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Abstract. In this paper, the time-fractional heat equation with the Caputo derivative of order α where
0 < α ≤ 1 is considered. The parametric Crank-Nicholson type method for direct problems is used. But for
the inverse problem, for finding the best conduction parameter c and the best order of fractional derivative
α, we use genetic algorithm (GA) for minimizing fitting error such that the numerical solution obtained for
direct problem at the final time be fitted by the final conditions. Several examples are carried out to describe
the method and to support the theoretical claims. Finally, we conclude that fractional partial differential
equations (FPDE) are more flexible than partial differential equations (PDE) and have a higher ability to
model physical phenomena.

1. Introduction

In the last decades, the fractional differential equations have been studied by many researchers in some
physical phenomena and numerous areas such as finance [5-6], engineering [13], viscoelasticity [12], control
[7], [9], medical [8], image processing [3, 10, 11] and etc [1, 2, 4]. Due to the ability and flexibility of fractional
partial differential equations (FPDEs) for describing scientific phenomena, they have made a very good
tools. The accuracy of this FPDEs varies with the order of the fractional derivative. In fact, determining
the appropriate order of derivative is very important for modeling a scientific phenomenon and if the
derivative order is not selected correctly, the model based on FPDEs may be worse than the model based
on PDE.

In recent years, many attempts have been made to determine the appropriate order of the fractional
derivative in modeling various phenomena. For example in [14] the determination of the order of fractional
derivative and source term in a fractional sub-diffusion equation are discussed. And also only determining
of the order of the fractional derivative has been investigated in [15] for the wave equation. Note that
determination of the order of the fractional derivative for sub-diffusion equation has been studied in [16].
And as well as in [17] determination of the order of fractional derivative and a kernel in an inverse problem
for a generalized time fractional diffusion equation have been discussed. Inverse problems are hard for
non-linear problems. Determination of fractional order and conduction parameter is a two-dimensional
optimization problem. In these problems, we minimize the error function. This minimization may not
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has a unique solution. Due to the lack of an explicit form of the error function, in these problems,
gradient-based methods such as the steepest descent direction method and quasi-Newton methods do
not work. Evolutionary optimization methods work much better for these types of inverse problems.
Because of these algorithms use random methods, so repeated implementations of these algorithms may
not provide the same answers. But this challenge should not be considered an important challenge because
by implementing it repeatedly, the best relative solution can be chosen from among them. Probably, the
genetic algorithm (GA) is the most well-known evolutionary algorithm. Genetic algorithm was developed
by John Holland [18], inspired by the Darwinian evolution of biological systems in nature. Solution vectors
to an optimization problem are encoded as binary strings of 0s and 1s, called chromosomes. Three genetic
operators (crossover, mutation, and selection) are used to modify the strings [19–21]. Two new (child)
solutions are formed via crossover from two parent solutions by swapping one part or multiple parts of
their chromosomes. Mutation generates a new solution by mutating one bit or multiple bits of an existing
solution or binary string. To solve the inverse problem we need a direct numerical algorithm. If the direct
numerical algorithm is given then we research the minimum error by setting different values for parameters.
We use the parametric Crank-Nicholson type method as a direct method and GA for minimization.

2. Problem Statement

Consider the time fractional heat equation in one dimension for homogeneous rods :


∂αu(x,t)
∂tα = c2 ∂2u(x,t)

∂x2 + f (x, t) , 0 ≤ t, 0 ≤ x ≤ 1, 0 < α ≤ 1,
u (x, 0) = 1 (x) , 0 ≤ x ≤ 1,
u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1,

(2.1)

where f and 1 are specific functions and the fractional partial derivative is in the Caputo sense:

∂αu (x, t)
∂tα

=

 1
Γ(1−α)

∫ t

0
ut(x,τ)
(t−τ)α dτ, 0 < α < 1,

ut (x, t) , α = 1.
(2.2)

If the order of fractional derivative α and conduction parameter c are given, we refer to (2.1) as a direct
problem. In the direct problem, we try to find the u(x, t) for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.
If the order of fractional derivative α and conduction parameter c or one of them are unknown and, instead
of them, the final condition of problem is given, in this case, how to find the best values of α and c such
that the numerical solution obtained from numerical algorithm in t = 1, fitted by the final condition? In the
other words, we seek the conduction parameter c and the order of fractional derivative α in the following
problem :

∂αu(x,t)
∂tα = c2 ∂2u(x,t)

∂x2 + f (x, t) , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 0 < α ≤ 1,
u (x, 0) = 1 (x) , u (x, 1) = h (x) , 0 ≤ x ≤ 1,
u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1.

(2.3)

where f , 1 and h are specific functions and the fractional partial derivative is in the Caputo sense (2.2). We
refer to (2.3) as a Inverse problem. In the inverse problem, we search for the best values of α and c so that the
solution of the direct problem for these parameters fits the final condition h(x).

Let us denote the algorithm that solves problem (2.1) for given α, c by Λα,c and its solution by ũα,c.
Note that, ũα,c (x, 1) is a discrete solution and in the vector form with M components but u (x, 1) = h (x) is
a continuous function. Therefore for comparing them, we should construct an interpolation function for
ũα,c (xi, 1) , i = 1, ...,M and use the L2 norm for fitting them :
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E (α, c) =
∥∥∥ũα,c − h

∥∥∥
L2
=

∫ 1

0

∣∣∣ũα,c (x, 1) − h (x)
∣∣∣2 dx , (2.4)

or discretization of h and use the l2 norm:

e (α, c) =
∥∥∥ũα,c − h

∥∥∥
l2
=

n∑
i=1

[
ũα,c (xi, 1) − h (xi)

]2 . (2.5)

For finding the best values of α and c, we minimize the following constrained optimization problem:

min
α,c

e (α, c) s.t. : 0 < α ≤ 1, c0 ≤ c ≤ c1. (2.6)

Note that, 0 ≤ e(c, α) has lower bound. Therefore, it has a minimum on the compact domain [cl, cu], [αl, αu]
and for each evaluation of e(c, α), the direct problem must be solved. In this paper, the genetic algorithm,
GA, for solving (2.6) is used.

3. Direct problem and discretization

The Crank-Nicholson type method for solving (2.1) in special case c = 1 was introduced in [22] and its
stability has been proved for 1 − Ln (2) /Ln (3) ≤ α. In addition, this method has a convergence order of
O

(
∆2−α

t + ∆2
x

)
.

In this section, we generalize this method to more general case c > 0 and the parametric Crank-Nicholson
type method for FPDE is introduced. For discretization, one can use the following nodes:

xi = i∆x, i = 0, 1, ...,M, ∆x = 1/M,
t j = j∆t, j = 0, 1, ...,N, ∆t = 1/N,

(3.1)

where the∆x is step size of x and∆t is step size of t. Time fractional derivative is discretized in the following
form

∂αu
(
xi, t j+1/2

)
∂tα

=
1

Γ (1 − α)

∫ t j+1/2

0
ut (xi, τ)

(
t j+1/2 − τ

)−α
dτ

=
1

Γ (1 − α)


∫ t j

0 ut (xi, τ)
(
t j+1/2 − τ

)−α
dτ

+
∫ t j+1/2

t j
ut (xi, τ)

(
t j+1/2 − τ

)−α
dτ


=

1
Γ (1 − α)


∑ j

k=1

∫ tk

tk−1
ut (xi, τ)

((
j + 1/2

)
∆t − τ

)−α dτ

+
∫ t j+1/2

t j
ut (xi, τ)

((
j + 1/2

)
∆t − τ

)−α dτ

.
(3.2)

If one use the approximation formula:

ut (xi, τ) =
u
(
xi, t j+1

)
− u

(
xi, t j

)
∆t

+O (∆t) ,

then (3.2) is written as follows:
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∂αu
(
xi, t j+1/2

)
∂tα

=
1

Γ (1 − α)


∑ j

k=1( ui,k−ui,k−1

∆t
)
∫ tk

tk−1

((
j + 1/2

)
∆t − τ

)−α dτ

+( ui, j+1−ui, j

∆t
)
∫ t j+1/2

t j

((
j + 1/2

)
∆t − τ

)−α dτ


=

1
Γ (1 − α)

 ∑ j
k=1( ui,k−ui,k−1

∆t
) ( j−k+3/2)1−α

−( j−k+1/2)1−α

1−α (∆t)1−α

+( ui, j+1−ui, j

∆t
) (1/2)1−α

−(0)1−α

1−α (∆t)1−α


=
∆t
−α

Γ (2 − α)

ui,j+1 − ui,j

21−α +

j∑
k=1

(
ui,k − ui,k−1

)
γ j,k

+R1+R2

= −σγ j,1ui,0 + σ

j−1∑
k=1

(γ j,k − γ j,k+1)ui,k + σ(γ j, j −
1

21−α )ui, j

+
σ

21−α ui, j+1+O
(
∆2−α

t

)
=

j+1∑
k=0

dkui,k +O(∆2−α
t ),

(3.3)

where
σ =

∆−αt
Γ(2−α) , γ j,k =

(
j − k + 3

2

)1−α
−

(
j − k + 1

2

)1−α
, k = 1, 2, ..., j

d j,0 = −σγ j,1, d j,k = σ(γ j,k − γ j,k+1), k = 1, 2, ..., j − 1
d j, j = σ(γ j, j −

1
21−α ) = σ(( 3

2 )1−α
− 2( 1

2 )1−α), d j, j+1 = σ 1
21−α

R1 =
1

Γ(1−α)

∑ j
k=1

∫ k∆t

(k−1)∆t

(
τ − tk−1/2

)
utt (xi, ξk)

((
j + 1/2

)
∆t − τ

)−α dτ

≤
∆t

2−α

Γ(1−α) max
1≤i≤n

|utt (xi, ξk)| .

R2 =
1

Γ(2−α)
1

21−αO
(
∆t

2−α
)
.

On the other hand,

uxx

(
xi, t j+1/2

)
=
θ

(∆x)2

{
ui−1, j+1 − 2ui, j+1 + ui+1, j+1

}
+

(1 − θ)

(∆x)2

{
ui−1, j − 2ui, j + ui+1, j

}
+O

(
∆2

x

)
.

(3.4)

By replacing (3.3) and (3.4) in the (2.3) one can obtain

j+1∑
k=0

d j,kui,k =
θc2

(∆x)2

{
ui−1, j+1 − 2ui, j+1 + ui+1, j+1

}
+

(1 − θ) c2

(∆x)2

{
ui−1, j − 2ui, j + ui+1, j

}
+ f

(
xi, t j+1/2

)
.

(3.5)

By rearranging the above system, we have
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−rui−1, j+1 + (a + 2r)ui, j+1 − rui+1, j+1 =

sui−1, j + (b − 2s)ui, j + 2sui+1, j

−

j−1∑
k=0

d j
kui,k + f

(
xi, t j+1/2

)
, i = 1, 2, ...,n − 1,

(3.6)

where

a = d j, j+1 =
σ

21−α , b = −d j, j = σ(
2

21−α −
31−α

21−α ), r =
c2θ

(∆x)2 , s =
c2 (1 − θ)

(∆x)2 , (3.7)

Equation (3.6) for 1 ≤ i ≤ n−1, yields a linear system of (n-1) equations in (n+1) unknowns ũ0, j+1,u1, j+1, ...,un, j+1.
In order to close this system we can use the boundary conditions ũ0, j = ũn, j = 0. In the matrix form we have

AU j+1 = BU j −

j−1∑
l=0

d j
l Ul + F j+1/2, (3.8)

where

U j =
[

0 ũ1, j ũ2, j · · · ũn−1, j 0
]T
,

F j+1/2 =
[

0 f1, j+1/2 f2, j+1/2 · · · fn−1, j+1/2 0
]T
,

A = aI − rT,
B = bI + sT,

(3.9)

where I is an N ×N unit matrix and T is an N ×N three diagonal matrix with diagonal value −2 and upper
and lower diagonal value 1 which the first and last rows of this matrix are zero as follows

T =



0 0 0 · · · 0
−2 1 0 · · · 0
1 −2 1 · · · 0
...

...
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −2
0 0 0 · · · 0


.

4. Stability and Convergency

The stability of the difference scheme is analyzed by the Fourier method. Let ũi, j be the approximate
solution and define ρi, j = ũi, j − ui, j, i = 1, 2, ...,M, j = 1, 2, ...,N. Then, the following roundoff error equation
is obtained as

−
θc2

(∆x)2ρi−1, j+1 +

(
σ

21−α +
2θc2

(∆x)2

)
ρi, j+1 −

θc2

(∆x)2ρi+1, j+1

=
(1 − θ) c2

(∆x)2 ρi−1, j +

(
σ

21−α −
2 (1 − θ) c2

(∆x)2

)
ρi, j +

(1 − θ) c2

(∆x)2 ρi+1, j

+ ω1ρi, j +

j−1∑
k=1

(
ωi,j−k+1 − ωi,j−k

)
ρi,k − ωjρi,0.

(4.1)
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The grid functions is defined

ρ j (x) =

ρi, j, xi − ∆x/2 < x < xi + ∆x/2,
0, 0 ≤ x < ∆x/2 or 1 − ∆x/2 < x ≤ 1,

(4.2)

then ρ j (x) can be expanded in the Fourier series

ρ j (x) =
∞∑

l=−∞

d j (l) ei2πlx, (4.3)

where d j (l) =
∫ 1

0 ρ
j (x) e−i2πlxdx, j = 1, 2, ...,N. and i =

√
−1 is the imaginary unit.

Based on the above analysis, one can suppose that the solution of (4.4) has the following form ρi, j =

d jeii∆xβ, β = 2πl.
Substituting the above expression into (4.4), it can be obtained

−
θc2

(∆x)2 d j+1ei(i−1)∆xβ +

(
σ

21−α +
2θc2

(∆x)2

)
d j+1ei(i)∆xβ

−
θc2

(∆x)2 d j+1ei(i+1)∆xβ =
(1 − θ) c2

(∆x)2 d jei(i−1)∆xβ

+

(
σ

21−α −
2 (1 − θ) c2

(∆x)2

)
d jei(i)∆xβ +

(1 − θ) c2

(∆x)2 d jei(i+1)∆xβ

+ ω1d jei(i)∆xβ +

j−1∑
m=1

(
ωj−m+1 − ωj−m

)
dmei(i)∆xβ − ωjd0ei(i)∆xβ.

(4.4)

After simplifications, we have

d j+1

(
−
θc2

(∆x)2

[
ei∆xβ + e−i∆xβ

]
+

(
σ

21−α +
2θc2

(∆x)2

))
= d j

(
(1 − θ) c2

(∆x)2

[
ei∆xβ + e−i∆xβ

]
+

(
σ

21−α −
2 (1 − θ) c2

(∆x)2

))

+ ω1d j +

j−1∑
m=1

(
ωj−m+1 − ωj−m

)
dm − ωjd0,

(4.5)

then, it can be resulted that

d j+1

(
−

2θc2

(∆x)2 cos
(
∆xβ

)
+

(
σ

21−α +
2θc2

(∆x)2

))
=

d j

(
2 (1 − θ) c2

(∆x)2 cos
(
∆xβ

)
+

(
σ

21−α −
2 (1 − θ) c2

(∆x)2

))

+ ω1d j +

j−1∑
m=1

(
ωj−m+1 − ωj−m

)
dm − ωjd0.

(4.6)

Proposition 4.1. If ( 3
2 )1−α

− 2( 1
2 )

1−α
< σ(1−2θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
and θ ≥ 1/2 then |d j|≤|d0|, j= 1,2, ..., N. where d j

is the solution of (4.6).
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Proof. The mathematical induction is used for the proof. It is started with k = 0, so

|d1| =

∣∣∣∣∣∣∣
(

2(1−θ)c2

(∆x )2
cos(∆xβ)+

(
σ

21−α −
2(1−θ)c2

(∆x )2

))
(
−

2θc2

(∆x )2
cos(∆xβ)+

(
σ

21−α +
2θc2

(∆x)2

))
∣∣∣∣∣∣∣ |d0|

=

∣∣∣∣∣∣∣
(
−2(1−θ)c2

(∆x )2 [1−cos(∆xβ)]+ σ
21−α

)
(

2θc2

(∆x )2 [1−cos(∆xβ)]+ σ
21−α

)
∣∣∣∣∣∣∣ |d0|.

If θ ≥ 1/2 then d1 ≤ d0.
Now, assume that |dn|≤|d0|, n= 1,2, ..., j. We need to prove this for n=j+1. Indeed,

∣∣∣d j+1

∣∣∣ ≤


∣∣∣∣∣∣∣
(

2(1−θ)c2

(∆x)2 [cos(∆xβ)−1]+ σ
21−α −ω1

)
(

2θc2

(∆x )2 [1−cos(∆xβ)]+ σ
21−α

)
∣∣∣∣∣∣∣

+
ω1+

∑j−1
m=1(ωj−m+1−ωj−m)−ωj(

2θc2

(∆x)2 [1−cos(∆xβ)]+ σ
21−α

)

 |d0|

=


∣∣∣∣∣∣∣
(

2(1−θ)c2

(∆x)2 [cos(∆xβ)−1]+ σ
21−α −ω1

)
(

2θc2

(∆x )2 [1−cos(∆xβ)]+ σ
21−α

)
∣∣∣∣∣∣∣

+ ω1(
2θc2

(∆x)2 [1−cos(∆xβ)]+ σ
21−α

)

 |d0|.

If
(

2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
+ σ

21−α − ω1

)
≥ 0 then

∣∣∣d j+1

∣∣∣ ≤
(

2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
+ σ

21−α

)
(

2θc2

(∆x)2

[
1 − cos

(
∆xβ

)]
+ σ

21−α

) |d0| ≤ |d0| .

If
(

2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
+ σ

21−α − ω1

)
< 0 then

∣∣∣d j+1

∣∣∣ ≤
(
2ω1 −

2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
−

σ
21−α

)
(

2θc2

(∆x)2

[
1 − cos

(
∆xβ

)]
+ σ

21−α

) |d0| .

(
2ω1−

2(1−θ)c2

(∆x)2 [cos(∆xβ)−1]− σ
21−α

)
(

2θc2

(∆x )2 [1−cos(∆xβ)]+ σ
21−α

) < 1

⇒(
2ω1 −

2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
−

σ
21−α

)
<

(
2θc2

(∆x)2

[
1 − cos

(
∆xβ

)]
+ σ

21−α

)
⇒

2ω1 < 2θc2

(∆x)2

[
1 − cos

(
∆xβ

)]
+ 2σ

21−α +
2(1−θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
⇒

( 3
2 )1−α

− 2( 1
2 )

1−α
< σ(1−2θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
.

Theorem 4.2. The finite difference scheme (3.8) is stable, if θ ≥ 1/2 and ( 3
2 )1−α

−2( 1
2 )

1−α
< σ(1−2θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
.
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Proof. Assume θ ≥ 1/2 and ( 3
2 )1−α

−2( 1
2 )

1−α
< σ(1−2θ)c2

(∆x)2

[
cos

(
∆xβ

)
− 1

]
, then using Proposition 4.1 and the Parseval

equality, we obtain∥∥∥ρ j
∥∥∥

2
≤

∥∥∥ρ0
∥∥∥

2
, j=1,2,...,N,

which means the proposed difference scheme is conditionally stable.

Corollary 4.3. When θ = 1/2 then the finite difference scheme (3.8) is stable, if 1 − lo1(2)/lo1(3) ≤ α.

5. Inverse Problem

In the inverse problem, we try to find the most appropriate parameters in such a way that if we solve
the direct problem with these parameters, the solution obtained in t = 1 fits the final condition. In other
words, for each time of checking the fit error (2.5), the direct problem should be solved with the proposed
algorithm (3.8) (Crank-Nicholson algorithm). For minimizing (2.6) after solving (2.1) by numerical method
Λc,α (i.e. using (3.8) algorithm) and obtaining numerical solution ũc,α (x, 1) at the time level t = 1 (as final
condition), we evaluate the error (2.6). If the value of error is not enough small, we change the values of c
and α. How should we change the values of c and α so that the error decreases? Note that, the objective
function direct search does not have an explicit form, so we cannot use derivative-based methods such as
descent direction method, Newton’s method, and etc.
One can use the direct search and sketch the plot of e(c, α). In other words, for sketch e(c, α) one can evaluate
the error e(ci, α j) for ci = cl + i∆c, α j = αl + j∆α, i = 0, 1, 2, ..., cu−cl

∆c
, j = 0, 1, 2, ..., αu−αl

∆α
and draw its mesh plot.

Note that this method cannot find the parameters with sufficient accuracy and requires a very large number
of objective function evaluations to achieve acceptable accuracy.
As an other method, one can use the random search(i.e. randomly select α , c and evaluate the error for them
(e(α,c)) , then choose the case that corresponds to the minimum error). Note that this method does not
provide any guarantee of convergence and no criterion for stopping.

In this paper, we use the Genetic algorithm for minimizing the (2.6). For this purpose, we consider the
c parameter as first gene and the α parameter as second gene. In other words, each chromosome in the
proposed method, is written as

Chromosome = [c, α].

5.1. Initial population

After determining the population size (Npop) and intervals related to each of the genes, we generate the
Npop chromosomes with random genes. Thus, the initial population will be as follows

Chromosomei = [ci, αi], i = 1, 2, ...,Npop,

where, the ci ∈ [cl, cu] and αi ∈ [αl, αu] are randomly generated. For each Chromosome in the population,
solve the direct problem and compute the error ei = e(ci, αi) according to (2.5).

5.2. Selection

The fittest chromosomes have higher probability to be selected for the next generation. To compute
fitness probability we must compute the fitness of each chromosome. To avoid divide by zero problem, the
value of ei is added by 1.

f iti =
1

1+ei
.

The probability for each chromosomes is formulated by

probi =
f iti∑Npop

i=1 f iti
.
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From the probabilities above we can see that Chromosome with highest fitness, has highest probability to
be selected for next generation chromosomes. For the selection process we use roulette wheel process. By
using the roulette wheel, choose a mate for each chromosome. note that chromosomes with high fitness
have a higher chance of being selected as a mate. If chromosome[j] is selected for chromosome[i], then
these two chromosomes will be the parents of chromosome[i] in the next generation.

5.3. Crossover

In this paper, we use one-cut point, i.e. randomly select a position in the parent chromosome then
exchange these gens with high position. In other word, consider the chromosome[i] and chromosome[ j] as his
mates then Newchromosome[i] in the next generation, calculated as follows
if random number=0 then:

Newchromosome[i] = chromosome[i] >< chromosome[ j] = [c j, α j],

if random number=1 then:

Newchromosome[i] = chromosome[i] >< chromosome[ j] = [ci, α j],

if random number=2 then:

Newchromosome[i] = chromosome[i] >< chromosome[ j] = [ci, αi],

where >< is the symbol of the crossover action and it means to change the higher gene of the parents.

5.4. Mutation

Number of chromosomes that have mutations in a population is determined by the mutation rate
parameter(ρm). Mutation process is done by replacing the gene at random position with a new value. The
process is as follows:
First, we must calculate the total length of gene in the population. In this case the total length of gene is

TLG=N1en ∗Npop=2 ∗Npop.

Mutation process is done by generating a random integer between 1 and TLG. This random number
determines the position of the gene that should mutate and to determine whether this gene will mutate or
not, we use another random number. If the generated random number is smaller than mutation rate (ρm)
then marked the position of gene in chromosomes for mutation. Suppose we define ρm = 0.1, it is expected
that 0.1 of total gene in the population that will be mutated.

Nmut = ρm.TLG = 2ρm.Nps.

Suppose generation of random number yield r then the chromosome which have mutation are Chromo-
some number q and gene number p where r = 2(p− 1)+ q, q = 1, 2. The value of mutated genes at mutation
point is replaced by random number between [cl, cu] for first gene and between [αl, αu] for the second gene.
After finishing mutation process then we have one iteration or one generation of the genetic algorithm.

5.5. End of first generation

We can now evaluate the objective function after one generation. Chromosomes with high fitness may
not be observed in the new generation, but the mean value of fitness in the new generation will improve
compared to the previous generation. In other words, the mean value of error in future generations is a
decreasing sequence and if the genetic algorithm converges to the global optimal value, then it will tend to
zero.

ALGORITHM
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Step 0 : Input
i) f(x,t), g(x), h(x)
ii) select interval for c.
iii) select interval for α

Step 1 : Produce a new generation.
Step 2 : For each of the population chromosomes run the algorithm (3.8) and evaluate of errors (2.5).
Step 3 : Find the chromosome with minimum error.
Step 4 : If the stop condition is not met, go to step 1.
Step 5 : Stop and print the chromosome with minimum error.

5.6. Convergence Criteria
Genetic algorithms are a robust search method for finding global optima of functions. This algorithm

is very sensitive to the initial population(Npop), mutation(ρm), and crossover(ρc) parameters, so that, the
required time to reach an acceptable solution depends on these parameters [23]. Although they appear to
perform well in practice, but there is not a great deal of mathematical work underpinning their performance.
The genetic algorithm process is a Markov chain [23] and ergodic process. In other words, the mean error
of the generated solution by GA is an almost decreasing sequence (that is, it may not be decreasing for a
few elements of the sequence, but it is decreasing in the long time). For more certainty, the reader can refer
to the works that have discussed in the convergence of the genetic algorithm, such as [23–25].

6. Numerical results

In this section, in order to evaluate the accuracy of the proposed algorithms, we present three examples.
Firstly, we assign values to the unknown parameters and use the direct method to solve the FPDE equation
and obtain an approximate solution to u(x,T), then the errors are estimated. Secondly, if the resulting error
is not negligible, we change the values of the parameters by GA so that the corresponding error is reduced.
In the other word, the GA solve the IFPDE.
We use the ∆x = ∆t = 1/32 for direct problem and cl = 0.1, cu = 1.5, αl = 0.1, αu = 1 for inverse problem.
When using the direct search for solving inverse problem, we set ∆α = ∆c = 0.01 and When using the
GA − search we set Npop = 50.

Example 6.1. Consider the following IFPDE:


∂αu(x,t)
∂tα = c2 ∂2u(x,t)

∂x2 , 0 ≤ t ≤ 1, 0 ≤ x ≤ 1, 0 < α ≤ 1,
u (x, 0) = sin (πx) , u (x, 1) = e−1 sin (πx) , 0 ≤ x ≤ 1,
u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1.

(6.1)

For this example we have :

f (x, t) = 0, 1 (x) = sin (πx) , h (x) = e−1 sin (πx) .

If α = 1, then exact solution of (6.1) is c = 1/π. For solving (6.1) we use the classic Crank-Nicholson
method (θ = 0.5) for direct problem and GA algorithm for solving inverse problem. We have obtained
c∗ = 0.31838099819151 and e = 0.000969900429175373 in 3550 f eval(Number of function evaluation) as
optimal value in the interval [0.1, 0.5]. The following figure shows the convergence of the proposed
algorithm.

Figure 1 shows the convergence of the GA. After 1000 f eval, the error significantly decreases to zero.
GA has stopped after 3550 f eval and found appropriate c with error less than 10−4 and Figure 2 shows the
diagram of uc(x, 1) for different values of c. As it can be seen in Figure 2, the numerical solution ũc∗,α=1(x, 1)
is matched with the exact solution u1/π,α=1(x, 1) with error less than 10−3.
To get better results, we search for two parameters together. First, we use direct search. Figure 3 shows its
3d plots.
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Figure 1: The values of c and these errors(e(c, α = 1)) in the GA − search for Example 6.1.
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Figure 2: The diagram of ũc,α=1 (x, 1) for several value of c and compare with exact solution for Example 6.1.
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executions for Example 6.1.
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Figure 5: The values of c,α and their error e(c, α) at each f eval in the GA − search for Example 6.1.

As it can be seen from Figure 3, the problem has several local minimum and the global minimum(e =
0.00010933) is achieved in c = 0.39, α = 0.21. Table 1 shows the three of the best local minimum.

Table 1: Three cases of best local minimum in diect − search.
c α e

0.39 0.21 0.00010933
0.34 0.62 0.00041957
0.32 0.86 0.000432

Now, we use the GA − search and repeat the GA execution independently for 6 times. Table 2 shows the
results of these independent executions.

Table 2: Optimum values and their errors in 6 times independent executions of GA− search for Example 6.1.
Run c∗ α∗ e∗ f eval∗ f eval Generation

1 0.33966 0.62274 4.6666e-06 3346 3350 67
2 0.39717 0.15292 2.0099e-07 3094 4250 85
3 0.37677 0.31106 1.4865e-06 3587 3650 73
4 0.33792 0.63991 1.217e-06 1424 3500 70
5 0.34278 0.59289 1.0952e-06 3019 3550 71
6 0.38075 0.28058 1.0982e-05 2788 3350 67

Table 2 shows, the best error was obtained in the second run and the worst in the sixth run. Comparing
Tables 1 and 2 shows that GA − search is more than 10 times better than the best solution of direct − search
even in the worst case. This is despite the fact that the best solution of direct − search was obtained after
15, 000 f eval and GA− search after 67 generations (3, 350 f eval). Figure 5, shows the details of the algorithm
in the second run.

It should be noted that the two-parameter search gave much better results than the one-parameter
search. In other words, FPDE models the problem much better than PDE.

Example 6.2. Consider the following IFPDE:
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Figure 6: The values of c and their errors in the GA iterations for Example 6.2 when α = 1 and 0.1 ≤ c ≤ 20.


∂αu(x,t)
∂tα = c2 ∂2u(x,t)

∂x2 + x (1 − x) 6t3−1/2

Γ(4−1/2) + 2
(
t3 + 1

)
,

0 ≤ t ≤ 1, 0 ≤ x ≤ 1, 0 < α ≤ 1,
u (x, 0) = x (1 − x) , u (x, 1) = 2x (1 − x) , 0 ≤ x ≤ 1,
u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1.

(6.2)

For this example we have :

f (x, t) = x (1 − x)
6t3−1/2

Γ (4 − 1/2)
+ 2

(
t3 + 1

)
, 1 (x) = x (1 − x) ,

h (x) = 2x (1 − x) .

For c = 1, α = 0.5 the exact solution of direct problem of (6.2) is u(x, t) = (1 − x)x(t3 + 1). Therefore, for
given f (x, t), 1(x) and h(x), the exact solution of inverse problem of (6.2) is c = 1 and α = 0.5.
Let us set α = 1. In this case, the fractional partial differential equation of the problem will become the
partial differential equation. For solving the inverse problem, we select the appropriate interval [cl, cu] for
searching the optimal value for c. We use the classical Crank-Nicholson method for the direct problem.
When α = 1 and 0.1 ≤ c ≤ 1 then GA terminated after 4000 f eval and obtained c∗ = 0.999999992201451
with error = 347.513626451307 in 3242 f eval. Since the obtained optimal value is near to upper band of
the searching interval, so we expand the searching interval to get a better value for c. Now, instead of
the interval 0.1 ≤ c ≤ 1, we set 0.1 ≤ c ≤ 3. In this case, GA terminated after 4000 f eval, and the value
c∗ = 2.99999999051722 is obtained with error = 40.5466118651176.The optimal value of c is still near the
upper bound. Again, we expand the search interval. Now, we consider the interval 0.1 ≤ c ≤ 5. The GA is
terminated after 3850 f eval and the value c∗ = 4.99999999294413 with error = 12.4397071031382 is obtained.
Still, the optimal value of c is near to upper bound. We expand the range of the interval for the third time. By
considering the interval 0.1 ≤ c ≤ 10 we see that GA terminated after 4300 f eval and c∗ = 9.99999999241637
with error = 0.390808865742124 in the 2792 f eval. If the searching interval is 0.1 ≤ c ≤ 20 then GA terminated
after 3150 f eval and the value of c∗ = 10.5221462486276 with error = 0.0101026234498751 is obtained. Since
this time, the optimal value of c is not near to the upper or the lower bounds, so there is no hope of
improving the value of c by extending the interval. Figure 6 shows the details of this search for α = 1 and
0.1 ≤ c ≤ 20.

Now, we are searching the values of c and α together and we hope to get better values for them. By
setting 0.1 ≤ α ≤ 1 and 0.1 ≤ c ≤ 1.5 and using the suggested fractional Crank-Nicholson method for direct



G. Zaki et al. / Filomat 38:19 (2024), 6829–6849 6843

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

c

0

1

2

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

α

0

0.5

1

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

e
rr

o
r

10
-5

10
0

10
5

Figure 7: The values of c, α and their errors in GA iterations for example 6.2 when 0.1 ≤ α ≤ 1 and 0.1 ≤ c ≤ 1.5.

problem, we see that the GA stopped after the 61 Generation (3050 f eval) and found the c∗ = 1.03006913150768,
α∗ = 0.486675726623848 with error = 0.000802284984493785. Figure 7 shows the details of this search for
0.1 ≤ α ≤ 1 and 0.1 ≤ c ≤ 1.5.

For more certainty, we run the algorithm GA for 6 times independently, and the results are shown in
Table 3. These results show that the algorithm has fallen into a local minimum on some runs. For example,
in the second run it reaches a local minimum c∗ = 1.0378, α∗ = 0.24112 and in the fifth run it reaches an
other local minimum c∗ = 1.0374, α∗ = 0.25730, while in the third run c∗ = 1.0257, α∗ = 0.51566 and sixth
run c∗ = 1.0216, α∗ = 0.59429 it approaches the global minimum and is much closer to the exact solution
c∗ = 1, α∗ = 0.5.

Table 3: Optimum values and their errors in 6 times independent executions of GA− search for Example 6.2.
Run c∗ α∗ e∗ f eval∗ f eval Generation

1 1.0209 0.60767 0.0003749 3045 3050 61
2 1.0378 0.24112 0.0034914 6495 6550 123
3 1.0257 0.51566 0.0003635 2919 3450 69
4 1.0167 0.68134 0.0009458 3385 3450 69
5 1.0374 0.25730 0.0033207 9999 10050 201
6 1.0216 0.59429 0.0002769 3549 3650 73

To show the ergodic behavior of the GA, we obtain the average error in each generation. Figure 8, shows
that the average error in the generations of one execution of GA is almost decreasing.

For the direct method, after 1500 f eval the following results are obtained. Figure 9, shows the 3d plot of
log(e) and Table 4 shows the three of the best local minimum.

Table 4: Three cases of best local minimum
in diect − search for Example 6.2.
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executions for Example 6.2.
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Figure 10: The values of c and their errors in GA iterations for Example 6.3 when α = 1 and 0 < c < 20.

c α e
1.02 0.62 0.00083425
1.03 0.43 0.0012313
1.02 0.63 0.0014089

As it can be seen, GA − search has performed much better than direct − search. Comparison of Table 3
and Table 4 shows that GA − search has obtained much fewer errors with a smaller number of f eval.

Example 6.3. Consider the following FPDE:
∂αu(x,t)
∂tα = c2 ∂2u(x,t)

∂x2 +
(
t3 + 1

)
, 0 ≤ t, 0 ≤ x ≤ 1, 0 < α ≤ 1,

u (x, 0) = x (1 − x) , u (x, 1) = x (1 − x) /5, 0 ≤ x ≤ 1,
u (0, t) = 0, u (1, t) = 0, 0 ≤ t ≤ 1,

(6.3)

For this example we have:
f (x, t) = (t3 + 1), 1(x) = x(1 − x), h(x) = 0.2x(1 − x).

Set cl=0, cu=20 and α=1. we obtain the c∗ = 19.9999999971851 as optimal value of c in the interval [0,20]
by GA. Solving the direct problem (6.3) by this value as FPDE by using the classical Crank-Nicholson, we
see that the error is 0.101159857056873. Figure 10 shows its details. It is observed that the optimal value of
c is obtained near the upper bound of the interval. It seems that choosing a larger range can have better
results. We set cl = 0, cu = 30, α = 1 and search to find the optimal value of c by GA algorithm. The optimal
value of c in this interval is obtained as c∗ = 22.5171260637894. For this selection of c, the value of error is
0.0272536097018295. Figure 11 shows its details.

Extending the interval caused that the error improve slightly. Because the optimal value of c is not
obtained at the near of boundaries of the interval, there is no hope of finding a better value for c by
extending the interval.
To further reduce the error, we search c, α together and hope to find better value for them. We set cl = 0.1,
cu = 1.5, αl = 0.1, αu = 1 and use the GA algorithm.



G. Zaki et al. / Filomat 38:19 (2024), 6829–6849 6846

number of function evaluations

0 500 1000 1500 2000 2500 3000

c

0

10

20

30

number of function evaluations

0 500 1000 1500 2000 2500 3000

e
rr

o
r

0

500

1000

1500

Figure 11: The values of c and their errors in GA iterations for Example 6.3 when α = 1 and 0 < c < 30.

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

c

0

1

2

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

α

0

0.5

1

number of function evaluations

0 500 1000 1500 2000 2500 3000 3500

e
rr

o
r

10
-4

10
-2

10
0

Figure 12: The values of c, α and their errors e(c, α) in GA iterations for Example 6.3 when 0.1 ≤ α ≤ 1 and 0.1 ≤ c ≤ 1.5.
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Figure 13: The graph of lo1(mean(e)) (logarithm of the average error in the generations of a GA execute) in 6 times independent
executions for Example 6.3.

After 67 generation(3350 f eval), the algorithm GA stops and values of c∗ = 0.51157 and α = 0.51072 are
obtained. Solving the direct problem (6.3) by these values as FPDE by using the proposed Crank-Nicholson
type method, we see that the error is e = 0.0070215. Figure 12 shows its details.
For more certainty, we run the algorithm GA for 6 times independently, and the results are shown in the
Table 5. In all executions, the error is less than 7.2 × 10−3, and in the sixth execution, the error is less than
other executions. So the best values of c and α are c = 0.5055 and α = 0.53257.

Table 5: Optimum values and their errors in 6 times independent executions of GA− search for Example 6.3.
Run c∗ α∗ e∗ f eval∗ f eval Generation

1 0.51157 0.51072 0.0070215 3342 3350 67
2 0.526 0.45839 0.0070931 8355 8400 168
3 0.49122 0.58395 0.0070357 2693 2700 54
4 0.52962 0.44609 0.0071311 7091 7100 142
5 0.45453 0.72006 0.0071908 3595 3650 73
6 0.5055 0.53257 0.0070167 2069 2950 59

To show the ergodic behavior of the GA, we obtain the average error in each generation. Figure 13
shows that the average error in the generations of one execution of GA is almost decreasing.

The results obtained for this example shows that FPDE model of the problem is much better than PDE.
As can be seen, the error of PDE model is at least 10 times larger than the error of FPDE model.
To show the superiority of the proposed algorithm(GA − search) over the direct − search algorithm, we have
displayed the direct−search results after 15,000 f eval in Figure. 14 and listed the three of best local minimum
in Table 6.

Table 6: Three cases of best local minimum
in diect − search for Example 6.3.

c α e
0.50 0.55 0.0070368
0.49 0.59 0.0070489
0.52 0.48 0.0070502
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Figure 14: 3d plot of e(c, α) in direct − search for Example 6.3 when 0.1 ≤ α ≤ 1 and 0.1 ≤ c ≤ 1.5.

For this example, the superiority of the proposed algorithm(GA − search) over the direct − search is only in
the number of evaluations of the object function( f eval), and both methods have obtained almost the same
values for error.

7. Conclusion

In this work, the parametric Crank-Nicholson difference scheme was successfully extended to solve
a time fractional heat equation with Caputo derivative. We selected θ = 0.5 and used GA algorithm for
finding the best value of c and α. We illustrated that modeling with FPDE is much better than modeling
with PDE. In this work, the parametric Crank-Nicholson difference method was successfully extended to
solve a time-fractional heat equation with Caputo derivative. We chose θ = 0.5 and used the algorithm GA
to find the best value for c and α. We have shown that modeling with FPDE is much better than modeling
with PDE.
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