particularizing gradient Ricci-Bourguignon solitons many examples were given. Then,
generalization results of Ricci solitons were given in [16]. In this study, inspiring the work of Ricci almost
solitons, he initiated the concept of almost Ricci-Bourguignon solitons. He gave some important results
which were qualified as the generalizing results for Ricci almost solitons. Therefore the notion of n-Ricci
soliton was introduced in [14] which was developed in [8] on Hopf hypersurfaces in complex space forms.

Besides, several authors studied the almost n-Ricci solitons, (see [3] [28]). The almost Ricci-Bourguignon
solitons provided some special potential vector fields and almost 1-Ricci-Bourguignon solitons on a doubly

warped product were studied in [2]. The almost n-Ricci-Bourguignon solitons on compact and non compact
case were investigated by Traore et al. [31].

The notion of warped product Riemannian manifolds introduced in [1] is a generalization of the direct
product of Riemannian manifolds and plays a very important role in physics, as well as in differential
geometry, especially in the theory of relativity. On the other hand, doubly and multiply warped manifolds
generalize the warped product manifolds which were studied in ([17], [25], [26]). Indeed the sequential
warped product manifolds, was introduced in [15]. From there, several authors studied the Ricci solitons
on warped product manifolds, (see [S], [19], [20], [29]), [23], [24], [13], [Z0], [11], [27].
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Motivated by the above studies, we give basic background of 1-Ricci-Bourguignon solitons, we establish
the structure of sequential warped product manifolds and gradient concurrent vector field in section 2. Then,
we construct a gradient n-Ricci-Bourguignon soliton on a sequential warped product manifold. We give the
necessary conditions for an n-Ricci-Bourguignon soliton sequential warped product to be quasi-Einstein
manifold under some conditions on gradient concurrent and its potential vector fields in section 3. In
section 4, we investigate warped product manifold sequential standard static space-times and generalized
Robertson-Walker space-times.

2. Preliminaries

Let (M", §) be an n-dimensional Riemannian manifold, then we defined on M" the Ricci-Bourguignon
solitons as a self-similar solutions to Ricci-Bourguignon flow [7] defined:

d
3¢9 = ~2(Ric—ptg), )

where 7 is the scalar curvature of the Riemannian metric 7, Ric is the Ricci curvature tensor of the metric,
and p is a real constant. When § = 0in (), then we get a Ricci flow.

Definition 2.1. Let (M", §) be a Riemannian manifold of dimension n > 3. Then it is called Ricci-Bourguignon
soliton [[16] if

Ric +%£é =+ pr)g, 2)

where £ denotes the Lie derivative operator along the vector field & which is called soliton or potential, j and A are
real constants.

Considering 7 the g-dual 1-form of &, (M", §) is called n-Ricci-Bourguignon soliton [28] if the following
equation holds

Ric +%£gg~ =(A+ pT)F + un®n, 3)

for a vector field &, where A, 1 are real constants. Particularly, taking g = 0 in equation (3), we get the n-Ricci
soliton [4].

In (B), if & is the gradient of a function / on M, then we get a gradient n-Ricci-Bourguignon soliton. Then,
equation (3) can be written as

Ric+V2 = (A + p1)g + un®1, (4)
where V2] is the Hessian of I and it is denoted by (M, g, VI, A, ).

Definition 2.2. Let K;, K, and K3 be three Riemannian manifolds of dimensions ki, ky and k3 endowed with the
Riemannian metric tensors g1, §» and §s, respectively and let t and | be two smooth positive functions defined on K,
and Ky X Ky. Then the sequential warped product [15] (Kq X +Kz) X ;K3 of (K1, 1), (K2, §2) and (K3, §3) is the product
manifold K = (K1 X Kp) X K3 endowed with the metric § given by

g= (gl (&) i’zgz) &) l2g3.

The functions t and | are called warping functions. The sequential warped product will be denoted by (K, §)
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If C is a vector field on K then it shall be written as

C=0+0+0, where (ieXK), i=1,23. 5)

Denoted by V and Ric the Levi-Civita connection and the Ricci tensor of a sequential warped product
manifold and let V/ and Ric’ the Levi—Civita connection and the Ricci tensor of (K;, gi), fori=1,2,3.
The covariant derivative formulas of sequential warped product manifold are given by the following.

Lemma 2.3. [15] Let (K1 X 1K) X ;K3 be a sequential warped product manifold. Then for C;, U; € X(K;), 1 =1,2,3,
we have
1. VU = Vél Uy,
V& =V, 0 = G(Int)E,,
Vil = VE Us = t52(Co, Un)V',
Vi, Ci = VG = G(In)G,
V(3 =V, G = G(n )G,
Ve, Us = VES Uz — 1§3(Cs, U3) VI,

AN N

where V't and V1 are the gradient of t on Ky and | on Ky x; Ky, respectively.
Lemma 2.4. [15]] Let (K1 X 1K) X ;K3 be a sequential warped product manifold. Then for C;, U; € X(K;), i =1,2,3,

we have
1. Ric(Cy, Uy) =" Ric(Gy, Uh) — 2V2H(C, Uy) — BV2U(C, Uy),
2. Ric((y, Uy) =2 Ric(ly, Un) — F4ia(Ca, W) — £ V2U(Co, L),
3. Ric(Gs, Us) =* Ric(Gs, Us) — Fga(Ca, Us),
4. Ric(G;, Uj) = 0, for i # j, where t* = tA't + (ky — DIV and I = IAl + (ks — DIIVII?,
where V%t, At and V21, Al are the Hessian and the Laplacian of t on Ky and [ on Ky X; Ky, respectively.

A vector field & on (M, §) is called concircular [18]

V& =yC, (6)
where 1 is a smooth function on M. It is called conccurent if ¢ = 1 [12]. Moreover, if the equation
£:§ =297, )

holds, then & is called conformal vector field, where ¢ is a smooth function on M. If ¢ = 0, then & is called a
Killing vector field.

Lemma 2.5. [15] Let (K, §) be a sequential warped product manifold. Then the vector field & € X(K) satisfies
(£0)(C, U) = (£, G1)(Co, Un) + £(E7, §2)(Co, U) + (£ §3)(Ca, Us)

+2t&1(1)F2(Co, Un) + 21(E1 + E2)(1)F3(Cs, Us)
for any C, U € X(K).

Recall that a non-flat Riemannian manifold (M, §) (n > 3) is said to be a quasi-Einstein manifold [9], if
Ricci tensor is not identically zero and satisfies

Ric=a1d+ amA®A, )

for a; and a» non-zero smooth functions and A a non-zero 1-form. The functions a; and a, are called
associated functions also (see [30]). Now we investigate the properties of n-Ricci-Bourguignon solitons on
sequential warped product manifolds.
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3. Main results

We start with the following results on a gradient n-Ricci-Bourguignon soliton sequential warped product
manifold.

Theorem 3.1. Let (K, §) be a sequential warped product manifold. Then (K, §, Ve, A, u) is a gradient n-Ricci-
Bourgquignon soliton with ¢ defined on Ky and 1 the §-dual 1-form of the gradient & = Vo if and only if

'Ric = (A + pr)gh — Vip + ]%V%t + %Wl + udp ® do, (10)

2Ric = (t2(7\ T pT) — tVe(t) + tAE + (a 1)||v1t||2)_172 + ’%vzl (1)
and

3Ric = (12(1 T p1) — V() + 1AL + (ks — 1)||v1||2)g~3. (12)

Proof. If (K, §, Ve, A, u) is a gradient n-Ricci-Bourguignon soliton, then we have
Ric +V2p = (A + p1)§ + pde ® do. (13)
For any (;, U; € £(K), using Lemma 2.4, we obtain
. N k k
'Ric(Cr, Un) = X+ pr)ga(Cr, Un) = Vip(Cy, Un) + V3G, ) + 7 VEIC, Un) + pdp(C)dep(L). - (14)
Therefore from Lemma 2.3} we have V2p((y, Uz) = Vip((y, Us). Hence the equation (10) is proved.

Now for any (o, U € £(K3), we have

- k
2Ric(Cp, Up) = (A + p1)da(Ca, Un) — V(o Up) + (tAlt + (ko — 1)||v1t||2)gz<cz, ) + %Vzl(cz, ). (15)

Then using the fact that
V2p(Lo, Up) = §(Ve, Vo, Uy)
(16)
= tVp(t)§2(Ca, Up)
and putting equation (16) in (I5), we obtain
2 19: 2%, A 1 112\ ks o
Ric(Ca, Ua) = (1 + ) = tVip(t) + ATt + (ko = DIV'HR aCa, Us) + 2V, U, 7)
Hence we get the equation (1I).
Moreover for any 3, Us € £(K3), using the same calculus like the previous result, we get
SRic(G, Us) = P(A + pr)ga(Cs, Us) = V() + 1AL + (ks = DIIVIPF(Cs, Us). (18)

The converse is just a verification. [J

The following lemma is a necessary and sufficient condition for a gradient vector field on a Riemannian
manifold to be concurrent.
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Lemma 3.2. Let k be a smooth function defined on (M, §). Then Vk of k is a concurrent vector field if and only if V*k
of k satisfies

V2K(C, U) = g(C, W), (19)
where Vk and V?k are the gradient and Hessian of k respectively and C, U are vector fields on M.

Proof. Let k be a smooth function on M and suppose that V2k of k satisfies (I9). Then for any (, U € X(M) on
M, we have

g, uy = cukk) - velk)
(20)
= Cg(Vk, U) = g(Vcl, Vi) = g(Ve(VK), U).

Thus, we obtain V¢(Vk) = (. Hence & = Vk is a concurrent vector field. The converse is a simple
verification. [

From Lemma 2.4} we can state the following corollary:

Corollary 3.3. Let (K, §) be a sequential warped product manifold. Then (K, §,&, A, u) is an n-Ricci-Bourguignon
soliton with & defined on Ky and 1 the G-dual 1-form of & if and only if

Ric! +%£§g~ = (A +pr)ih + ’%vft + ’%Wz +un®n, (21)

Ric? = (tz(;\ T+ pT) — () + EATE+ (ka — 1)||v1t||2)g~2 + ’%vzl 22)
and

Ric® = (zz(i T pr) — LE() + 1AL + (ks 1)||v1||2)g~3. 23)

Proof. The proof is similar to the proof of Theorem[3.1] It is sufficient to use Lemma[2.4/and the fact that
£:§(Co, Uz) = (V& Up) + §(C2, Vi, &)
= 2524(Ca, L) (24)

=2tE(1)52(Co, Up),
which allows us to complete the proof. [J

We give the following theorem:

Theorem 3.4. Let & € X(K) be a potential vector on K. Assume that the gradient of t and | are concurrent vector fields
on Ky and K, respectively. If (K, §, &, A, u) is an n-Ricci-Bourguignon soliton then we have the following conditions:

(a) (Kl,g],él,;\l,, ) is an n-Ricci-Bourguignon soliton with A+ 1T+ u= A+ pT + ’% + ]%

(b) If & is a Killing vector field, then K, is a quasi-Einstein manifold with factors 24 + ptt® + t# + 22 — t&,(1)
and ut*.

(c) (K3, s, 12&3, A3, ul*) is an n-Ricci-Bourguignon soliton with A3 + p3, 13 + ul* = A2 + pl2 + IF — (&1 + &)(1).
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Proof. The n-Ricci-Bourguignon soliton (K, §, &, A, u) is given by
Ric +%£ég~ = (A +p0)g+un®n. (25)
Therefore for any C, U € ¥(K), from Lemma and Lemma we have
"Ric(Cy, Uh) = B V3HE, W) = PV, W) +2 Ric(Ca, Un) — #2(Ca, Un) = $ V21T, Un)
+3 Ric(Cs, Us) — IFg5(Cs, Us) + %(5(151!71)@1, ) + %tz(Eéng)(CZI Uy) + %12(523%)(53, Us)
+t&1(1)G2(Co, U) + (&1 + £2)(1)F5(C5, Us) (26)
= (A + p0)di (G, Ur) + (A + pr)da(Co, Un) + (A + pr)da(Cs, Us)

+ud1(C1, &1)d1(Us, E1) + ut*Ga(Ca, £2)2(Ca, E2) + ul*G3(Cs, €3)F5(Cs, &3)-

Now let ¢ = §; U = U; and taking 11(Ci)ni(U1) = §1(C1, £1)§1(U1, &1). Using the fact that V%t = g1 and
V21 = g, from[3.2] then (26) becomes

'Ric(Gy, Uy) + %(E}Sl%)(Cl, U)) =G, Un) + pm(G)mU)
=Ty + A+ pr+ 2 By (@, ) 27)

= Mg1(G, Un) + proaga (Go, Un) + pm (G)m(Un).

Thus (K3, 41, &1, A1, p) is an n-Ricci-Bourguignon soliton.
Taking now C = G, U = U and 12(C2)n2(U2) = §2(Co, E2)Ga(Ua, &2), we get

2Ric(ly, Un) = #42(Ca, Un) = S V(Lo Un) + A2(E2 75)(Co, Un) + £E1 (H52(Co, U)

28
= (A + p1)fa(Ca, U2) + ptn2(C)na(U). 0
If &, is a Killing vector field and V2] = g, from we get
2Ric(Cp, Up) = (AR + prt? + t4 + }%tz — t&E1(D G2 (Lo, Un) + put*na(Co)na(Ua), (29)
which implies that K; is quasi-Einstein manifold.
Finally, let C = (3, U = Uz and n3(G3)nUs) = §3(Cs, £3)F3(Us, £3), Then
3Ric(Cs, Us) + 5P} 33(Cs, Us) - = Asga(Cs, Us) + pl*ns(Ca)na(Us)
+H(=As + AP + ptl2 + I = (&1 + &)(D)F3(Ca, Us) (30)

= A393(Cs, Us) + p31343(Ca, Us) + ul*na(Ca)na(Us).
Hence (K3, §3,2&3, A3, pl*) is an -Ricci-Bourguignon soliton. Thus the proof is completed. [

Below, we state some necessary conditions for the sequential warped product manifold to be quasi-Einstein
manifold.

Theorem 3.5. Let & € X(K) be a Killing vector field on K. Assume that the gradient of t and [ are concurrent vector
fields on Ky and K. If (K, g, &, A, p) is an n-Ricci-Bourguignon soliton then, we have the following conditions:
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ks

(a) K; is quasi-Einstein manifold with factors (A + pt + k2 + 13) and p.

t
(b) K, is quasi-Einstein manifold with factors At> + ptt® + t* + I%tz and ut*.
(¢c) Ks is quasi-Einstein manifold with factors A + ptl? + I* and ul*.

Proof. Let (K, §,&, A, p, 4) be an n-Ricci-Bourguignon soliton and ¢ is a Killing vector field on K. Then we
have

Ric= (A + p1)jd + un®n. (31)
For any C, U € ¥(K), using equation (26), we get

TRic(Cy, Uy) = (A + pr + I% + I%)!jl(Cl/ Uy) + uni(C)m(Uy), (32)

2Ric(Cy, Up) = (AR + prt? + tF + I%fz)ﬁz(Czl Uy) + ut*na(Ca)na(Ua) (33)
and

SRic(Cs, Us) = (AR + prl? + ) g3(C, Us) + ul*na(Ga)ns(Us). (34)

Then the proof is completed. O

Theorem 3.6. Let & € X(K) be a potential vector field on K. Let (K, §,&, A, ) be an n-Ricci-Bourguignon soliton and
the gradient of t and I are concurrent vector fields on Ky and K. Then Ky, K, and Kz are quasi-Einstein manifolds if
the following conditions hold:

(a) &= ¢&rand &y is Killing on K.
(b) & =& and &, is Killing on Ks.
(c) & =&z and & is Killing on K.

Proof. If & = &; and &; is Killing on K; and using Lemma[2.5, we get
£c4 = 2t& (1. (35)

Using the previous equation in 26), we get

IRic(Cy, Uy) = (A + pT + I% + ]%)!71@1, Uy) + um(G)m(Uy), (36)

2Ric(Co, Un) = (AR + prt? + 1 + B2 — 15,(H2(Co, Un) + pt*na(C)na(Un) (37)
and

3Ric(Gs, Us) = (AP + ptl? + 19)§5(Cs, Us) + pul*ns(Cs)ns(Us). (38)

Hence the manifolds Kj, K, and K3 are quasi-Einstein manifolds. Assertions (2) and (3) should be verified
by the same calculus like the assertion (1). O

Theorem 3.7. Let & € X(K) be a conformal vector field on K with factor y. Assume that the gradient of t and | are
concurrent vector fields on Ky and K. If (K, g, &, A, u) is an n-Ricci-Bourguignon soliton then we have the following
conditions:
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ks

l
< k
(b) K, is quasi-Einstein manifold with factors At> + ptt? — pi* + * + T3t2 and ptt.

(a) K; is quasi-Einstein manifold with factors A + pt — i + I% + — and .

(c) Ks is quasi-Einstein manifold with factors AI* + ptl* — 1> + I¥ and ult.
Proof. The n-Ricci-Bourguignon soliton (K, §, &, A.u) with conformal factor v is given by
Ric= (A +pt—¢)j+un®n. (39)
Hence using (26), we get
'Ric(Cy, Uh) — 2V2HCy, Uy) — BV2(G, Un) +2 Ric(Ga, Un) — H2(Ca, Un) — BV2I(Co, Un)

+3 Ric(Ls, Us) — FF3(Cs, Us)

= (A + Pt — ) (G, Uy) + pm(C)m(Un) + 2 (A + p1 — P)d2(Ca, Un) + pt*na(C2)na(Usz) w0
+2(A + pt = 9)§3(Cs, Us) + ul*ns(Ca)ns(Us).
Using the fact that V?t; = §; and V2] = §;, we obtain
"Ric(Cy, Un) = (X +pr = ¢+ 2 + )7 (G, Un) + i Com (Uh), (41)
2Ric(ly, Up) = (AP + T2 — Y82 + # + B2)5(Co, Un) + pt* (L) (U) (42)
and
3Ric(Cs, Us) = (AR + prl2 — P12 + IF)gs(Cs, Us) + pul*ns(Ca)ns(Us). (43)

Then, K; K; and K3 are quasi-Einstein manifolds. [

The next corollary is deduced from Lemma

Corollary 3.8. Let (K, §,&, A, w) be a sequential warped product manifold n-Ricci-Bourguignon soliton. Then it is a
quasi-Einstein manifold if the following statements hold:

(a) &= &z and &3 is Killing vector field on K.

(b) & is a Killing vector field on Ky, &, and &3 are conformal vector fields on K, and K with factors —2&1(Int) and
—2(&1 + &)(Inl), respectively.

(c) & =&+ &5, & and & are Killing vector fields on Ky and Kj, respectively and &;(I) = 0.

4. Application

Now, we would like to characterize n-Ricci-Bourguignon solitons on a standard static space-times and
on generalized Robertson-Walker space-times within the framework of sequential warped products.
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4.1. n-Ricci-Bourguignon Solitons on Sequential Warped Product Space-Times

Let (K1, 41) and (K3, §2) be two Riemannian manifolds of dimensions k; and k, and I an open, connected
subinterval of R and dt? the Euclidean metric tensor on I. Then the product manifold K = (K; X K) X I
of dimension (k; + k> + 1) equipped with the metric § = (§1 ® t*§2) ® [>(—dt?) is a sequential standard static
space-time [15] and denoted by K = (K1 X (K3) X 1.

Lemma 4.1. [15]] Let K be a sequential standard space-time. Then for C;, U; € X(K;), i = 1,2, we have
1. Vo Uy = V}: Uy,

2. VoG = Vot = G(InH,

3. Vol = V2 Uy — t2(Co, Un)V',
4. Vgiat = VQtCi = Ci(ln l)atr

5. V,,0; = IVL.

Lemma 4.2. [15] Let K be a sequential standard space-time. Then for C;, U; € X(K;), i = 1,2, we have

1. Ric(Cy, Y1) =" Rie(Cy, Uy) — 2V2H(C, Uy) = 3V2I(G, W),
2. Ric(Gp, Up) =2 Ric(Cy, Un) = H42(Ca, Un) — 2V2U(Co, Un),
3. RiC(at, (Qt) = ZAZ,

3. Ric(C;, Uj) = 0, for i # j, where t* = tA't + (ko — DIV

The following corollary is deduced from Lemma
Corollary 4.3. If £ is a vector field on a sequential warped product standard space-time. Then we have

I
ot

where E =&+ & +vd, (=0 + G+ drand U = Uy + Uy + 95 € ¥(K).

(£0)(C, U) = (B, G1)(Ca, Uh) + £(E7, G2)(Co, Up) — 2P — + 2t&1(D)72(Ca, Up) — 21(E1 + E2)(1), (44)

For any C, U € X(K) a sequential standard space-times is 1-Ricci-Bourguignon soliton if

Ric(C, U) + £:4(C, U) = (A + p)g(C, U) + un(Qn(U). (45)
We know that if ¢ is Killing vector field then K is quasi-Einstein manifold of the form
Ric(C, U) = (A + p1)d(C, U) + un(Qn(U), (46)

Then we have the following situations. Firstly
Ric(dy, 9:) = —I*(A + pr) + pol?, (47)
which give us
Al
T
Now taking the trace of (46), we get

A+ pT = po*l? - (48)

Al
1+ ulel.

7= +ky + 1)[;171212 -7

Secondly,

IRie(Gy, Ur) = (A + pr)da (G, Us) — I%Vzt(CL Uy) — 1V2I(Cy, Uh) + umi (G (Uy)
and finally

2 Ric(y, Uy) = (t2i +PpT+ t“)ga@, Uy) + IV, Un) + it (C)na(UL).
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Theorem 4.4. Let & € X(K) be a Killing vector field on a sequential standard space-time. Then the scalar curvature
r of K is given by

T= (ki 4k + 1)(;;%12 - ATZ) s (49)

Corollary 4.5. Let & € X(K) be a Killing vector field on a sequential standard space-time. Then
(a) K; is quasi-Einstein with factors A + pt and p if ko IV2HCq, Up) = —tV21(Cq, Up).
(b) K is quasi-Einstein with factors At> + ptt> + t# and ut* if V?I(Cy, Uz) = 0.

We give the following theorem which comes from to Theorem [3.4;

Theorem 4.6. Let & € X(K) be a potential vector field on a sequential standard static space-time. Assume that the
gradient of t and | are concurrent vector fields on Ky and K, respectively. If (K, g,¢&, A, p, ) is an n-Ricci-Bourguignon
then we have the following conditions:

- ~ - 1
(a) (Ki,d1,&1, A1, ) is an n-Ricci-Bourguignon soliton and Ay + p1t1 + u = A+ pt + I% + 7

(b) K, is quasi-Einstein manifold if &, is a Killing vector field.

(c) —ATI + % + %(51 +&)1) = A+ pr+ ul*o*.

Proof. The n-Ricci-Bourguignon soliton (K, g, &, A, ) is given by
Ric +%£59~ = (A +p0)g+un®n. (50)

Using Lemmal4.2land Corollary[4.3|for any vector fields (, U such that { = {; + G+ drand U = Uy + Uy + 9y,
we have

IRic(Cy, Un) — BV24 (T, Un) — BV2I(E, Uy) +2 Ric(Ga, Uy) — £2(Ca, Uy) — 1V2I(Ca, L) + AT
+3(EL §1)(Cy, Un) + g £2 o), Un) = PE + t&1(8)g2(Ca, Un) = (&1 + E2)(0) (51)
= (A + p)d(Cr, Un) + pum(C)m(Us) + (A + p1)§2(Co, Un) + pfn2(C)na(Uz) — (A + pr) + pl*o?.
Then separately, we obtain
"Ric(Cy, Uh) — 241(Cy, W) = 2u(Ca, Un) + 3(EL GG, ) = A+ pogi (€, Un) + un(C)n(th). (52)

Therefore following the same methods as in the Theorem we conclude that (K1,g”1,§1,7\1, u) is an
n-Ricci-Bourguignon soliton. We have

2Ric(Co, Up) = #42(Co, Un) = §VPI(Co, W) + 52(E2 2)(Ca, U) + 1 (8)72(Co, Un)

(53)
= (A + p1)§a(Co, Uz) + ptna(C)n2(Uy).
If & is a Killing vector field, then K is quasi-Einstein manifold. Therefore from , we obtain
IAl - 12% — (& + &) = —(A + pr)P + ul*e?, (54)

which allows us to conclude the proof. [

The next theorem is deduced from Theorem 8.7} Corollary
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Theorem 4.7. Let & € X(K) be a conformal vector field on a sequential standard space-time with factor ¢ and
(K, g,&, A, u) is an n-Ricci-Bourguignon soliton. Assume that the gradient of t and | are concurrent vector fields

A k 1
on Ky and K. Then K; and K, are quasi-Einstein manifolds with factors aq = -7 + /lev2 + 72 + 7 ay = yand
Al 1
p1 = —th + PPt 7t2, Ba = ut*, respectively.

Proof. Assume that (K, g, &, A, p, ) be an n-Ricci-Bourguignon soliton and & is a conformal vector field with
factor ¢. Then we have

Ric = (A + pT—P)g+ un®n. (55)
Then for any X, Y € X(K), we get
Ric! (@1, W) = 31(@, W) = 101(Ca, Uh) +2 Ric(Gy, Un) = #2(Co, Un) = $292(X, Y2) + AL
= (A + pt = 9)Fi(Co, U) + pn(C)n(Uh) + (A + pT = )g2(Co, Un) (56)
+uttna(C)nUz) — (A + pt — )12 + ul*o?.
Hence we find

TRie(C1, Up) = (A + pr— ¢ + 2 + Hgi (G, Uy + pn(C)n(Un). (57)

2Ric(Cy, Up) = (A2 + pr2 = P12 + # + 12)55(Co, Un) + pt*na(So)n(Un) (58)
and = A + pt — ¢ = =4 + ul*v?. Hence the proof is completed. [

4.2. n-Ricci-Bourguignon Solitons on Sequential Warped Product generalized Robertson-Walker space-times.

Let (K3, 42) and (K3, §5) be two Riemannian manifolds of dimension k, and k3, respectively and t and !
are positive smooth functions on K, and I X K;. The sequential generalized Robertson-Walker space-time is
a product manifold K = (I X (K») X |K3, endowed with the metric tensor § = (—dt* ® t24>) ® 5. [15].

Lemma 4.8. [15]] Let K be a sequential generalized Robertson-Walker space-time. Then for C;, U; € ¥(K;), i = 2,3,
we have

V0 =0,

VoG = Vo = LG,

Vo, Uy = Véz Uy — tiGa(Co, Up) oy,
VG = Vi, G = G(In )G,

Ve ls = V2 Us ~ 13(Cs, Us)VLL

A

Lemma 4.9. [15]] Let K be a sequential generalized Robertson-Walker space-time. Then for C;, U; € X(K;), i = 2,3,
we have

1. Ric(d;, 9y = 2f+ 2 2L

2. Rie(Gp, Up) =2 Ric(ly, W) — Ha(Ca, W) — VUG, W),

3. Ric(Gs, Us) =° Ric(Gs, Us) — Fga(Cs, Us),

4. Ric(C;, Uj) = 0, for i # j, where t* = —tf — (ky — 1) and I* = IAl + (ks — 1)||VI|.

From Lemma we deduced the following corollary:
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Corollary 4.10. If (K, §) is a sequential generalized Robertson-Walker space-time. Then we have

)

ot ol
EC W) =25+ 1(£2,92)(Ca, Un) + (£, 73)(Cs, Us) + 20t = 2(Co, o) + 20l(5; + E2(0)73(Cs, Us),  (59)
where E =vd; + & + &3, =0; + (o + (zand U = d; + Uy + Uz € X(K).

K is -Ricci-Bourguignon soliton if

Ric(C, U) + £:4(C, U) = (A + p1)g(C, U) + un(Q)n(U). (60)
We know that if £ is Killing vector field then K is quasi-Einstein manifold of the form

Ric(C, U) = (A + pr)g(C, U) + un(@n(U). (61)
Then we get the following situations. Firstly

Ric(ds, ds) = —(A + p) + po?, (62)

which imply from Lemma

kZ" k3azl_ kY ~ 2
Tt+7ﬁ =—(A +pr) + pv-.

Secondly

(A + pga(Co, W) + pt*na(C)na(Uz) =2 Ric(Cp, Un) — H4n(Co, U) — I%WZ(CZ, U).
Then

2Ric(Cy, Up) = (PA + 2P + #)2(Ca, L) + B VUG, Un) + pt1a(C)na(U)
and finally
3 Ric(Cs, Us) = (12;\ +PpT+ lu)f?s(Ca Us) + ul*ns(Ca)ns(Us).

Theorem 4.11. Let & be a Killing vector field on a sequential generalized Robertson-Walker space-time. Then we
have the following situations:

2
(a) I%H }%% = —(A + p1) + uo?,
(b) (Ka, §) is quasi-Einstein manifold with factors 24 + £ pt + ¥ and ut* if V2I(Cy, Uy) = 0 for any (p, U, € ¥(Ky)

and

(¢) (K3, ) is quasi-Einstein manifold with factors PA + I>pt + I* and ul*,
The following theorem is an application of Theorem 3.4]
Theorem 4.12. Let & be a potential vector field on a sequential generalized Robertson-Walker space-time and
(K, g,&, A, p) is an n-Ricci-Bourguignon soliton. Assume that the gradient of | is concurrent vector field on K.
Then we have the following situations:

(@) (Ky, §a, PE2, Aa, ) is an n-Ricci-Bourguignon soliton with Ay + pyty + ut* = A2 + pt? + t# — oti + '%

(b) (K3, G5, P&, A3, 1) is an n-Ricci-Bourguignon soliton with A3 + pats + ul* = A2 + ptl? + IF — vlgh — vl&,(0).
Proof. For proving, It enough to use lemma [4.2land Corollary .10, O

The following theorem is a consequence of Theorem [4.7]

Theorem 4.13. Let & bea conformal vector field on a sequential generalized Roberstson space-timeand (K, g, &, A, u, p)
is an n-Ricci-Bourguignon soliton. Assume that the gradient of | is concurrent vector field on K. Then Ky and K3 are

2 2
quasi-Einstein manifolds with factors ay = (—I%f— %%)tz +u? + 4+ I%, ap = uttand By = (—I%f— I%%)lz +
po? + 1, By = ul*, respectively.

Proof. The proof is similar to the proof of Theorem[t.7] [
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