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Laplacian eigenvalue distribution based on some graph parameters

Jiaxin Cuia, Xiaoling Maa,∗

aCollege of Mathematics and System Sciences, Xinjiang University, Xinjiang 830017, P.R.China

Abstract. Let G be a connected graph on n vertices. For an interval I, denote by mGI the number of Laplacian
eigenvalues of G which lie in I. In this paper, we obtain several bounds on mGI in terms of various structural
parameters of the graph G, including chromatic number, pendant vertices, and the number of vertices with
degree n − 1.

1. Introduction

Throughout this paper, we only consider connected, finite and simple graphs. Let G =
(
V(G),E(G)

)
be a graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G), where |V(G)| = n and |E(G)| = m.
For v ∈ V(G), the neighbour set of vertex v is defined as NG(v) = {u ∈ V(G) | uv ∈ E(G)} and the number
d(v) = dG(v) = |NG(v)| is the degree of vertex v. A vertex v ∈ V(G) is called a pendant vertex if dG(v) = 1 and a
quasi-pendant vertex of G is a vertex adjacent to a pendant vertex. The complement of G, denoted by G, is the
simple graph whose vertex set is V(G) and whose edges are the pairs of nonadjacent vertices of G.

The adjacency matrix of G is defined as the matrix A(G) = (ai j)n×n with ai j = 1 if vi, v j are adjacent in G,
and ai j = 0 otherwise. Moreover, let D(G) be the diagonal matrix dia1

(
d(v1), d(v2), . . . , d(vn)

)
with d(vi) is the

degree of vertex vi, for i = 1, . . . ,n. Then L(G) = D(G) − A(G) is called the Laplacian matrix of G. We denote
byΘ(G, x) = det(xI−L(G)) the characteristic polynomial of L(G). It is known that L(G) is a singular, positive
semidefinite symmetric matrix. The eigenvalues of L(G) are called the Laplacian eigenvalues of G, which are
regarded as

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0

in non-increasing order. The collection of eigenvalues of L(G) together with their multiplicities is called
the Laplacian spectrum of G, denoted by Spec(L(G)). If G has k distinct Laplacian eigenvalues µ1, µ2, . . . , µk

with multiplicities of m1,m2, . . . ,mk respectively, then we shall write µ(m1)
1 , µ(m2)

2 , . . . , µ(mk)
k for the Laplacian

spectrum of G. Sometimes, we show it in the matrix form as follows(
µ1 µ2 · · · µk
m1 m2 · · · mk

)
,
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where µ1 > µ2 > · · · > µk, and mi is the multiplicity of µi. The multiplicity of a Laplacian eigenvalue µi
in a graph G is denoted by mG(µi) for i = 1, 2, . . . , k. Given a real interval I, let mGI denote the number of
Laplacian eigenvalues, multiplicities included, of G in I.

As usual, Kn and Kq1,q2,...,qt denote respectively the complete graph of order n and the complete multipartite
graph with part sizes q1, q2, . . . , qt. In particular, the complete bipartite graph with part sizes p and q is denoted
by Kp,q and the star of order n is denoted by Sn. For two graphs G and H, G∪H denotes their disjoint union,
and kG stands for the disjoint union of k copies of G. Let y be a real number. Then ⌈y⌉ denotes the smallest
integer no less than y.

For a graph G, a subset H ⊆ V(G) is dominating if every v ∈ V(G) −H is adjacent to some member in H.
The domination number γ(G) is the minimum cardinality of a dominating set. An independent set M of G is a
subset of vertices of G if no two of its vertices are adjacent, the independence number of G, denoted by α(G), is
the cardinality of the largest independent sets in G. A proper vertex coloring of a graph G is an assignment
of colors to the vertices of G so that no two adjacent vertices are assigned the same color. Alternatively, a
proper vertex coloring of a graph may be viewed as a partition of the vertex set. The chromatic number of G,
written as χ(G), is the minimum number of colors of a proper vertex coloring of G. Generally, the set of all
vertices with the same color is called a color class. A clique is a complete subgraph of a given graph G. The
cardinality of the maximum clique is called the clique number of G and is denoted by ω(G).

It is well known that all Laplacian eigenvalues of any graph G lie in [0,n]. But it is unclear how the
Laplacian eigenvalues are distributed in the interval [0,n]. Therefore, many researchers have focused on
the bound of mGI for some subinterval I of [0,n] since 1990. Grone et al. [5] proved that mG[0, 1) ≥ ν(G),
where ν(G) is the number of quasi-pendant vertices in G. Merris [10] obtained that mG(2,n] ≥ ν(G) for a
graph G with n > 2ν(G). Guo et al. [6] studied that if n > 2β(G), then mG(2,n] > β(G), where β(G) is the
matching number of G. Recently, Hedetniemi et al. [7] investigated the relationship between Laplacian
eigenvalues distribution and domination number of a graph, and proved that mG[0, 1) ≤ γ(G). Cardoso et
al. [3] showed that an isolate-free graph G satisfies γ(G) ≤ mG[2,n]. Wang et al. [12] considered the bounds
of mG(I) for I = (n−1,n]. Meanwhile, they proved that mG(n−1,n] ≤ κ(G) and mG(n−1,n] ≤ χ(G)−1, where
κ(G) is the vertex-connectivity of G. Moreover, Ahanjideh et al. [1] showed that mG(n − α(G),n] ≤ n − α(G)
and mG(n − d(G) + 3,n] ≤ n − d(G) − 1, where d(G) is the diameter of G.

It is easy to see that researchers characterized the bounds of mGI with different parameters of graphs.
Be inspired by the above works, we consider whether it is possible to determine the bounds of mGI with
other parameters, or change the length of interval I. Therefore, in this paper, for a given interval I, we
present several bounds on mGI in terms of various structural parameters of the graph G, including chromatic
number, pendant vertices, and the number of vertices with degree n − 1.

The structure of the paper is as follows. In the next section, we give some necessary lemmas which will
be used to prove our main results. In Section 3, we research the relations between the chromatic number
and the distribution of Laplacian eigenvalues of a graph. Particularly, we obtain the bound on mG(n − 2,n]
in terms of chromatic number, which improves the result of Theorem 3.1. in [12]. Meanwhile, we acquire
some other conclusions about Laplacian eigenvalue distribution based on the chromatic number. In Section
4, according to the relations between the number of pendant vertices of a graph and Laplacian eigenvalue
distribution, we prove that the number of Laplacian eigenvalues in the interval (n − p(G),n] is at most
n − p(G), where p(G) is the number of pendant vertices in G. Finally, we give an upper bound on the
distribution of Laplacian eigenvalues in the interval (0,n) in terms of the number of vertices having degree
n − 1 in a graph.

2. Preliminaries

In this section, we shall list some known results which are needed in the following sections.

Lemma 2.1. [5] The star Sn on n vertices has Laplacian spectrum 0, 1(n−2),n.

Lemma 2.2. [3] Let G = (V,E) and H = (V,F) be graphs with F ⊆ E. Then

(i) for all i, µi(H) ≤ µi(G);
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(ii) for any a, mH[0, a] ≥ mG[0, a];
(iii) for any a, mH(a,n] ≤ mG(a,n].

Lemma 2.3. [2] If a graph G has n vertices, and µ is an eigenvalue of L(G), then 0 ≤ µ ≤ n. The multiplicity of 0
equals the number of components of G, the multiplicity of n is one less than the number of components of G.

Lemma 2.4. [11] Let G be the disjoint union of graphs G1, G2, . . . , Gs. Then

Θ(G, x) = Πs
i=1Θ(Gi, x).

Lemma 2.5. [8], [9] If G is a graph with n vertices, then

Θ(G, x) = (−1)n−1 x
n − x

Θ(G,n − x).

Lemma 2.6. [4] Let G = (V,E) be a graph with vertex subset V′ = {v1, v2, . . . , vk} having the same set of neighbors
{vk+1, vk+2, . . . , vs}, where V = {v1, v2, . . . , vk, . . . , vs, . . . , vn}. Then G has at least k − 1 same Laplacian eigenvalues
and they are all equal to the cardinality of the neighbor set. Also the corresponding (k − 1) eigenvectors are

( 1,−1︸︷︷︸
2

, 0, . . . , 0)T, (1, 0,−1︸ ︷︷ ︸
3

, 0, . . . , 0)T, . . . , (1, 0, 0, . . . ,−1︸          ︷︷          ︸
k

, 0, . . . , 0)T.

The Laplacian spectrum of a complete multipartite graph will play an important role in this paper. Thus
using a different method, we can also prove the following result on the Laplacian spectrum of a complete
multipartite graph in [1].

Lemma 2.7. Let q1, q2, . . . , qt and n be positive integers such that q1 + q2 + · · · + qt = n. Suppose S = {i : qi ≥ 2}.
Then the Laplacian spectrum of a complete t-partite graph Kq1,...,qt consists of:

(i) n with multiplicity t − 1;
(ii) n − qi with multiplicity qi − 1, for each i ∈ S;

(iii) 0.

Proof. Let Kq1,...,qt be a complete t-partite graph with q1 ≥ q2 ≥ · · · ≥ qt. It is easy to see that q1 ≥ 2.
Otherwise, the graph is Kn. Suppose S = {i : qi ≥ 2}. If h is the largest integer in S, then V(Kq1,...,qt ) =
V1 ∪ V2 ∪ · · · ∪ Vh ∪ · · · ∪ Vt such that |Vi| = qi for i = 1, 2, . . . , t. By the definition of Kq1,...,qt , we obtain that
each vertex of Vi has the same neighbors set, which contains n − qi vertices. Thus, using Lemma 2.6, we
see that n − qi is a Laplacian eigenvalue of Kq1,...,qt with multiplicity at least qi − 1. It is obvious that i ∈ S.
Therefore, we just determine

∑
i∈S(qi − 1) = n − t Laplacian eigenvalues of Kq1,...,qt . Since the complement

of Kq1,...,qt contains t connected components, according to Lemma 2.3, n is a Laplacian eigenvalue of Kq1,...,qt

with multiplicity t− 1. Therefore, the Laplacian spectrum of Kq1,...,qt is {n(t−1), (n− qi)(qi−1), 0}, where i ∈ S.

Lemma 2.8. Let G be a graph on n vertices. If V′ = {v1, v2, . . . , vk} is a clique of G such that N(vi)−V′ = N(v j)−V′

for all i, j ∈ {1, 2, . . . , k}, then d(vi) = d(v j) and d(vi) + 1 is an eigenvalue of L(G) with multiplicity at least k − 1, for
all i, j ∈ {1, 2, . . . , k}.

Proof. Since the vertices in V′ share the same neighborhood, all vertices in V′ have the same degree, denoted
by s. Let X = (x1, x2, . . . , xn)T be an eigenvector of L(G) corresponding to the eigenvalue µ(G). Then

µ(G)xi = dixi −
∑

viv j∈E(G)

x j, (1)

where i = 1, 2, . . . ,n.
According to (1), we can easily find that s + 1 is an eigenvalue of L(G) with corresponding eigenvectors

l1 = ( 1,−1︸︷︷︸
2

, 0, . . . , 0)T, l2 = (1, 0,−1︸ ︷︷ ︸
3

, 0, . . . , 0)T, . . . , lk−1 = (1, 0, 0, . . . ,−1︸          ︷︷          ︸
k

, 0, . . . , 0)T.

Since l1, l2, . . . , lk−1 are k − 1 linearly independent eigenvectors, s + 1 is an eigenvalue of L(G) with
multiplicity at least k − 1.
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3. Laplacian eigenvalue distribution and chromatic number

In this section, we give relationships between Laplacian eigenvalue distribution and chromatic number
χ(G) of a graph G. More specifically, we obtain bounds for mGI in terms of χ(G) for some interval I. For a
given integer t such that 1 ≤ t ≤ n − 2,H(n, t) is the graph obtained by making the disjoint union of a star
Sn−t with t isolated vertices, and then taking its complement, that is H(n, t) = Sn−t ∪ tK1. See Figure 1 for
example, where n = 6 and t ∈ {1, 2, 3, 4}.
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Figure 1: AllH(6, t)(1 ≤ t ≤ 4) graphs of six vertices.

Theorem 3.1. Let G be a connected graph of order n and with chromatic number χ(G). Then

mG(n − 2,n] ≤ χ(G) − 1. (2)

The bound is the best possible as shown by all complete multipartite graphs or G � H(n, t), where 1 ≤ t ≤ n − 2.

Proof. Since the chromatic number of G is χ(G), the vertex set V(G) of G can be partitioned into χ(G) disjoint
sets as follows

V = V1 ∪ V2 ∪ · · · ∪ Vχ(G),

where each Vi is an independent set of G, i.e., no edge between vertices of Vi. Let ni = |Vi|. Then it is easy
to get that n1 + n2 + · · · + nχ(G) = n. Without loss of generality, we assume that n1 ≥ n2 ≥ · · · ≥ nχ(G). Let G′

be the graph obtained from G by adding edges between Vi and V j such that the vertices of Vi and V j are all
adjacent, for any pair Vi, V j of G with i , j. Apparently, G can be considered as a spanning subgraph of G′

and G′ = Kn1,n2,...,nχ(G) with n1 ≥ n2 ≥ · · · ≥ nχ(G).
By Lemma 2.2(iii), we can obtain mG(n − 2,n] ≤ mG′ (n − 2,n]. It is worth noticing that the chromatic

number of G′ is also χ(G). Hence, in order to complete the proof of (2), we only need to prove that
mG′ (n − 2,n] ≤ χ(G) − 1.

Using Lemma 2.7, if n1 ≥ n2 ≥ · · · ≥ nχ(G), then the Laplacian spectrum of G′ is(
0 n − n1 n − n2 · · · · · · n − nχ(G) n
1 n1 − 1 n2 − 1 · · · · · · nχ(G) − 1 χ(G) − 1

)
.
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By observing the Laplacian spectrum of G′, we see that mG′ (n − 2,n] = χ(G) − 1. Therefore, mG(n − 2,n] ≤
mG′ (n − 2,n] = χ(G) − 1.

By the above analysis, we can know that all complete multipartite graphs satisfy the equality. Next,
we show that if G � H(n, t) (t fixed and satisfying 1 ≤ t ≤ n − 2), then equality holds. By Lemma 2.4 and
Lemma 2.5, we can obtain that

Θ(H(n, t), x) = x(x − t)(x − n)t
(
x − (n − 1)

)n−t−2
,

which implies that the Laplacian spectrum ofH(n, t) is(
0 t n − 1 n
1 1 n − t − 2 t

)
,

where 1 ≤ t ≤ n − 2. It is obvious that χ(H(n, t)) = n − 1 and mH(n,t)(n − 2,n] = n − 2. Therefore, we have
mH(n,t)(n − 2,n] = χ(H(n, t)) − 1.

It completes the proof of Theorem 3.1.

Remark 3.2. Wang et al. [12] considered the distribution of Laplacian eigenvalues in subinterval (n− 1,n] of length
1 and they proved that mG(n − 1,n] ≤ χ(G) − 1. It is easy to verify that Theorem 3.1 improves this bound. On the
other hand, it is well known that for a graph G, χ(G) − 1 ≤ ∆(G). Therefore, we show that mG(n − 2,n] ≤ ∆(G) by
Theorem 3.1.

Corollary 3.3. Let G be a connected graph of order n having chromatic number χ(G). Then

mG[0,n − 2] ≥ n − χ(G) + 1,

with the equality holding when G is a complete multipartite graph or G � H(n, t), where 1 ≤ t ≤ n − 2.

Corollary 3.4. Let G be a connected graph of order n with the chromatic number χ(G). If each color class of G
contains the same number of vertices, then

mG(n −
n
χ(G)

,n] ≤ χ(G) − 1.

Equality holds when G � K n
χ(G) ,...,

n
χ(G)

.

Proof. Since each color class of G contains the same number of vertices, the graph G satisfies n = pχ(G) for
some positive integer p, which implies that p = n

χ(G) . By using a similar proof as Theorem 3.1, we see that
G can be considered as a spanning subgraph of the complete multipartite graph G′ = K n

χ(G) ,...,
n
χ(G)

. Since G′

is a complete χ(G)-partite graph and using Lemma 2.7, we see that the Laplacian spectrum of G′ is listed
below: (

0 n − n
χ(G) n

1 n − χ(G) χ(G) − 1

)
.

It is not difficult to find that mG′ (n − n
χ(G) ,n] = χ(G) − 1. According to Lemma 2.2(iii), we have mG(n −

n
χ(G) ,n] ≤ mG′ (n −

n
χ(G) ,n] = χ(G) − 1, which implies that mG(n − n

χ(G) ,n] ≤ χ(G) − 1.
In view of the above analysis, we can obtain that the graph K n

χ(G) ,...,
n
χ(G)

satisfies the equality. Therefore,
we complete the proof.

Corollary 3.5. Let G be a connected graph of order n with the chromatic number χ(G). If each color class of G
contains the same number of vertices, then

mG[0,n −
n
χ(G)

] ≥ n − χ(G) + 1.

And the bound is the best possible as shown by the K n
χ(G) ,...,

n
χ(G)

.
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Now, we consider an upper bound for the number of Laplacian eigenvalues which are contained in the
interval (n − ⌈ n

χ(G) ⌉,n) of an arbitrary non-complete graph.

Theorem 3.6. Suppose that G � Kn is a connected graph on n vertices with chromatic number χ(G). Then

mG(n − ⌈
n
χ(G)

⌉,n) ≤ n − ⌈
n
χ(G)

⌉ − c(G) + 1, (3)

where c(G) is the number of connected components of G. Further, for χ(G) = 2 and n is odd, equality in (3) is attained
if G � Kt+1,t. For χ(G) = n − 1, equality in (3) is attained if G � K2,1, 1, . . . , 1︸     ︷︷     ︸

n−2

.

Proof. Let G be a graph with chromatic number χ(G). Then the vertex set V(G) of G can be partitioned
into χ(G) independent sets. Suppose that n1,n2, . . . ,nχ(G) are the cardinalities of those independent sets.
Without loss of generality, we assume n1 ≥ n2 ≥ · · · ≥ nχ(G). Then G is a spanning subgraph of the complete
χ(G)-partite graph Kn1,n2,...,nχ(G) . As G � Kn, χ(G) ≤ n − 1 and n1 ≥ 2, using Lemma 2.2(i), we have

µi(G) ≤ µi(Kn1,n2,...,nχ(G) ) = n − n1, (4)

for all n − n1 + 1 ≤ i ≤ n − 1.
Since n1 ≥ n2 ≥ · · · ≥ nχ(G) and n1 + n2 + · · · + nχ(G) = n, n1 ≥

n
χ(G) , it means that n1 ≥ ⌈

n
χ(G) ⌉. Hence, from

(4), we easily obtain

µi(G) ≤ n − ⌈
n
χ(G)

⌉,

for all n−n1 + 1 ≤ i ≤ n− 1. It implies that there exist at least n1 − 1 Laplacian eigenvalues of G which are no
greater than n − ⌈ n

χ(G) ⌉. Further, since 0 is always a Laplacian eigenvalue of a connected graph G, we have

mG[0,n − ⌈
n
χ(G)

⌉] ≥ n1.

On the other hand, from Lemma 2.3, we see that n is the Laplacian eigenvalue of G with multiplicity
exactly c(G) − 1. Therefore,

mG(n − ⌈
n
χ(G)

⌉,n) = n −mG[0,n − ⌈
n
χ(G)

⌉] − (c(G) − 1)

≤ n − n1 − (c(G) − 1)

≤ n − ⌈
n
χ(G)

⌉ − c(G) + 1,

which completes the proof of (3).
• Let G � Kt+1,t, where t ≥ 1 and n = 2t + 1. Then we easily have χ(G) = 2 and ⌈ n

χ(G) ⌉ = ⌈
n
2 ⌉ = t + 1 = n+1

2 .
It is noted that the complement of Kt+1,t has just 2 connected components. Therefore, by Lemma 2.7, we
obtain that the Laplacian spectrum of Kt+1,t is given below:(

0 n−1
2

n+1
2 n

1 n−1
2

n−3
2 1

)
.

Obviously, the equality of (3) holds for G � Kt+1,t, which explains that the bound is best possible when
χ(G) = 2 and n is odd.
• Let G � K2,1, 1, . . . , 1︸     ︷︷     ︸

n−2

. Then χ(G) = n − 1. So we observe that ⌈ n
χ(G) ⌉ = ⌈

n
n−1 ⌉ = 2 and the complement of

K2,1, 1, . . . , 1︸     ︷︷     ︸
n−2

has exactly n−1 components. By a simple calculation, n−⌈ n
χ(G) ⌉− c(G)+1 = 0. On the other hand,
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by Lemma 2.7, the Laplacian spectrum of K2,1, 1, . . . , 1︸     ︷︷     ︸
n−2

is

(
0 n − 2 n
1 1 n − 2

)
.

It implies that mG(n − ⌈ n
χ(G) ⌉,n) = 0. Hence, the equality of (3) holds for K2,1, 1, . . . , 1︸     ︷︷     ︸

n−2

, which shows that the

bound is the best possible when χ(G) = n − 1.

The following conclusions are derived from Theorem 3.6.

Corollary 3.7. Let G � Kn be a connected graph on n vertices with the chromatic number χ(G). Then

mG[0,n − ⌈
n
χ(G)

⌉] ≥ ⌈
n
χ(G)

⌉. (5)

Moreover, for χ(G) = 2 and n is odd, equality in (5) is attained if G � Kt+1,t. For χ(G) = n − 1, equality in (5) is
attained if G � K2,1, 1, . . . , 1︸     ︷︷     ︸

n−2

.

Corollary 3.8. Let G � Kn be a connected graph on n vertices with the chromatic number χ(G). If G is connected,
then

mG(n − ⌈
n
χ(G)

⌉,n) ≤ n − ⌈
n
χ(G)

⌉.

Proof. Since G is connected, c(G) = 1. Therefore, we can obtain the required conclusion by substituting
c(G) = 1 into the inequality of Theorem 3.6.

4. Laplacian eigenvalue distribution, pendant vertices and the number of vertices with degree n − 1

First, we establish relations between the pendant vertices of a graph and how the Laplacian eigenvalues
are distributed. Next, we characterize the distribution of Laplacian eigenvalues by the number of vertices
having degree n − 1.

Theorem 4.1. Let G � Kn be a connected graph on n vertices having p(G) ≥ 1 pendant vertices. Then

mG(n − p(G),n] ≤ n − p(G). (6)

Moreover, the equality holds if and only if G � Sn for p(G) = n − 1.

Proof. Let S be the set of all pendant vertices of G such that | S |= p(G). Then it is easy to know that S is an
independent set of G and the induced subgraph of T = V(G)\S is connected, we denote it by H. Let χ(H) be
the chromatic number of H and n1 ≥ n2 ≥ · · · ≥ nχ(H) be the cardinalities of these chromatic classes, where
1 ≤ χ(H) ≤ n − p(G) and n1 + n2 + · · · + nχ(H) = n − p(G). Suppose that nk ≥ p(G) ≥ nk+1, where 0 ≤ k ≤ χ(H).
Specifically, n0 = p(G) if k = 0 and nχ(H)+1 = p(G) if k = χ(H). Hence, the vertex set V(G) is partitioned into
χ(H)+1 independent sets. Then we easily see that G can be considered as a spanning subgraph of complete
(χ(H) + 1)-partite graph G′ = Kn1,n2,...,nk,p(G),nk+1,...,nχ(H) . If n1 = p(G) = 1, then G′ � Kn. It is worth noting that
the Laplacian spectrum of Kn is (

0 n
1 n − 1

)
.

Hence, we have mG′ (n − p(G),n] = mG′ (n − 1,n] = n − 1. By Lemma 2.2(iii), we see that mG(n − p(G),n] ≤
mG′ (n− p(G),n] = n− 1, which implies that (6) is established. If n1 ≥ 2, we consider the following two cases.
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Case 1. n1 ≥ p(G).
By Lemma 2.2(i) and Lemma 2.7, we obtain

µi(G) ≤ µi(G′) = n − n1 ≤ n − p(G),

for all n − n1 + 1 ≤ i ≤ n − 1.
Case 2. n1 < p(G). Again, using Lemma 2.2(i) and Lemma 2.7, we have

µi(G) ≤ µi(G
′

) = n − p(G),

for all n − p(G) + 1 ≤ i ≤ n − 1.
By the above analysis, we see that there are at least p(G) − 1 Laplacian eigenvalues of G which are no

greater than n − p(G). Meanwhile, we notice that 0 is a Laplacian eigenvalue of a connected graph G.
Therefore, we have

mG[0,n − p(G)] ≥ p(G).

Since mG[0,n − p(G)] +mG(n − p(G),n] = n,

mG(n − p(G),n] ≤ n − p(G).

It obtains the required inequality (6).
Assume now that the equality holds in (6) for p(G) = n − 1. Then it is easy to see that G � Sn. On the

other side, by Lemma 2.1, we know that the Laplacian spectrum of Sn is given as follows(
0 1 n
1 n − 2 1

)
.

So the equality holds and the proof is completed.

Now we have the following corollary which can be derived from Theorem 4.1.

Corollary 4.2. If G � Kn be a connected graph on n vertices having p(G) ≥ 1 pendant vertices, then

mG[0,n − p(G)] ≥ p(G).

The equality holds if and only if G � Sn for p(G) = n − 1.

Theorem 4.3. Let G be a connected graph on n ≥ 4 vertices with chromatic number χ(G). For s ≥ n
2 , if M =

{v1, v2, . . . , vs} ⊆ V(G) is the set of pendant vertices such that every vertex in M has the same neighbour in V(G)\M,
then

mG(1,n] ≤ n − χ(G).

Proof. Since M = {v1, v2, . . . , vs} ⊆ V(G) is the set of pendant vertices and every vertex in M has the same
neighbour in V(G)\M, say {vs+1}, by Lemma 2.6, there are at least s− 1 Laplacian eigenvalues of G which are
equal to 1. Note that 0 is a Laplacian eigenvalue of a connected graph G. Thus, there are at least s Laplacian
eigenvalues of G which are no greater than 1, that is,

mG[0, 1] ≥ s.

As mG[0, 1] +mG(1,n] = n, we have
mG(1,n] ≤ n − s.

In order to proof mG(1,n] ≤ n − χ(G), it remains to show χ(G) ≤ s.
By contradiction, assume that χ(G) > s. If s = n− 1, then G is the connected graph having n− 1 pendant

vertices, that is G � Sn. As χ(Sn) = 2 ≤ n
2 for n ≥ 4 and s ≥ n

2 , χ(G) ≤ s, contrary to the assumption. If
n
2 ≤ s ≤ n − 2, then there is at least one vertex, say v, which is not adjacent to any vertex in M. Thus in



J. Cui, X. Ma / Filomat 38:19 (2024), 6881–6890 6889

the minimal coloring of G, at least s + 1 vertices, say, v, v1, . . . , vs can be colored using only one color. The
remaining n − s − 1 vertices can be colored with at most n − s − 1 colors. Thus, from s ≥ n

2 , we know that
χ(G) ≤ 1 + n − s − 1 = n − s ≤ n − n

2 =
n
2 , which implies that χ ≤ s. It contradicts the assumption.

In a word, we have χ(G) ≤ n
2 ≤ s. Thus we must have

mG(1,n] ≤ n − χ(G),

which completes the proof.

In order to get a bound only in terms of order n and the number of pendant vertices s, we can relax the
conditions s ≥ n

2 and n ≥ 4 in Theorem 4.3. This will be given in the following corollary.

Corollary 4.4. Let G be a connected graph on n vertices. If M = {v1, v2, . . . , vs} ⊆ V(G) is the set of pendant vertices
such that every vertex in M has the same neighbour in V(G)\M, then

mG(1,n] ≤ n − s.

Next, based on the order n and the number of vertices having degree n−1 of a graph, we obtain a bound
for the number of Laplacian eigenvalues which are in the interval (0,n).

Theorem 4.5. Let G be a connected graph with n vertices. If nd(G) = |{v ∈ V(G) : dG(v) = n − 1}|, where
1 ≤ nd(G) ≤ n, then

mG(0,n) ≤ n − nd(G). (7)

Further equality holds when nd(G) = n, that is, G � Kn.

Proof. We consider the following two situations.
• Let nd(G) = n. Then G � Kn. By Lemma 2.7, we see that mKn (0,n) = 0, the equality holds.
• Let 1 ≤ nd(G) ≤ n − 1. Since G contains nd(G) vertices of degree n − 1, G contains a clique, say M.

Obviously, the size of this clique is nd(G). Let V(M) = {v1, v2, . . . , vnd(G)}. Then we observe that

N(vi) − V(M) = N(v j) − V(M) = {vnd(G)+1, . . . , vn},

for i, j ∈ {1, 2, . . . ,nd(G)}. According to Lemma 2.8, we obtain that n is a Laplacian eigenvalue of G with
multiplicity at least nd(G) − 1. Moreover, we know that 0 is a Laplacian eigenvalue of a connected graph.
Therefore, we have

mG(0,n) ≤ n − nd(G),

which completes the proof.
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