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Solving Pell’s equation using suborbital graphs

Tuncay Köroğlua

aKaradeniz Technical University, Trabzon, Turkey

Abstract. We establish a connection between suborbital graphs and integer solutions of Pell’s equation of
the form x2

−Ny2 = 1, where N is a non-square positive integer. We derive new suborbital graphs generated
by the action of some specific modular subgroups on extended rational numbers. By using these graphs,
we obtain a new combinatorial notation for the integer solutions of Pell’s equation and some results on the
vertices of the graphs studied here.

1. Introduction

Pell’s equation is used to describe an equation of the form

x2
−Ny2 = 1, (1)

with the positive integer N greater than 1. If N is a square integer, then the solutions of (1) are trivial. So,
we assume that N is a square-free integer. The integer solutions of the Pell’s equation (1) are significant
because of the applications in number theory and cryptography.

There are several techniques for finding integer solutions to Pell’s equation. The classical solution of
this equation is associated with the continuous fractions. In this contribution, we use the suborbital graph
theory, which is an efficient method for providing new approaches to various problems in number theory.
Sims introduced the concept of suborbital graph theory as relation to permutation groups in [6]. Later, in
[7], Jones et al. investigated the suborbital graph, which is a directed graph arising from the transitive group
action for the modular group, by studying the notion introduced in [6]. Inspired by [7], extensive research
has been done on suborbital graphs for the modular group and related objects, including references to
[5, 9, 10, 12], and [11].

Kader et al. analyzed suborbital graphs for the extended modular group in [13]. Köroğlu et al.
investigated the suborbital graphs for the Atkin-Lehner group [15]. Değer et al. gave some results on
continued fractions in a corresponding suborbital graph [1]. Güler et al. studied the solutions of some
congruence equations via suborbital graphs [3, 4]. Recently, some new studies on suborbital graphs are
directly related to well-known number sequences such as Fibonacci and Pascal numbers [8, 14, 16, 18].

In this study, we observe a new form for the integer solutions of Pell’s equation (1), by using some new
suborbital graphs derived from the natural action of a certain modular subgroup on the extended rationals.
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Using a similar notion in [18], we obtain some new sequences of numbers derived from the vertices of
suborbital graphs induced by the elements of the modular group;

KN :=
(
a cN
c a

)
,

where a and c are integers satisfying a2
−Nc2 = 1. The corresponding fractional linear transformation of KN

is denoted by

KN(z) =
az + cN
cz + a

.

By using this transformation we obtain new rational sequences converging to the fixed points ±
√

N.
Moreover, it is obtained new paths by considering the orbit of ∞ in suborbital graphs derived from the
action of a certain subgroup generated KN. In general, these paths are as follows:

∞→ KN(∞) =
a
c
→ K2

N(∞) =
a2 +Nc2

2ac
→ K3

N(∞) =
a3 + 3aNc2

3a2c +Nc3 → · · · (2)

Moreover, by iterating KN(z), we obtain new results for Pell’s equation in Theorem 3.1. In Section 3.2 we
present a new approach to solving Pell’s equation.

2. Preliminaries

Let PSL(2,Z) denote the group of fractional linear transformations of the form Y : z →
az + b
cz + d

, where
a, b, c and d are integers and ad − bc = 1. In terms of the matrix representation, the elements of PSL(2,Z)

correspond to the matrices Ȳ := ±
(
a b
c d

)
; with a, b, c, d ∈ Z and ad − bc = 1. These matrix representations

consist of a particular linear group which is known as the modular group, Γ = SL(2,Z). The modular group
is generated by the elements

S̄ =
(

0 −1
1 0

)
and T̄ =

(
1 −1
1 0

)
with the relation S̄2 = T̄3 = Ī = ±I,where I is the identity matrix.

Many fields of mathematics such as hyperbolic geometry, elliptic curves, modular curves, modular
forms and modular functions include the modular group and its subgroups. The modular group acts on

the upper half planeH := {z ∈ C : Im(z) > 0}, such that γ =
(

a b
c d

)
∈ SL(2,Z) and z ∈H, and the action is

given by:

γ(z) =
az + b
cz + d

, γ(∞) =
a
c

and γ(−
d
c

) = ∞.

These transformations are known as Möbius transformations. The trace of Ȳ is denoted by Tr(Ȳ) := |a + d|
and it can be used for classification of the modular group elements such that Ȳ is called elliptic, parabolic
or hyperbolic if its trace Tr(Ȳ) < 2, Tr(Ȳ) = 2 or Tr(Ȳ) > 2 respectively (see e.g., [2] and references cited in).

The following classical results about the natural action of modular group on the set of extended rational
numbers Q̂ = Q ∪ {∞}will be used for our discussion later.
Any element of Q̂ can be written as a reduced fraction x

y , since x
y =

−x
−y , this representation is not unique.

We represent∞ as 1
0 =

−1
0 . The action of the modular group on Q̂ becomes,(

a b
c d

)
:

x
y
→

ax + by
cx + dy

.

From the determinant ad − bc = 1,we obtain equations

c(ax + by) − a(cx + dy) = −y
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and
d(ax + by) − b(cx + dy) = x

easily. So, we get (ax + by, cx + dy) = 1 and it follows that (ax + by)/(cx + dy) is a reduced fraction.
In this section, let us give some basic information about Pell’s equation of the form (1).

Theorem 2.1. [17] For every positive integer N that is not a square, the equation x2
−Ny2 = 1 has infinite number

of non trivial solutions in integers x, y.

Theorem 2.2. [17] Suppose N is a square-free positive integer. A pair (x, y) of positive integers solves the Pell
equation x2

−Ny2 = 1 if and only if there exists n ∈N such that

x + y
√

N = (a + b
√

N)n,

where (a, b) is the fundamental solution such that the positive integer b is minimal. Moreover, such solutions may be
computed using floors and ceilings:

x =
⌈1

2
(a + b

√

N)n
⌉

y =
⌊

1

2
√

N
(a + b

√

N)n
⌋
=

⌊
x
√

N

⌋
,

where ⌊x⌋ is the greatest integer that is less than or equal to x and ⌈x⌉ is the least integer that is greater than or equal
to x.

3. Main Calculations and Results

In this section, we introduce a new number sequence derived from the action of a particular subgroup
of the modular group on the extended rationals. We use the modular group element;

KN =

(
a Nc
c a

)
with a2

−Nc2 = 1, (3)

to define a new subgroup. Throughout this paper, we choose a and c as the fundamental solutions of the
equation (1), both for compatibility with our problem and to unify the transformation KN. We obtain a new
rational number sequence generated by the forward iterations of KN. So, r times forward iteration of KN is
denoted by Kr

N and defined as Kr
N := KN ◦KN ◦ · · · ◦KN ( r times compositions of KN). For every r,we define

a new rational number sequence:

Kr
N(∞) =

(
a Nc
c a

)r (
1
0

)
. (4)

We represent this sequence with
{
Kr

N(∞)
}
, where r is a positive integer. In a similar way, it can be defined

backward iterations of KN by composing the inverse transforms K−1
N . The following theorem generalizes

the terms of
{
Kr

N(∞)
}

with respect to the matrix entries a, c and N.

Theorem 3.1. Let KN be defined in (3). Ar and Cr are polynomials, defined as,

Ar =

⌊

r
2
⌋∑

i=0

(
r
2i

)
ar−2ic2iNi, (5)

and

Cr =

⌊

r
2
⌋∑

i=0

(
r

2i + 1

)
ar−2i−1c2i+1Ni, (6)
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where a, c are integers and r, N are positive integers. Then we have,

Kr
N(∞) =

Ar

Cr . (7)

Proof. We use the mathematical induction for r.

Bases Step : If r = 1 then, it is clear that K1
N(∞) =

a
c
=

A1

C1 .

Inductive hypothesis: We suppose that the equation (7) is true for any arbitrary positive integer r.

Inductive Step: We must prove that; Kr+1
N (∞) =

Ar+1

Cr+1 . From the inductive hypothesis, it is easily seen;

Ar+1

Cr+1 = Kr+1
N (∞) = KN(Kr

N)(∞) =
aAr +NcCr

cAr + aCr . (8)

From (8) and determinant of KN,we can verify the following two equations;

Ar+1 = aAr +NcCr, (9)

Cr+1 = cAr + aCr (10)

for any positive integer r.
First, using the basic rules of combinatorics, we show that the equation (9) is true as follows:

aAr +NcCr =

⌊
r
2 ⌋∑

i=0

(
r
2i

)
ar−2i+1c2iNi +

⌊
r
2 ⌋∑

i=0

(
r

2i + 1

)
ar−2i−1c2i+2Ni+1

=

⌊
r
2 ⌋∑

i=0

(
r
2i

)
ar−2i+1c2iNi +

⌊
r
2 ⌋+1∑
i=1

(
r

2i − 1

)
ar−2i+1c2iNi

= ar+1 +

⌊
r
2 ⌋+1∑
i=1

[(
r
2i

)
+

(
r

2i − 1

)]
ar−2i+1c2iNi

= ar+1 +

⌊
r+1

2 ⌋∑
i=1

(
r + 1

2i

)
ar−2i+1c2iNi

=

⌊
r+1

2 ⌋∑
i=0

(
r + 1

2i

)
ar−2i+1c2iNi = Ar+1.

So, we have the left side of the equation (9). Then, we use the following trivial identity to get (10),

⌊
r
2 ⌋∑

i=0

(
r + 1
2i + 1

)
=

⌊
r+1

2 ⌋∑
i=0

(
r + 1
2i + 1

)
. (11)

Now, we show the equation (10) is true by using the basic rules of combinatorics and the equation (11), as
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follows:

cAr + aCr =

⌊
r
2 ⌋∑

i=0

(
r
2i

)
ar−2ic2i+1Ni +

⌊
r
2 ⌋∑

i=0

(
r

2i + 1

)
ar−2ic2i+1Ni

=

⌊
r
2 ⌋∑

i=0

[(
r
2i

)
+

(
r

2i + 1

)]
ar−2ic2i+1Ni

=

⌊
r
2 ⌋∑

i=0

(
r + 1
2i + 1

)
ar−2ic2i+1Ni

=

⌊
r+1

2 ⌋∑
i=0

(
r + 1
2i + 1

)
ar−2ic2i+1Ni “by (11)”

= Cr+1.

Thus, we give the following corollary as a result of Theorem 3.1.

Corollary 3.2. The matrix KN with positive and negative integer powers are written as

Kr
N =

(
Ar NCr

Cr Ar

)
and K−r

N =

(
Ar

−NCr

−Cr Ar

)
respectively.

From the Corollary 3.2, we say that the integer powers of KN generates the infinite cyclic subgroup of the

modular group. We represent this group with GN and it is written as GN = ⟨

(
a Nc
c a

)
⟩. The action of GN

on the extended rationals gives new results for the suborbital graphs and the integer solutions of (1). It is
clear that this action is not transitive on Q̂, but with the following proposition, we can determine a maximal
subset on which the action is transitive.

Proposition 3.3. The group GN acts transitively on a subset of Q̂ defined as

DN :=
{
±Kr

N(∞) = ±
Ar

Cr : r ∈N ∪ {0}
}

Furthermore, DN is the maximal subset on which the action is transitive and∞ is the element of DN for each positive
square free integer N.

Proof. Transitivity is clear from the definitions of GN and DN.Other hand, for r = 0, it is obtain that∞ ∈ DN,
for each positive square free integer N.

Proposition 3.4. The sets DN and DM have no common elements other than infinity if N and M are distinct positive
integers that are not squares.

Proof. Let N and M be distinct positive integers that are not squares. In this case there is no common solution

other than (±1, 0) for Pell’s equations x2
−Ny2 = 1 and x2

−My2 = 1. So we get GN ∩ GM =

{
±

(
1 0
0 1

)}
and

DN ∩DM = {∞}.
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3.1. Results on Related Graphs

In this section, we first mention the general theory of suborbital graphs very shortly and then continue
for the special case. If (G,Ω) is a transitive permutation group. Then, G as well, acts on Ω × Ω by
1 : (α, β) → (1(α), 1(β)). The orbits of the action are called suborbitals of the group G. From the suborbital
O(α, β) containing (α, β) we form the suborbital graph G(α, β) : Its vertices are the elements of Ω and there
is an edge from u to v denoted by u→ v if (u, v) ∈ O(α, β), represented as hyperbolic geodesics in the upper
half planeH. For more detailed information, see in [6].

In this paper we put G = GN and Ω = DN. Since GN acts transitively on DN, there is only one orbit
contains a pair

(
∞, a

c

)
for some a

c in DN such that a and c are the fundamental solutions of (1). In this case,
we denote the related suborbital graphs by F+N := FN(a, c) and F−N := FN(a,−c). All rational vertices of the
graph F+N ∪ F−N =: FN can be considered the terms of the sequence {±Kr

N(∞)}. Also, some of these subgraphs
are considered as infinite paths for each N.We will represent to these paths with K+N ⊂ F+N and K−N ⊂ F−N as
follows:

K+N : ∞→ KN(∞)→ K2
N(∞)→ · · · → Kr

N(∞)→ · · ·

K−N : ∞→ −KN(∞)→ −K2
N(∞)→ · · · → −Kr

N(∞)→ · · ·

Figure 1 illustrates the positioning of these graphs in the upper half plane for consecutive square-free
positive integers N and M := N + 1.

−KM (∞)

∞

· · ·

−
√

N
◦

K−M

◦
−
√

M −KN (∞)

∞

K−N

KM (∞)

∞

◦
√

N

K+M

◦
√

MKN (∞)

∞

K+N

Figure 1: The paths KN ∪KM.

With the following proposition we give the edge conditions for the graph FN.

Proposition 3.5. There is an edge from u = u1
u2

to v = v1
v2

in the suborbital graph FN = FN(a, c) iff there exists m ∈ Z
such that,

v1 = Amu1 +NCmu2,

v2 = Cmu1 + Amu2.

Proof. Since the group GN acts on the set DN transitively there exists k, l such that Kk
N

(
1
0

)
= u =

(
u1
u2

)
and

Kl
N

(
1
0

)
= v =

(
v1
v2

)
. Let m := l − k. Then, it is obtained that Km

N(u) = v,which is desired.

Proposition 3.6. The suborbital graphs F+N = FN(a, c) and F−N = FN(a,−c) are isomorphic.

Proof. Let 1 and h group elements of GN and 1(∞) → h(∞) is an edge in F+N then it is clear that 1−1(∞) →
h−1(∞) is an edge in F−N.
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3.2. The Results on The Pell’s Equation

In this section, we give some results for the integer solutions of the equation (1) obtained from the
sequence {Kr

N(∞)}. As is well known, the möbius transformation corresponding to KN is

KN(z) =
az +Nc
cz + a

,

and it has two fixed points. If ac > 0, then the points
√

N and −
√

N are called ”attracting” and ”repelling”
fixed points respectively, if ac < 0, then vice versa. For more information, see [2]. By considering the fixed
points ±

√
N,we get the normal form of KN(z) as

z→
(

a − c
√

N

a + c
√

N

)
z,

where the positive real number
a − c

√
N

a + c
√

N
is called the multiplier of the transformation KN(z) and is denoted

by λN. So, it can be seen that the integer powers of λ−1/2
N = a + c

√
N corresponds to the polynomials Ar and

Cr. As a direct consequence of Theorem 2.2 and Theorem 3.1, this relationship has the following corollary.

Corollary 3.7. (a+ c
√

N)r = Ar +Cr
√

N, where a and c are the fundamental solutions to the Pell’s equation (1) and
r is a positive integer.

Now we can provide the subsequent corollary, a crucial outcome of this study as it links the suborbital
graph vertices with integer solutions of Pell’s equation (1).

Corollary 3.8. Let N is a square-free positive integer and a, c are the fundamental solutions to the Pell’s equation
(1). Then, the integer pairs (Ar,Cr) which are defined in Theorem 3.1 are the integer solutions to the Pell’s equation
(1) for each positive integer r.

Corollary 3.9. Suppose that ac > 0 then the following statements are true for the sequence generated by KN;

(i) The sequence {Kr
N(∞)} is decreasing and

√
N < Kr

N(∞) ≤
a
c
= KN(∞).

(ii) The sequence {K−r
N (∞)} is increasing and −KN(∞) = −

a
c
≤ K−r

N (∞) < −
√

N.

(iii) The sequences {Kr
N(∞)} and {K−r

N (∞)} converge to the attracting fixed point
√

N and repelling fixed point −
√

N
for the hyperbolic möbius transformation KN(z) respectively.

Example 3.10. Let K2 =

(
3 4
2 3

)
and K3 =

(
2 3
1 2

)
are in G2 and G3 respectively. It is easily seen that

Km
i (∞) → Km+1

i (∞) is an edge in K+i (i = 2, 3) for all non-negative integers m. From this, we get two infinite long
paths:

K+2 : ∞→
3
2
→

17
12
→

99
70
→

577
408
→ · · ·

and

K+3 : ∞→
2
1
→

7
4
→

26
15
→

97
56
→ · · · .

These graphs correspond to hyperbolic geodesics in H, as shown in Figure 2. We can see that the vertices of these
paths converge to

√
2 and

√
3, respectively. Furthermore, nominators and denominators of fractions in the paths K+2

and K+3 give all positive solutions of the equation x2
− 2y2 = 1 and x2

− 3y2 = 1, respectively. As we can see, the
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positive integer pairs (3, 2) and (2, 1) are the fundamental solutions of the equations x2
− 2y2 = 1 and x2

− 3y2 = 1,
respectively. More generally, we can write the path K+N as:

∞→
a
c
→

a2 +Nc2

2ac
→

a3 + 3aNc2

3a2c +Nc3 → · · · →
Ar

Cr → · · ·

so the pair (a, c) is the fundamental solution of the equation x2
− Ny2 = 1 and the all rational vertices of the K+N are

corresponded to the solutions of x2
−Ny2 = 1.

3
2

∞

17
12

99
70

· · ·
◦√

2

K+2

2
1

∞

7
4

99
70

◦√
3

· · ·

K+3

Figure 2: The paths K+2 and K+3 .

4. Conclusion

Many previous studies have examined the relationships between continued fractions and suborbital
graphs. It is well known that continued fractions are tools for solving Pell’s equation. This study shows
that suborbital graphs can also produce solutions of the Pell’s equation. We examined the action of a special
subgroup of the modular group on Q̂ and by using this action we obtain a new form for the integer solutions
of Pell’s equation x2

−Ny2 = 1, via the corollary 3.7. It may be more advantageous to work with suborbital
graphs since the arithmetic structures of groups have the potential to give us some extra information in
proofs. With this new method presented to the literature, new computer algorithms can be developed to
obtain the solutions of the Pell’s equation.
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