Filomat 38:19 (2024), 6809-6827
https://doi.org/10.2298/FIL2419809N

Published by Faculty of Sciences and Mathematics,
A University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

’f'a
g,
T &

Ipapor®

On an inverse problem for a tempered fractional diffusion equation

Anh Tuan Nguyen®?, Nguyen Hoang Tuan®¢, Le Xuan Dai“¢, Nguyen Huu Can®*

*Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
bFaculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
Department of Mathematics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT)

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
@Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
¢ Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract. In this paper, we consider a tempered fractional diffusion equation with an integral condition.
We present two main results. The first result concerns the well-posedness of the mild solution and provides
estimates for the upper and lower bounds of the solution. We also investigate the continuity of the solution
with respect to the fractional order. The second result pertains to the regularization of the inverse problem.
The first method is based on the quasi-reversibility method, and we provide an error estimate in L? spaces.

For the second regularized solution, we employ the Fourier truncation method and obtain error estimates
in the higher-order spaces IH’.

1. Introduction

Let Q be a bounded domain in R¥(N > 1) with smooth boundary dQ). Let T be a positive constant. We
are interested in studying the following problem

D¥u(x, t) + Au(x,t) =0, (v, ) e Qx(0,T), M
u(x,t) =0, (x, 1) € dQAx(0,T),

with the integral condition

T
f u(x,s)ds = f(x), xeQ, 2)
0

where 0 < a < 1, A = —A is the Laplacian operator. Here Df’k is called the Caputo tempered fractional
derivative of order & which is defined by (see [23], p. 430)

D (-, t) = o 1 f (t- eksw( 5))ds, (3)
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where I' is the Gamma function. If k = 0 then tempered Caputo derivative becomes Caputo derivative
which was studied in [348], 22} 28-30].

Fractional differential equations can represent many natural phenomena with long-time behavior such
as unexpected dispersion, analytical chemistry, biological science, artificial neural networks, time-frequency
analysis, etc. This research direction is very exciting and has attracted many mathematicians to participate.
Types of fractional derivatives that attract a lot and have important meanings such as Caputo derivative,
Riemann-Liouville, Caputo-Fabrizio. In some models, we need to consider new memory effects related to
operators for better real-world applications. The tempered fractional derivative was introduced in [10].
The tempered fractional derivative is one of the generalized forms of the Caputo and Riemann-Liouville
fractional derivatives. Multiplying Caputo and Riemann-Liouville fractional derivatives by an exponential
factor gives that the tempered fractional derivative. As we know, the tempered fractional calculus has been
developed to deal with elasticity [11], geophysical flows,[12] ground water hydrology [13]].

Let us collect some results on problems related to differential equations containing tempered fractional
derivatives.  The authors of [1] focused on discussing the properties of the time tempered fractional
derivative, then investigated the well-posedness and the algorithm for the tempered fractional ordinary
differential equation. In the interesting paper [23], M.A. Zaky studied the existence, uniqueness, and
structural stability of solutions to nonlinear tempered fractional differential equations as follows

D¥*u(t) = gz u(t)), 0<t<T, (4)
associated with a general boundary condition
au(0) + beTu(T) = c. (5)

Here g : [0,T] x R — IR is a continuous function, a,b,c are real constants that satisfya+ b # 0. If a = 0 and
b =1, the problem (#)-(5) is reduced to the model considered in [2].

In [14], the authors investigated some existence and uniqueness results for a class of problems for
nonlinear Caputo tempered implicit fractional differential equations in b-metric spaces.

To the best of our knowledge, there are very few papers refer to Problem (1) when A is an operator in
Hilbert space. Our aim in this paper is described as follows. The first goal is to prove the well-posedness of
the solution. We give the upper and lower bound of the mild solution. We also consider the continuity of the
solution according to the parameter k. The second result is to investigate the ill-posedness and regularize
the solution for our problem. We will provide two regularize method: the quasi-reversibility method and
truncation method. Our method is oriented towards research in infinite dimensional space with the use of
Fourier series, see [9] 15521}, 31H33]].

This paper is organized as follows. In section 2, we introduce some preliminaries which contains some
definitions on solutions spaces and some properties on the Mittag-Leffler functions. In section 3, we study
the well-posedness of the problem. This section includes many theorems with different contents related
to continuity, upper and lower bounds of the solution. Section 4 mentions to the regularized solutions of
our problem. Theorem [4.1| provides a regularized solution using the QR method and evaluates the error
estimate between the regularized solution and the exact solution in L? space.

2. Preliminaries

First of all, we introduce some suitable Sobolev spaces, and fix some notation. Let us recall that the
spectral problem

{(—A)en(x) = Anen(x), inQ), 6)

eq(x) =0, on 0Q),
admits a family of eigenvalues

D<A sAh<A3<.. <A, ... oo,
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The notation || - ||z stands for the norm in the Banach space B. We denote by L9(0,T;B),1 < p < oo for the
Banach space of real-valued functions w : (0; T) — B measurable, provided that

1
T i
wllao,;8) = ( f IIw(t)IIZdt) , forl<g<oo; ()
0
while
[w0llr=o,r.8) = esssup [lw(t)llp, forq = co. (8)
te(0,T)

For any p > 0, we define the space

H(O) = o € Q) Y AV e, e < o),

n=1

where (-, -) is the inner product in L*(Q), then H(Q) is a Hilbert space with the norm

[oller ) = [Z /\Z|<U(x)/en(x)>|2] .
n=1

For any 0 > 0, we introduce the following space

o(-,t) —o(-,s
C% ([0, TL HP(Q) = {v e C([0, TLLA(Q) = sup o, ) = o 9)|IH”<Q’ < ). (9)
0<t<s<T It —s|
and the following norm
llo(., 1) — v(s)ll2@
[ollcoo, 12 = sup 0 © (10)
0<t<s<T |t — sl
Definition 2.1 (Kilbas, [27]1). The Mittag-Leffler function E,(z) defined by
Eu(z) := kz_; farey €T R@>0.
Lemma 2.2 (Kilbas, [27]). For A > 0, & > 0 and positive integer m € IN, we have
OB () = A E (A1),
d o o
3 (tEa2(=A1Y) = Eaa(=A),
d X— o a— o
§(t‘ 'Eaa(=At)) = =t 2Eq 01 (—AL).
It is well-know that, for0 < @« < 1 and forz € C
dtl
—Eq1(2t%) = zE41(2t%). (11)

dt
Lemma 2.3 (Kilbas, [27]). Let A > 0, and 1 < a < 2. Then the identities

Ean (=A%) =~ Ega(~A1%),
and

("™ Ea,a(=At") = "2 Eqa-1(= A1),
hold for all t > 0.
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Lemma2.4. Let A > 0,and 0 < a < 1. Then the identities
9y Eap(=At%) = = AEq1(=At9),
hold for all t > 0.

3. The homogeneous problem with integral condition

This section is devoted to the study of Problem (1) with the nonlocal integral condition (2). Let us now
give the explicit formula of the mild solution. Let us assume that Problem (1) has a unique solution u. Let
u(x, t) = Yooq un(t)eq(x) be the Fourier series in L*(Q) with u,(t) = (u(-,t), en())12(q)- From the first equation
of (I), taking the inner product of both sides of (I) with e,(x), we obtain

Df’k + Antty(t) = 0, un(0) = (uo, en)i2) s (12)

where F(t) = (F(t),en(-))12¢q) - The theory of fractional ordinary differential equations [27] gives a unique
function u,, as follows

Ul () = e M Eq 1 (=A%), (13)

where we denote up,, = (u(0), &(-)) 2(y)- This implies that

T T
f u(rjt(,k(t)dt = f e_ktEa,l(_Anta)uO,ndt = fn~ (14)
0 0

Hence, one has

_ fu
(T —kt a .
Jy e MEaa(=Ayte)dt

Uon

This equality together with (13) imply that

e_ktEa,l (=Aut®)

w0 = — : (15)
i e Ea1(=Aute)dt
The mild solution is defined by
- eiktEa 1(=Ant®)
k=) = fuen(). (16)
n=1 fO e_ktEa,l(_Anta)dt
Theorem 3.1. Let f € H*179(Q) for any s > 0 and 0 < O < 1. Then we get
ak kT1.—¢
(e poraeiy S Ceap DTk f||H5+1_H(Q), (17)
fori<p<loand1<e<1-a0.If f € H*3(Q) then we u* € C3 ([0, T]; H*(Q)) and we get
ak <
C5 ([0, TLH: Q) — Cla,k, A, T)”f ' B Q) (18)

—kT

Proof. Since the inequality e > ¢7*T, we see that

T T T
1
—kt c —kT - kT
fo e Ey1(—=AptM)dt > e L Eq1(=Ant®)dt > Cre fo T dt. (19)
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Since 1 < A,A}!, we know that

T T
1 1 dt — 1
— dt>— | —— = T)—.
j(: 1+/\ntadt_ nf(; AT+ e M, )/\n

Here we denote by M(a,T) = j(;T A,fi -~ This implies that
1
. e
C-M(a, T)
—kt a a 4
j(; e Ea,l(_Ant )dt 2> W (20)

Using the upper bound of the Mittag-Leffler function E,; and the inequality e™* < C,z™¢ for any ¢ > 0, we
know that
+

—kt P
eH B (Ant) < CR e

< Cle, )kt~ 079, (21)

forany 0 < 0 <1 and ¢ > 0. Using (20) and @I}, we find that

e_ktEa,l (_/\n ta)
e ME L (<At

< C(e, a)e Tk et (ea0) 176, (22)

Using Parseval’s equality, we find that

= eME (=A%) )
UGt >|H(Q) ZAﬁs( " ) ful?
=\ [) e Eqy (—A,t)dt
< |C(€/ a)eka—S|2t—2(e+a6) Z A%sAﬁ—Zelan. (23)
n=1
This implies that
ak kT 1.—& 4~ (e+ab)
. t)||IH o S Cle Tt |f||HM(Q)~ (24)

Let us choose ¢ such that 1 < ¢ <1-af. Then by taking p such that1 <p < then we deduce that

u® e (0, T; H (Q)) and

s+a9’

uvk (., t) oI < C(e,a,p, T) k¢ feo@ (25)
By (16), one has
W )= ) = Y et A 2 T CA 6)
s} i e Eq1(=Aute)dt
It is obvious to see that
eHEIE (<At + 1)) = €1 (~1,1)|
< e MIE 1 (=Au(t + 1)) = Eg 1 (=Aut®)
+ B (—Apt®)|e k04 — e—kf'. 27)
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Since the formula %Ea,l(—)u“) = —At*1E, o(=At*) and the upper bound of the Mittag-Leffler function E, ,,

we obtain the following estimate

t+h

Ea1(=An(t + h)®) = Eg1(=Aut%)| = A T E g o(—A,t%)dT

t+h
M
< R ———C T |
_Anft t 1+A,1¢ T

In view of the inequality a + b > 2 Vab for any a,b > 0, we know that

t+h . M
a-1__ Va4 it
A Ve s pleeni-r)
Using the inequality (2 +b)* <a® + %, 0<a <1, a,b>0,and looking at (28), we infer that
Ea,l(_/\n(t + h)Dt) — Ea,l(_/\nta) < ]% \/A—nh%

In addition, we also get

|Ea1(=Aut®)lle”

Kt | <GS ((t+1)% — 1)
< Cik2h:,
Combining 27), B0), (31), we find that

| HEDE (AL + 7)) = e Ea,l(_/\”t“)|

< % VAR + CHEERE < Cla, k, A1) VALRS .
This inequality together with (20) give that

e—k(t+h)Ea/1(_/\n(t +h)*) — e_ktEa,l(_/\”t“)

- < Cla, k, A1) T A ?h3 .
i eMEqi(=Ayto)dt

By (26), we obtain the following bound

ak( t+h) ak( t)||IH S(Q)

_ ¥ | B A st i
= [ e E 1 (A )t "
< |Clar, k, A1) Th i AZHIf2,
n=1
Hence, we find that
ut b )~ t)”IH “(Q) < Clak An)eht H* 3 (Q)

This implies that u®* € C3 ([0, T]; H*(QQ)) and we also give the following estimate

uak

Cla kA, T)||f

c(o,T]; ]I—F(Q)) H*3 ()

(28)

(29)

(30)

(81)

(32)

(33)

(34)

(35)

(36)
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Theorem 3.2. Let f € H*279(Q) for any 0 < 6 < 1. Then we get

9 ak H e jam1-e-a0
Y a, < eqa—l-e—a
||8tu () H(Q) — Gkt

i

Hs+2-0(Q)

and

where Cy depends on k, ¢, a, M. The constant C; depends on €,a,k, T, O, M.

DYu®k(, t || < Cytea0
Fu™(., t) H(Q) 3

A

H+2-0(Q)

Proof. Since (16) and %Ea,l(—/\t"‘) = =AY LE, o(—AtY), we infer that

)fnen(x)

d . o —ke M E 1 (—Aut®) — Aue Mt o (<A te
Eu ’k(x, t) = Z = z .
n=1 fO e_ktEa,l(_/\nta)dt
= —ku™ (x,t) - W(x, 1),
where

v A KTIE (=A%)
Wt =Y = foen().
n=1 j(; e_ktEa,a(_Anta)dt

6815

(37)

(38)

(39)

(40)

Using the upper bound of the Mittag-Leffler E, , and the inequality e™* < C,z™¢ for any ¢ > 0, we know that

++

e MEq o(=At®) < cgk—ft-é‘ﬁ < Cole, a)k~ct¢t7992 0.

Thus, we get that
Ant* e Ega(=Ant®) < Cole, )k~ 1271 7e7401,79,
for any ¢ > 0 and 0 < 0 < 1. Using the bound (20), we derive that

Ape MHTIE 1 (= A1)

- < Ci(e, a, M)k™€217¢-20 120,
Jy e MEqa(=Aut®)dt

Using Parseval’s equality, one has

2 (N E, (<A )
Il = L (o )
@ S5\ [ e HEqa(-Anto)dt

— 2 )
< |C1( e a, M)| §2¢ 2a-2-2¢-2a0 Z Aﬁs+4—ze fi
n=1

Hence, we have immediately that

HW(., t)”]HS(Q) < Ci(e, o, M)k~¢ o~ 1-e=a0

Combining (24), (&5), we obtain

q

]I—IS+279 (Q) :

uk(x, t)H

”%u”’k(x, t)HHS(Q) <k + ||W(., t)|

Hs(Q H3(QY)

(41)

(42)

(43)

(44)

(45)
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< kC(e, ) ke (e*a0)

+Ci(e, ’]'\71 € pa—1-e—ad
|f||]H~*‘“*f’(Q) & a M)

il

By a simple calculation for the above expression, we get the desired result (37).

The Caputo derivative of the function u®* is given by
a, ok _ oc ak
Diu™(x,t) = F(l f( T)” (x,T)dt
— ‘ 1 t
= 1—'(1 _ a) L (t - T) u (xl T)dT - r(]_ — a) fo (t - T) W(x, T)dT
=J1(x, t) = Ja(x, 1),
where
_ a, ok
Ji(x, t) = F(l f(t )" U™ (x, 7)dr,
Ta(, 1) = m - f (= O W(x, 7).

Using(24), we give the following estimate

t
F— 1) —(e‘+a6)d
f||IH5+1‘0(Q)j(;( T) T T

f||HS+1_0(Q)t1_"‘_(”“9)B(1 —a,1-¢-a0),

”Hl( )”H(Q) a)l"(l_koz it

= Cle,0)F = ka—f

where we note that ¢ < 1 — af. This implies that
i

where C; depends on ¢, a, k, T, 6. For the second term JJ,, we use in order to obtain

t
(t _ ,.L,)—aTa—l—e‘—aGdT
Hs+2-0(Q) 0

1

Lt ” < C, fl-o-(e+a0)
”Hl( ) H(Q) !

Hs+1-0(Q3)”

Ci(e, a, M)k™®

||]I2(" t)”]HS(Q) = ﬁ

= ﬁCl(E,a,]\z)k*B(l —a,a—¢e—af)t 0

Hs+2-0(Q)

where we note that ¢ < a — a6. Thus, we deduce that

/

ol = 2

H5(Q) ]Hs+2—9(Q)'

where C; depends on ¢, a,k, T, 0, M. Combining (47), and (51I), we deduce that

”D(tx”a'k(" t)”mg) < ”Hl(" t)“]HS(Q) " HHZ(" t)H]HS(Q’
T I TN
< Gt~ f H]H"*Z‘O(Q),
where we note that t1-¢-(¢+a6) < T1-ap=¢-a0 apq Hf ”]H‘*Z Q) ~ Hf”H” Q)

O

Hs+2-0 (Q) :

6816

(46)

(47)

(48)

(49)

(50)

(51)

(52)



A.T. Nguyen et al. / Filomat 38:19 (2024), 6809-6827

Theorem 3.3. Let f € H*(Q) for any s > 0. Then we get that

2 f] 0
Hs+e(Q) '|f Hs(Q)

where C dependson k,T,a, Ay, €.

k(. t)|

Proof. Let the following function
W) =e M, 0<t<T
Its derivative is

() =e M (1-a—kt), k>0.

The extreme point is ¢y = % Thus, since 0 < t < T, we deduce that

W(t) < max (W(T), ¥(to)) = max (e T, (ke)* (1 — a)'~) = My(a, T).

Hence, we get that
T T
f e MEq1(=A,tY)dt = f e MmO TIE (=A%) dt
0 0
_ T
< My(a, T) f F T E 1 (=A%) dt
0

T
— ct — log(1+ A, T%)
< T) | #'——dt= T)aCl—————=.

< My(a, )I) W Mo(a, T)aC, L

Using the lower bound of the Mittag-Leffler function E,;, we know that

C, C,

—kt a —kT a —kT a
Ep1(—Ant®) = — > — ]
¢ Ear(CAt) 2 € 1+Ant0‘_e 1+A,Te

In view of (55) and (56), we know that

e—ktEa,1 (_/\nta) . e—kT An 1
e ME (~Aute)dt  C@)Mo(a, T) 1+ AnT* log(1+A,T1)
ekT M 1

2 e .
C(@)My(ar, T) 1 + T log(1 + A, T%)

Thus we get that

oo 2
2 _ /\zs/\zg e_ktEa,l(_/\nta) 2
H+(Q) - n’‘‘n T |fn|
o i eMEqi(=Ayto)dt

k(. t)‘

2 o0 &
> ( il i ) Z > L
Cla)My(a, T) 1 + M T¢ log?(1 + A, T%)

n=1
In view of the inequality log(1 + z) < C.z® for any ¢ > 0, we find that
A% 1
= .
log?(1+ A, To) — ICel?

|ful?.

6817

(53)

(54)

(55)

(56)

(57)

(58)
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Hence, from two latter observations, we derive that

0o

> ICP Y AZIAP = 1P| f)

n=1

2 2

w1

Hs+(Q) H(Q)”

where C depends on k, T, a, Ay, €.
O

Theorem 3.4. Let f € H*(Q) for any s > 0. Then we get

ak ek el _ 1€
WA = F < Clea TT =KL
forany1<g <1
Proof. Since (16), we find that
, - “HE 1 (= At U 1 (= Ant®
u(x, ) — u¥ (x, f>=2[ - alCAF) - calStl ]fnen(x).
i L[ e MEq1(=Aat)dt [ eFIEy 1 (=A,te)dt

It is easy to see that
eMEq1(—Aut®) 3 e M E g 1(=Ant®)
JeME (A b)dt [ e IE (<At
e E Q1 (=Aat) [ e E 1 (—Aat?)dt — e ¥ Eq1(=Aut) [ e Eq1(=Aut®)dt

T T
Jy e MEa1(=Aut®)dt [ e Eq(=Aut?)dt
Let us give the following observation
T T
e f e K Ey1(=Ant®)dt — ¥ f e ME, 1(=A,t%)dt
0 0
T
=M f (e = ™) Eqa(=Aut")dt
0
T
+(e‘kt—e‘k t) f e MEq1(=A,t%)dt.
0

Using the inequality |[e™ — et < C,la = b|f for € > 0, we find that

T T
e f e B (=A%) dt — e f Mg (At
0

0
T T
< C, Tk - K| f Ep1(=Aut®)dt + Cotlk — K[ f Ep1(~Aut%)dt
0 0
T
<2C.Télk — K| f Ep1(—Ant®)dt.
0

Combining (62) and (64), we derive that

eME  1(=Ant?) e M E 1(=Ant?)
e ME (~Aut)dt [ e E, (~Aat)dt

6818

(59)

(60)

(61)

(62)

(63)

(64)
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2C, T¥lk — K'[*Eqt (~Ant®) ) Ean(~Aut*)dt
<

=T T .,
Jy e MEai(=Ant®)dt [ e ¥ Eq(=Aut®)dt
2C, Téfk = K'[¥Eq1 (~Ant®) [ Eqn(~Aut)dt

< - T : (65)
ek [ Eq1(=Ant®)dt [ eF Eq 1 (—Ayt?)dt

This follows from that

€M E 1 (=A%) e N 1 (=Mt
e ME(=Aut)dt [ eFE, (~Aqt)dt

<2C Télk — K'[FEq 1 (—Aut®) c An (66)

2K TM(a, T)

Using the inequality E,1(=A,t%) < %, we get the following estimate

eHE, 1 (=At) K E 1 (= At
e MEqi(-Aut)dt [ eFIE 1 (~Auto)dt

< Cle, &, T)Eap (=Aut®)Aulk — K’

< Cle,a, )Tk — K[+, (67)

This inequality together with yields that

WK By — uF(, t)|

H(Q)
2 12

& _ktEa —Anta —k’tEa —Anta
_ (Z/\ﬁs[ff 1( ) e 1( ) ] fn2)
0

e~ eME 1 (~Aatt)dt [ eFIE, (~Aut)dt

0 1/2
< Cle,a, )Tk = K[+ AZ 2] < C(e,a, T)TEk — K51
n.Jn

n=1

| (69)

H(Q)

T .
Let any g such that 1 < g < 1. Then since the convergence of the integral fo t~*9dt, we obtain the following
estimate

Uk, 1) —u* (1)

< Cle o, T k- k] f”]Hs(Q)' "

L9(0,T;Hs(Q)

O

4. Ill-posedness and regularization

In practice, the exact data f is noised by the observed data f; € L?((Q2) which satisfies that

s -1 .. <o (70)

L2Q)
In this section, we will provide two methods for regularizing our inverse problem. The first method is
quasi-reversibility method (QR method) which was introduced by [24]. This method was developed for
other models in the papers [25]. The truncation method proves to be useful in many different problems, see
[26]. The reason we add a truncated correction method is because we want to handle errors on the space
IH® for s > 0. Note that it is very difficult to solve the problem on IH* using the QR method.
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4.1. Quasi-reversibility method

Let us give the following regularized problem by using quasi-reversibility method

DMl (x, t) + Aud(x, t) + PO AU (x, ) = 0, (x,t) € Qx (0, T),

B -
u (;C/ t) - O/ (x/ t) € &Q X (Or T)/ (71)
f u(x,s)ds = fé(x), xeQ,
0
Theorem 4.1. Let the input data f € H*#(Q) for any p > 0. Let f = 8" for 0 < h < 1 then we get
o #y _ 1-h Iy
||u (1) = u( B, S Cad' "+ G || f‘ ey (72)

here C, depends on a, k, T, M. The constant Cs depends on o, k, T, C, C;,]\7I(a, 1), u.

Proof. Let us now give the explicit formula of the mild solution to Problem (71)). Let us assume that Problem
(71) has a unique solution u®. Let u®(x,t) = Y.,2; ul(t)eq(x) be the Fourier series in L?(Q2). From the first
equation of (71), taking the inner product of both sides of (7I) with e,(x), we obtain

DY () + Agud(£) + BALDY U (H) = 0. (73)
This implies that
ub(t) = e MEq (- Lt“)uﬁ (0). (74)
" ’ 1+ BA, "

Since the condition

T
f (x, )dx = fé(x
0

we know that

T
( fo e MEq( - %g/\nt“)dt)uﬁ(O) = (75)

Thus, we have

e_ktEa 1(_1+ﬁ,\ t) 5

1,(0) =
fo M Eq (-~ g 9)dt

(76)

By the definition of Fourier series, one has

0 e*ktEal(_ An ta)

fen(x). 77)
=1 f e kEal(—Wf“)df

By a similar techniques as in (20), we know that

T _ _~
f e Eqq1(- An CaM(a,T) _ CuM(a, T)(1 + BAn)
0

_M g > - 7
1+ B4, dt > kT Au kT, (78)
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Using the upper bound of E, 1, we get that

Ea,l( -

A Ct
= 7)< B <C!. (79)
1+ﬁ)\n ) 1+1+/}§“Ant“

From two latter estimates, we derive that

—_

—kf n o
E 1( t ) C+ kTA
: < Cz—. (80)
I e—ktEall(—Hﬁ"An )dt - CaM(a, T)(1+pA,) P

Here C, depends on ¢, k, T,]VL This implies that

0o - _ Mg 0
= Bt ) = S L o
n=1 a,l n=1
This implies that
Hué(" )”H(Q) 'f”H(Q)'

Let the following function

0 E_ktEal(—%i’a)
o) =) — B fen(®). (82)
n=1 j(; Kt "Ea1(— 1+ﬁ)\ to)dt

It is obvious to see that

< &0 (83)

||u6(., B =, 1) Moo =5

((e)

<2

Let us now give the bound ”vb(., ) —u* @) First, we need to find the upper bound for the difference

e Eqn(~ g 1) HE, 1 (At
F - @ 1+ﬁA e Eq(=Ant) . (84)

T T
b e Eai(-gprtdt [ e MEqi(=Aath)dt

It is easy to verify that
F=Fi+%, (85)

where

Tl:e—kflsa,l( 1) [ e (Bt (=10t = Eqa(—per 1)) dt )

( fo M E g (— Tt ydt)( f eMEq 1 (=Ant0)dt)

and

e (B (— 1) = Ea(=Ant) [} e Ea (- t)dt
(5 e Ea (g t)dt)( [ eEq1(=Aut0)dt)

Fp =
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e_kt(Ea,l(_1+ﬁ/\ ) a,l(_Anta))

- . (87)
fo e M E, 1(=A,to)dt
Since
d Ea a(_c‘))
S Egq(—w) = 2
- Eaa(-w) = =4 (39)
We know that
At
Eurlo ot = ()] = —|fl% Eual-de
1 Mt
<o, o (59)
(04 An ta
1+BAn
where we note that ; +[3 o t* < A,t*. Since the bound |E,, 1 =,
Apt? Ant®
[ Eodrsn, [
1;\5’}1,1 1 1+/;\ e
= Nalog(1+ /\nt"‘) — Ny log(1+ Lt“)
1+ pA,
= N, log (#) (90)
L+ ot
It is not difficult to check that JL”H <1+ BA,. This implies that
T+pAn
Eui(- A ) = Eg1(=A ta)<110 (1+BA) 91)
al 1+ﬁAn a,l n = g ,8 nj-
This follows from (87) and (20) that
AT
[Fal < ——=——Aulog 1+ pA,). (92)
aCyM(a, T)
Let us observe the term #7. Using (91), one has
T An 1 T o
B Ea — ay _ Ea _ a - 1 _
foe ( 1(=Apt?) = Eqa( 1+ﬁ)\t))dt - ( +ﬁ)\)f0e dt
1
k - log(l + BAn). (93)
This inequality together with (20) yield that
T
j(; et (Ea,l (_/\nta) a 1( 1+ ta)) dt KT _1q
e —
- < ——— Ay log (1+BAy)- (94)
i eMEqi(=Ayto)dt kaCyM(a, T)
. . eiktEtX,l( 13;\ ta)
We continute to estimate the term —————=——. Indeed, we get that
IA e*’“Ea,l(—Hﬁ‘It")d
An ct 1+ A
Eup(-—t_po <Pl (95)

< < ’
Tph S Tk = 0 A
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and
T T - - T
C C
f e ME (- A tdt > f ekt —dt > = f ekt dt
0 L+ A 0 l+ggptt T+ gpeT Jo
1—e kT 1+ ﬁ/\n
= - . 96
k C“1+ﬁ/\n+/\nT0‘ (%)
Thus, we get that
e M Ean (it Cik 1+BA, +A,T¢
- - < ooame n . (97)
o e Ean (-~ t)dt a n
Combining (94) and (97), we derive that
1
|¢NSCJXI+5+7WMng@+ﬁAQ, (98)
where C; depends on «a, k, T, C,, C/;. By collecting (85), and (98), we confirm that
7] < Cadylog (1 + BAy), (99)
where C4 depends on o, k, T, Cy, C;,M(a, T). Using Parseval’s equality, one gets
00 - Ay
s . 2 e ktEa,l(_1+ﬁ/\,, t%) e ME (= Ant?) 2 )
v@n—u@wmm_iz - : - —
T\, e MEqa(- o i)t Jy e MEqi(=Ayto)dt
<ICP Y AZlog? (1+BAa)f2. (100)
j=1
Using the inequality 1 —e™ < C,z" for any u > 0, we obtain
2 (o)
5 o 22 p2u 2420 2
[ -wenl,,, <icee ; Az g2, (101)
Hence, we infer that
O g u
[0 =0y < 1CICE A (102)

The proof is completed.
0

4.2. Truncation method
In the subsection, we introduce a regularized solution using truncation method. In practice, since k is a
positive real number, so it is approximated by a rational number ks such that

ks — k| < 6. (103)

Under the perturbation function f°, we give the following function

AN

_ké _ o
B s (104)

uP(x, t) =
N 4 n
n=1 j(;T e_k“tEa,l(_/\nta)dt

which is called a regularized solution. Here N is a positive constant which depends on 6 and satisfies that
lim(s_)() N = +c0.
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Theorem 4.2. Let f° € L%(Q), assume that u* € L*(0, T, H**F(Q)) for any q > 0 and B > 0. Then we get

a,0 ) —ur(. < T s+1|| g0
w0 =), < Canonp]
C+€kT
4 , (105)
CzM(a, T) L (0,T;HS(Q)
where we choose N such that
}Sin%N = 400, }Sirr(} SN*H = 0. (106)

Remark 4.3. Let us choose N = 0% for 0 < 6 < 1. Then we deduce that the error

order

U, —ut .,t” is 0
Vet =], o i of

max (66, Qﬁ(:lﬁ> )
Proof. Let us set the following function

& e ME (-t

= e MEa(-Anto)dt

W (1) = Fea(x), (107)

and

AN —kt

a e Eqp1(=Ant?)

=), = —— fuen(x). (108)
=1 [ e MEq1(=Ayt®)dt

Using the triangle inequality, we find that

uab( t)—u“b( )H

W0~ 0 =)

H(Q) ’

He (Q) Hs(Q)
0,0 - ', t)”}HS(Q). (109)
In view of (67), one gets
kth 1( A ta) e_ktEa,l(_Anta)

‘ e Eg(~Aut)dt [ eREq1(~Aute)dt
< C(y,a, T)lks — k" Eq1(=Aut)A,
< C(y,a, T)ks — k' Ay < C(y, @, TS Ay, (110)

for any y > 0. Using Parseval’s equality, we derive that

w0 - |

H(Q)
N K HEN(AE) M Eaaht) [
) [ e B (-Aut)dt [ e HE gy (—Auto)dt
A <N AN
'C()/,oc T)’ & Y RP <[, T)| 5% NZ5+2 Z T (111)

nl
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Hence, we arrive at

< VaNCEa!
. C(y,a,T)6"N

fb

U0 = u( ¢ | .
W00~ () o

In view of (I07) and (108), one gets

2

9 A <N e_ktE (_)\ ta) 2
ua,é . t) _ ?)a’é(., t) — ( al n ) ,f - Jn) -
N N ”HS(Q) Z‘ fOT eMEq1(=Aut®)dt (f ! )

n=1
Using (20), we get the following bound

eME  1(=Ant?) - Ce A,
e ME (~Aute)dt  CaM(a, T)

It follows from (113) that

Au<N

o, . 2 CZekT 2 s 2
MN(S(., t) - ?JN(S(., t)”]HS(Q) < (m) ; /\?—2 (f;f _fn)

< ( (;i;ekT )2N2+25 f() _f 2 )
CaM(a, T) Q)

Under the assumption (70), we obtain that

C+€kT
W20 - oG s N,
O CoM(a, T)
Since (108), we know that

An>N An>N

) —ktE (_/\ ta)
o0, 1) — ', £) = C el fea) = Y u(Ben).
N ; e ME L1 (~Aqt)dt Z{

Thus, using Parseval’s equality, one gets
Au>N An>N

2
U () —u'(, ¢ H
Pn-uwGo|,

n=1
Hence, we infer that

*

U (1) —u'(, ¢ ” <NP|lu .
N (B =w(h) H(Q) L=(0,T;H(Q))

Combining (109), (112), (T16) and (119), we deduce that
fé

@,0 . ¥ . < s+1
w8 - u (,t)||]H5(Q) < C(a, T)ON

12(Q)
+ kT
+ (EQLNS”(S + NP
C:M(a, T)

ua(-

L (0, THT(Q)

where we choose y =1. [

= Y A GO < NEY AT (P
n=1

6825

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)



A.T. Nguyen et al. / Filomat 38:19 (2024), 6809-6827 6826
Acknowledgment

Anh Tuan Nguyen would like to thank Van Lang University for the support.

5. Conclusion

In summary, the paper presents a comprehensive study of a tempered fractional diffusion equation with
an integral condition. The significant contribution is the regularization of this problem, employing two
regularization methods: the quasi-reversibility method and the Fourier truncation method, both of which
enhance the accuracy of solutions in fractional calculus. Moreover, we also investigate the continuity of the
solution with respect to the fractional order.
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