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Abstract. The aim of this paper is to estimate non-parametrically the conditional hazard function of a
scalar response variable taking values in separable Hilbert space. The response variable is assumed to
be left truncated data. We introduce kernel-type estimators for the conditional distribution function and
conditional density. Then, we establish the pointwise almost complete convergence and the uniform almost
complete convergence (with rate) of the kernel estimators, based on the single index structure. Additionally,
the asymptotic properties of the conditional hazard function are provided. Finally, a simulation study is
carried to illustrate the performance of our estimator.

1. Introduction

Functional Data Analysis (FDA) is a statistical branch that deals with the analysis of infinite-dimensional
variables, such as images, sets, and curves. FDA has experienced remarkable growth in the past 20 years,
partly driven by major advances in data collection technology that have ushered in the Big Data era.
Literature related to Functional Data Analysis is extensive, the reader can refer to textbooks such as
[15, 22, 28, 39] and broad surveys such as [8, 18, 28]. Current developments on various aspects of FDA are
also reported in numerous review papers, notably regression analysis [9], functional principal component
analysis [11], depth analysis [35], clustering [23], dependent functional data [26], spatial functional data
[33], nonparametric modeling [30], semiparametric modeling [43], and testing [19].

Nonparametric estimation of the hazard function has been a topic of considerable interest in the litera-
ture. The early works in this area were done by Ferraty et al. [14], who proposed a kernel estimator for the
conditional hazard function and derived its asymptotic properties and rates under different scenarios, such
as censored and/or dependent variables. Then, Rabhi et al. [37] obtained the asymptotic mean square error
of the conditional hazard function estimator. Merouan et al. [34] examined the asymptotic mean square
error of the conditional hazard function using the linear method. Recently, Bellatrach et al. [7] presented the
convergence rate of the hazard function with functional explanatory variable in the case of spatial data with
k Nearest Neighbor method. Kebir et al. [25] dealt with estimation of the conditional hazard function with
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a recursive kernel from censored functional ergodic data. Omari et al. [36] studied the uniform convergence
of nonparametric conditional hazard function in the single functional index model for dependent data. For
more details on this subject, readers can refer to Ferraty et al. [13], Belabbaci et al. [6], Rabhi et al. [38], and
Massim and Mechab [32].

In this paper, we consider the problem of nonparametric estimation of the conditional hazard function
in a single index model, where the covariate is functional and the response variable is subject to left
truncation. The hazard function measures the risk of an event over time, and it can vary depending on
covariates such as age and gender. Truncation happens when we only observe time-to-event data within a
certain interval, which can cause bias and complexity in the analysis. Truncated data are common in various
domains, such as astronomy, economics, AIDS research, and reliability engineering (e.g., Woodroofe [45],
Wang [44], Lawless [24] and Gardes and Stupfler [17]). Therefore, several methods have been proposed for
nonparametric estimation and regression with truncated data [3, 10, 20].

Moreover, we note that the single-index models are a flexible and parsimonious way to handle high
dimensional data by reducing the dimensionality of the covariate space. These models have attracted
significant attention due to their relevance in various scientific fields such as biostatistics, economics, and
medicine. Some of the notable works on the single-index models can be found in Ferraty et al. [12], Aı̈t
Saidi et al. [1, 2], Attaoui [4], Tabti and Ait Saidi [42], and Gagui and Chouaf [16].

The paper is organized as follows. In Section 2, we present our model and estimators. In Section 3, we
introduce assumptions and state the main results, we establish the almost complete convergence with rates.
In Section 4 the consistent uniform of the proposed estimators is studied. A simulation study is carried out
to show the good behavior of our estimator in Section 5. Further, Section 6 is dedicated to the technical
proofs. Finally, we conclude the paper in Section 6.

2. Model, notations and estimators

Throughout this paper, we shall denote by C, C′, or Cθ,x certain constants generated in R∗+. Let (Xi,Yi)
for i = 1, . . . ,N represent N random variables, independent and identically distributed as (X,Y) with values
in H × R, where the sample size N is deterministic but unknown, and H is a real Hilbert space with the
norm ∥ · ∥ derived from an inner product ⟨·, ·⟩. We consider the semi-metric dθ associated with the single
index θ ∈ H defined by ∀x1, x2 ∈ H , dθ(x1, x2) = |⟨x1 − x2, θ⟩|. The sample is not entirely observed; only
n variables are observed, where n ≤ N. Specifically, we assume that the lifetimes yi, for i = 1, . . . ,N, are
left-truncated by Ti, for i = 1, . . . ,N. In this model, (Yi,Ti) is observed if Yi ≥ Ti, signifying that the random
variable of interest Y is inferred from the random variable T. T is assumed to be independent of (X,Y).

We assume that Y and T have unknown distribution functions F and G, respectively. The observed
sample size n is a known random variable, where n ≤ N. It is noteworthy that if the samples (Yi,Ti) for
i = 1, 2, . . . ,N are i.i.d., then the observed data (Yi,Ti), for i = 1, 2, . . . ,n, are also i.i.d. (see Lemdani and
Ould-Saı̈d [29]). As a consequence of the truncation sequence, the size of the observed sample, n, follows a
binomial distribution with parameters N and µ := P(Y ≥ T).

It is evident that if µ = 0, no data can be observed. Hence, we assume throughout this paper that µ > 0.
It is worth noting that, by the strong law of large numbers (SLLN), as N→∞,

µn =
n
N
→ α, P a.s.

For any real distribution function L, the left and right endpoints of its support are denoted by

aL = inf {t, L(t) > 0} and bL = sup {t, L(t) < 1} . (1)

The kernel estimator of the conditional function is constructed from the observed variables (Xi,Yi,Ti),
i = 1, 2, . . . ,n, based on the Lynden-Bell estimator, Gn, of the cumulative distribution G of the random
variable T. We assume that the variables of interest, Y and T, are independent. Following Stute and Wang
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[41], the distribution functions of Y and T under the left-truncated condition are expressed respectively as
follows:

F∗(y) = µ−1
∫ y

−∞

G(u)dF(u) and G∗(t) = µ−1
∫ t

−∞

G(t ∧ u)dF(u),

where t ∧ u = min(t,u). These are estimated by

F∗n(y) =
1
n

n∑
i=1

1
{Yi≤y} and G∗n(t) =

1
n

n∑
i=1

1{Ti≤t}.

Then, we define

C(y) = P(T ≤ y ≤ Y|Y ≥ T)
= G∗(y) − F∗(y)
= µ−1G(y)

(
1 − F(y)

)
,

which is empirically estimated by

Cn(y) = G∗n(y) − F∗n
(
y−

)
=

1
n

n∑
i=1

1
{Ti≤y≤Yi}

.

The nonparametric maximum likelihood estimators of F and G are well-known as Lynden-Bell estimators
(see Lynden-Bell [31]):

Fn(y) = 1 −
∏

i:Yi≤y

(
nCn(Yi) − 1

nCn(Yi)

)
and Gn(y) = 1 −

∏
i:Ti>y

(
nCn(Ti) − 1

nCn(Ti)

)
.

He and Yang [21] demonstrated that µ can be estimated by µn =
Gn(y)(1−Fn(y))

Cn(y) , which is independent of y.
And the asymptotic properties of Fn and Gn were examined by Woodroofe [45], showing that

sup
y>aF

∣∣∣F̃n(y) − F(y)
∣∣∣ −→ 0 and sup

t>aG

∣∣∣∣G̃n(t) − G(t)
∣∣∣∣ −→ 0,

provided the identifiability conditions, aG ≤ aF, bG ≤ bF, and
∫
∞

aF

1
G dF < ∞, where aL, bL are the endpoints of

the support of the distribution function L defined by (1).
Assume that the conditional distribution function of Y given X has a single structure and is given by

∀ y ∈ R, Fx
θ(y) = F

(
y| < X, θ >=< x, θ >

)
= F(θ, y, x).

By saying this, we implicitly assume the existence of a regular version for the conditional distribution
of Y given ⟨X, θ⟩ = ⟨x, θ⟩.

If this distribution is absolutely continuous with respect to the Lebesgue measure on R, we will denote
by F(1)(θ, ·, x) = f (θ, ·, x) the conditional density of Y given ⟨X, θ⟩ = ⟨x, θ⟩, with the conditional density
f (θ, y, x) given by ∀y ∈ R, f x

θ (y) = f
(
y|⟨X, θ⟩ = ⟨x, θ⟩

)
= f (θ, y, x) = F(1)(θ, ·, x).

We also assume that the conditional hazard function of Y given ⟨X, θ⟩ = ⟨x, θ⟩ denoted by hx
θ(·) exists

and is given by

∀ y ∈ R, hx
θ(y) := h

(
y| ⟨X, θ⟩ = ⟨x, θ⟩

)
=

f (θ, y, x))
1 − F(θ, y, x)

.

Our main objective is to estimate the conditional hazard function hx
θ(y) for a fixed θ, in the form

ĥx
θ(y) =

f̂ (θ, y, x)

1 − F̂(θ, y, x)
with F̂(θ, y, x) < 1,
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where F̂(θ, y, x) is the conditional cumulative distribution function estimator of F(θ, y, x), given by

F̂(θ, y, x) =

∑n
i=1 G−1

n (Yi)K
(
h−1

K ⟨x − Xi, θ⟩
)

H
(
h−1

H (y − Yi)
)

∑n
i=1 G−1

n (Yi)K
(
h−1

K ⟨x − Xi, θ⟩
) , (2)

and f̂ (θ, y, x) = F̂(1)(θ, y, x) is the conditional density estimator for f (θ, y, x), defined as

f̂ (θ, y, x) =

∑n
i=1 G−1

n (Yi)K
(
h−1

K ⟨x − Xi, θ⟩
)

H′
(
h−1

H
(
y − Yi

))
hH

∑n
i=1 G−1

n (Yi)K
(
h−1

K ⟨x − Xi, θ⟩
) , (3)

where K is a Kernel function, H is a distribution function, H′ is the derivative of H and hK := hK,n (resp.
hH := hH,n) is a sequence of positive real numbers that decreases to zero as n tends to infinity, Gn is the
Lynden-Bell estimator. Note that all sums containing G−1

n (Yi) are taken for i such that G−1
n (Yi) , 0. For the

identifiability of the model, the readers may refer to Ferraty et al. [12].
Let Nx be a fixed neighborhood of x, where x ∈ H and y ∈ R. Additionally, let SR be a fixed compact set

in R, and define Bθ(x, h) = P
{
X ∈ H : 0 < |⟨x − X, θ⟩| < h

}
.

We make the assumption that 0 = aG < aF, bG < bF, and that Ti and (Xi,Yi) for 1 ≤ i ≤ n are independent.

3. Main results and assumptions

3.1. Pointwise almost complete convergence

In this section, we present a pointwise almost complete estimation, along with the corresponding rate, of
the conditional cumulative distribution, conditional density, and conditional hazard function. We introduce
the following conditions, which ensure the good behaviours of the estimators F̂(θ, y, x) and f̂ (θ, y, x).

(A1) For all hK > 0, P (X ∈ Bθ(x, hK)) := ϕθ,x(hK) > 0 and ϕθ,x(hK)→ 0 as hK → 0.

(A2) The conditional cumulative distribution F(θ, y, x) (resp. the conditional density f (θ, y, x)) satisfies the
Hölder condition:

For all (y1, y2) ∈ SR × SR, for all (x1, x2) ∈ Nx ×Nx, and for all θ ∈ ΘH , there exist a > 0 and b > 0:

(i)
∣∣∣F(θ, y1, x1) − F(θ, y2, x2)

∣∣∣ ≤ Cθ,x
(
∥x1 − x2∥

a +
∣∣∣y1 − y2

∣∣∣b).
(ii)

∣∣∣ f (θ, y1, x1) − f (θ, y2, x2)
∣∣∣ ≤ Cθ,x

(
∥x1 − x2∥

a +
∣∣∣y1 − y2

∣∣∣b).
(A3) (i) The kernel K is positive, with compact support [0, 1], of class C1 on [0, 1], K(0) > 0, K(1) > 0, and

its derivative K′ is such that −∞ < C1 < K′(t) < C2 on [0, 1].

(ii) 0 < C1[0,1] < K < C′1[0,1] < ∞.

(A4) The kernel H is a positive bounded Lipschitz-continuous function, and H′ is a positive bounded
Lipschitz-continuous function such that:

∫
|z|bH′(z)dz < ∞ and

∫
H′(z)dz = 1.

(A5) The bandwidths hH and hK satisfy

(i) limn→∞ hK = limn→∞ hH = 0.

(ii) limn→∞
log(n)

nh j
Hϕθ,x(hK)

= 0 for j = 0, 1.

(iii) limn→∞ nγhH = +∞ for some γ > 0.

(A6) ∃α < ∞,∀(y, x) ∈ SR ×Nx, f (θ, y, x) ≤ α.
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(A7) ∃β > 0,∀(y, x) ∈ SR ×Nx, F(θ, y, x) ≤ 1 − β.

Remark 3.1. In our methodology, assumption (A1) assumes a crucial role, often referred to as the ’concentration
property’ in finite-dimensional spaces. The purpose of (A2) is to regulate the smoothness of the functional space
within our model. Conditions (A3) and (A4) are standard in functional estimation, applicable to both finite and
infinite-dimensional spaces.

Proposition 3.2. Under assumptions (A1)-(A7), we have

∣∣∣∣̂h(θ, y, x) − h(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log n
nhHϕθ,x(hK)

 .
Proof. The proof relies on the following decomposition, applicable for any x ∈ SR, where C is a strictly
positive real constant:

ĥ(θ, y, x) − h(θ, y, x) =
f̂ (θ, y, x)

1 − F̂(θ, y, x)
−

f (θ, y, x)
1 − F(θ, y, x)

,

which can be expressed as:∣∣∣∣̂h(θ, y, x) − h(θ, y, x)
∣∣∣∣

≤
1∣∣∣∣1 − F̂(θ, y, x)

∣∣∣∣
∣∣∣∣ f̂ (θ, y, x) − f (θ, y, x)

∣∣∣∣
+

∣∣∣h(θ, y, x)
∣∣∣∣∣∣∣1 − F̂(θ, y, x)

∣∣∣∣
∣∣∣∣F̂(θ, y, x) − F(θ, y, x)

∣∣∣∣
≤ C

∣∣∣∣ f̂ (θ, y, x) − f (θ, y, x)
∣∣∣∣ + ∣∣∣∣F̂(θ, y, x) − F(θ, y, x)

∣∣∣∣∣∣∣∣1 − F̂(θ, y, x)
∣∣∣∣ .

(4)

The result of Proposition 3.2 follows from the subsequent intermediate results, the proofs of which are
provided in the Section 6.

Theorem 3.3. Under assumptions (A1)-(A5), we have

sup
y∈SR

∣∣∣∣F̂(θ, y, x) − F(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co.


√

log n
nϕθ,x(hK)

 ,
and

sup
y∈SR

∣∣∣∣ f̂ (θ, y, x) − f (θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log n
nhHϕθ,x(hK)

 .
Proof. Let x ∈ H , y ∈ R, and i = 1, . . . ,n. Define

Ki(x, θ) := K(h−1
K ⟨x − Xi, θ⟩), for j = 0, 1; H( j)

i (y) := H( j)
(
h−1

H
(
y − Yi

))
.

Note that the estimator defined in (3) can be written as:

F̂( j)(θ, y, x) =

µn

nh( j)
H E[K1(θ,x)]

∑n
i=1 G−1

n (Yi)Ki(θ, x)H( j)
i (y)

µn

nE[K1(θ,x)]

∑n
i=1 G−1

n (Yi)Ki(θ, x)
:=

F̂( j)
N (θ, y, x)

F̂D(θ, x)
.
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This proof is based on the following decomposition for all j = 0, 1:∣∣∣∣F̂( j)(θ, y, x) − F( j)(θ, y, x)
∣∣∣∣ ≤ 1

F̂D(θ, x)

∣∣∣∣F̂( j)
N (θ, y, x) − F̃( j)

N (θ, y, x)
∣∣∣∣

+
1

F̂D(θ, x)

∣∣∣∣F̃( j)
N (θ, y, x) − E

(
F̃( j)

N (θ, y, x)
)∣∣∣∣

+
1

F̂D(θ, x)

∣∣∣∣F( j)(θ, y, x) − E
(
F̃( j)

N (θ, y, x)
)∣∣∣∣

+
F( j)(θ, y, x)

F̂D(θ, x)

∣∣∣∣F̂D(θ, x) − F̃D(θ, x)
∣∣∣∣

+
F( j)(θ, y, x)

F̂D(θ, x)

∣∣∣∣F̃D(θ, x) − E
(
F̃D(θ, x)

)∣∣∣∣
+

F( j)(θ, y, x)

F̂D(θ, x)

∣∣∣∣1 − E (
F̃D(θ, x)

)∣∣∣∣ , (5)

where

F̃( j)
N (θ, y, x) =

µ

nh j
HE [K1(θ, x)]

n∑
i=1

G−1(Yi)Ki(θ, x)H( j)
i (y).

So, the result of Theorem 3.3 is a consequence of the following intermediate results, with proofs provided
in Section 6.

Lemma 3.4. Under assumptions (A1), (A3) and (A5), we have

E
(
F̃D(θ, x)

)
= 1,

and ∣∣∣∣F̂D(θ, x) − F̃D(θ, x)
∣∣∣∣ = Oa.s


√

1
n

 . (6)

Lemma 3.5. Under assumptions (A1)-(A5), we have for all j = 0, 1

sup
y∈SR

∣∣∣∣E [
F̃( j)

N (θ, y, x)
]
− F( j)(θ, y, x)

∣∣∣∣ = O (
ha

K + hb
H

)
, (7)

sup
y∈SR

∣∣∣∣F̂( j)
N (θ, y, x) − F̃( j)

N (θ, y, x)
∣∣∣∣ = Oa.s


√

1
n

 , (8)

and

sup
y∈SR

∣∣∣∣F̃( j)
N (θ, y, x) − E

[
F̃( j)

N (θ, y, x)
]∣∣∣∣ = Oa.co


√

log n

nh( j)
H ϕθ,x(hK)

 . (9)

Lemma 3.6. Under assumptions (A1), (A3) and (A5), we have∣∣∣∣F̃D(θ, x) − E
[
F̃D(θ, x)

]∣∣∣∣ = Oa.co


√

log n
nϕθ,x (hK)

 , (10)

and ∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ = Oa.co


√

log n
nϕθ,x(hK)

 . (11)
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Corollary 3.7. Under assumptions (A1), (A3) and (A5), we have:∑
n≥1

P
(
F̂D(θ, x) ≤

1
2

)
< ∞.

4. Uniform almost complete convergence

This section is dedicated to deriving the uniform version of Proposition 3.2 and Theorem 3.3. In addition
to the conditions introduced previously, we require the following:

Firstly, we assume that SR is a compact subset ofR and SH ,ΘH (the spaces of parameters) are such that

SH
⋃dSn

n
k=1 B (xk, rn) and ΘH ⊂

⋃dΘn
n

m=1 B (θm, rn) with xk, θm ∈ H , and rn, dΘn
n , d

Sn
n are sequences of positive real

numbers that tend to infinity as n→ +∞. Furthermore, we need the following assumptions:

(U1) There exists a differentiable function ϕ(·) such that ∀ (x, θ) ∈ SH ×ΘH ,

0 < Cϕ(h) ≤ ϕθ,x(h) ≤ C′ϕ(h) < ∞ and ∃η0 > 0, ∀η < η0, ϕ
′(η) < C.

(U2) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ SH × SH and ∀θ ∈ ΘH for j = 0, 1∣∣∣F( j)(θ, y1, x1) − F( j)(θ, y2, x2)
∣∣∣ ≤ Cθ,x

(
∥x1 − x2∥

a +
∣∣∣y1 − y2

∣∣∣b) .
(U3) The kernel K satisfies (A3) and Lipschitz’s condition holds∣∣∣K(x) − K(y)

∣∣∣ ≤ C
∥∥∥x − y

∥∥∥ .
(U4) For rn = O

( log n
n

)
, the sequences dSHn and dΘHn satisfy:

(i)
(log n)2

nϕ(hK)
< log dSHn + log dΘHn <

nϕ(hK)
log n

,

(ii)
∑
∞

n=1 n1/2γ(dSHn dΘHn )1−β < ∞, f or some β > 1,
(iii) nϕ(hK) = O

(
(log n)2

)
.

(U5) For some γ ∈ (0, 1), lim
n→∞

nγhH = ∞, and for rn = O
( log n

n

)
, the sequences dSHn and dΘHn satisfy:


(i)

(log n)2

nhHϕ(hK)
< log dSHn + log dΘHn <

nhHϕ(hK)
log n

,

(ii)
∑
∞

n=1 n(3γ+1)/2(dSHn dΘHn )1−β < ∞, f or some β > 1,
(iii) nhHϕ(hK) = O

(
(log n)2

)
.

Proposition 4.1. Under assumptions (U1)-(U5), we get

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣̂h(θ, y, x) − h(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co.


√

log dSH
n + log dΘHn

nhHϕ(hK)


Proof. The proof relies on the decomposition given in (4). The stated results directly follow from Theorem 4.3
and (17) of Lemma 4.6. Proposition 4.1 and Corollary 4.2 can be deduced from the subsequent intermediate
results, which represent the uniform versions of Proposition 3.2.
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Corollary 4.2. Under assumptions of Proposition 4.1, we have

sup
x∈SH

sup
y∈SR

∣∣∣∣̂h(θ, y, x) − h(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log dSH
n

nhHϕ (hK)

 .
Theorem 4.3. Under assumptions (A1), (A3)-(A4) and (U1)-(U5), as n goes to infinity, we have

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣F̂(θ, y, x) − F(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log dSH
n dΘHn

nϕ(hK)

 ,
and

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣ f̂ (θ, y, x) − f (θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log dSH
n dΘHn

nhHϕ(hK)

 .
Proof. The proof is grounded in the decomposition given by (5) and relies on the subsequent intermediate
results.

Lemma 4.4. Under assumptions (U1)-(U2) and (A5), we have

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣E [
F̃N(θ, y, x)

]
− F(θ, y, x)

∣∣∣∣ = O (
ha

K + hb
H

)
,

and
sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣E [
f̃N(θ, y, x)

]
− f (θ, y, x)

∣∣∣∣ = O (
ha

K + hb
H

)
.

Lemma 4.5. Under assumptions (A3)-(A5),(U1) and (U4)-(U5), we have

sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̂D(θ, x) − F̃D(θ, x)
∣∣∣∣ = Oa.co


√

log dSH
n + log dΘHn

nϕ(hK)

 , (12)

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣F̂N(θ, y, x) − F̃N(θ, y, x)
∣∣∣∣ = Oa.co


√

log dSH
n dΘHn

nϕ(hK)

 , (13)

and

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣ f̂N(θ, y, x) − f̃N(θ, y, x)
∣∣∣∣ = Oa.co


√

log dSH
n dΘHn

nhHϕ(hK)

 . (14)

Lemma 4.6. Under assumptions (U1)-(U5), we have

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣F̃N(θ, y, x) − E
[
F̃N(θ, y, x)

]∣∣∣∣ = Oa.co


√

log dSH
n dΘHn

nϕ(hK)

 , (15)

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

∣∣∣∣ f̃N(θ, y, x) − E
[

f̃N(θ, y, x)
]∣∣∣∣ = Oa.co


√

log dSH
n dΘHn

nϕ(hK)

 , (16)
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sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̃D(θ, x) − E
[
F̃D(θ, x)

]∣∣∣∣ = Oa.co


√

log dSH
n dΘHn

nϕ(hK)

 , (17)

and

sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ = Oa.co


√

log dSH
n + log dΘHn

nϕ(hK)

 . (18)

Corollary 4.7. Under assumptions (A1), (U1) and (U3), we have∑
n≥1

P

(
inf
θ∈ΘH

inf
x∈SH

F̂D(θ, x) ≤
1
2

)
< ∞.

In the particular case, where the functional single index is fixed we get the following result.

Corollary 4.8. Under the hypotheses of Theorem 4.3, as n goes to infinity, we have

sup
x∈SH

sup
y∈SR

∣∣∣∣F̂(θ, y, x) − F(θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log dSH
n

nϕ (hK)

 ,
and

sup
x∈SH

sup
y∈SR

∣∣∣∣ f̂ (θ, y, x) − f (θ, y, x)
∣∣∣∣ = O (

ha
K + hb

H

)
+ Oa.co


√

log dSH
n

nhHϕ (hK)

 .
These last results are only uniform version of Theorem 3.3.

5. Simulation study

In this section, we present two simulation examples to illustrate the finite-sample characteristics of our
proposed estimator. A comparative analysis is conducted with respect to the kernel-type nonparametric
conditional hazard estimator (NP) examined in the work of Ferraty et al. [14].

The empirical investigation is designed to assess the finite-sample properties of the nonparametric
conditional hazard function estimator within the context of functional data in a single functional index
model for randomly left-truncated data. Our focus is on evaluating the performance of this innovative
estimator, rooted in the single functional index model (SFIM), in contrast to the established kernel-type
nonparametric conditional hazard estimator (NP).

In recent years, the single functional index model has emerged as a promising approach for efficiently
handling functional data. The objective of this study is to evaluate the performance of the proposed
nonparametric conditional hazard function estimator in the context of random left-truncated data. Addi-
tionally, we aim to conduct a comparative analysis with the TNPFDA (truncated non-parametric functional
data analysis) estimator.

Simulated functional data will be generated according to the single functional index model for various
scenarios, including different sample sizes, functional index structures, and left-truncation rates.

In each simulation scenario, we will compute the estimated hazard function using both the proposed
estimator and the kernel-type nonparametric estimator (NP). Performance metrics will be calculated to
facilitate a thorough comparison of these estimators. Our analysis includes a comparative assessment
between our proposed model TFSIM (functional single index model with truncated data) and TNPFDA
(truncated non-parametric functional data analysis). Specifically, for TNPFDA, where the distribution of
the regression model is known and conventional, we examine the performance of our conditional hazard
function estimator with respect to this distribution. To provide insights into the behavior of the estimator,
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we employ the mean square error (MSE) as a key metric. This section of the paper is dedicated to a detailed
comparison of the estimation of the conditional hazard function between our TFSIM model and TNPFDA,
as defined as follows:

hn(x|y) =
fn(y|x)

1 − Fn(y|x)
, (19)

where

Fn(y|x) =

∑n
i=1 G−1

n (Yi)K
(
h−1

K d(x,Xi)
)

H
(
h−1

H (y − Yi)
)

n∑
i=1

G−1
n (Yi)K

(
h−1

K d(x,Xi)
) ,

fn(y|x) =

∑n
i=1 G−1

n (Yi)K
(
h−1

K ⟨x − Xi, θ⟩
)

H′
(
h−1

H
(
y − Yi

))
hH

n∑
i=1

G−1
n (Yi)K

(
h−1

K d(x,Xi)
) .

The typical scenario involves the inherent uncertainty surrounding the single functional index, denoted
as θ ∈ H , necessitating practical estimation. Existing literature on single functional regression models
discusses various estimation methods, such as cross-validation or maximum-likelihood approaches, as
exemplified in the work of Aı̈t Saidi et al. [2] and related references. Another approach, employed in this
section, entails selecting θ (t) from the eigenfunctions of the covariance operator

E [(X′ − E(X′)) < X′, . >H ] ,

where X (t) represents, for instance, a diffusion-type process defined on a real interval [a, b], and X′ (t) is its
first derivative (see Attaoui and Ling [5]). Utilizing a training sample L, the empirical version

1
|L|

∑
i∈L

(X′i − EX′) t(X′i − EX′),

allows the estimation of the covariance operator. Subsequently, applying the principle component analysis
method provides a discretized form of the eigenfunctions θi(t). Designating θ⋆ as the first eigenfunction
corresponding to the highest eigenvalue of the empirical covariance operator, it serves as a surrogate for θ
in the simulation steps for computing the estimator of the conditional hazard function.

Now, we employ our methodology to assess the effectiveness of predictors in a finite sample. Specifically,
our focus is on the classical nonparametric functional regression model given by

Yi = R (⟨θ,Xi⟩) + ϵi, i = 1, . . . ,n,

where ϵi is normally distributed with variance 0.5. The functional covariate X is assumed to be a diffusion
process defined on [0, 1] and generated by the following equation:

X (t) = A (2 − cos (πtW)) + (1 − A) cos(πtW), t ∈ [0, 1] ,

where W⇝ U (0, 1) and A⇝ Bernoulli(1/2). The following steps are undertaken: we fix the random size
n (bearing in mind that n is known):

Step 1: Compute the inner product: < θ∗,X1 >, . . . , < θ∗,Xn >, generate independently the variables
ϵ1, . . . , εn, then simulate the response variables Yi = r(< θ∗,Xi >) + εi, where r(< θ∗,Xi >) = exp(10(<
θ∗,Xi > −0.25)) and generate independently the variables ϵ1, . . . , εn.

Step 2: Generate the random variables T1, X1(t), t ∈ [0, 1], in the following manner: T1 ⇝ N
(
µ, 1

)
, and

adapt µ to get a different rate of truncation. X1(t) is generated as indicated before. Furthermore,
simulate ϵ1⇝ N (0, 0.5).
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Table 1: MSE results for TFSIM and TNPFDA methods according to TR
TR = 0% TR = 47% TR = 80%

MSE (TFSIM) 0.00841 0.06175 0.01084
MSE (TNPFDA) 0.0191 0.091 0.1181

Step 3: Calculate Y1 = R (⟨θ,X1⟩) + ϵ1,where R (X1(t)) =
1
4

∫ 1

0

(
X′1 (t)

)2
dt, and ϵ1 is as indicated before.

Step 4: Test: Start with the configuration N = 0, j = 0, although j ≤ n: Put N = N + 1. Test: if Y1 < T1 reject
the triple (X1(t),Y1,T1). Otherwise, retain the triple (X1(t),Y1,T1). At the end, get a deterministic N,
which allows obtaining the rate of truncation τ = n/N. More precisely, the rate of the observed triplet.
Continue the process until n = 100. Obtain the random vectors (Xi(t),Yi,Ti), i = 1, . . . , 100. Then
calculate the Lynden-Bell estimate for the observed pair (Yi,Ti), i = 1, . . . ,n.

Step 5: Divide the data into randomly selected subsetsJ andL: (Xi,Yi, δi)i∈L training sample (X j,Y j, δ j) j∈J
test sample.

Step 6: For each X j in the test sample, set: j⋆ := arg min
i∈L

dθ(Xi,X j).

Step 7: To be more precise evaluate the prediction errors given by

SSR =
1
|J|

∑
j∈J

(
Y j − Ŷ j

)2
,

where Ŷ j is a predictor of Y j obtained either semi-parametrically by ĥ(θ, y, x) or nonparametrically
via hn(y|x).

Moreover, certain tuning parameters need specification. The kernel K(·) is selected as the quadratic
function defined by K (u) = 3

2

(
1 − u2

)
1[0,1], and the cumulative distribution function (CDF) H (u) =∫ u

−∞

3
4

(
1 − z2

)
1[−1,1] (z) dz.

The semi-metric d(·, ·) will be determined based on the choice of the functional spaceH discussed in the
scenarios below. It is widely acknowledged that one of the pivotal parameters in semi-parametric models
is the smoothing parameters, which play a crucial role in shaping the link function between the response
and the covariate.

Example 5.1. We fix the truncation percentage at µ = 2 and explore varying sample sizes of n = 100 and 300. In
each scenario, the data is partitioned into two subsets: a learning sample and a test sample. Predicted values are
computed for all i ∈ L using our estimator, which is derived from the training sample. Subsequently, we calculate
predictor values using the test sample.

The ensuing figures depict the plotted predicted values estimated by our estimator against the true values. The
continuous line represents the ideal prediction. The efficacy of the prediction method is typically assessed by how
closely the plotted points align with this continuous line.

Figures; Fig. 1 and Fig. 2 depict the curves and predictions evaluated using the Mean Squared Error
(MSE). It is evident that the quality of fit improves with the sample size n.

We compare our model TFSIM (functional single index model with truncated data) with the TNPFDA
(truncated non-parametric functional data analysis) model, where the distribution of the regression model
is known and usual. We evaluate the performance of our estimator of the conditional hazard function
by computing its mean square error and comparing it with the TNPFDA estimator defined in (19). The
obtained results are in Table 1.

It is evident that the TFSIM estimator outperforms the kernel estimator (TNPFDA). Furthermore, the
quality of both TNPFDA and TFSIM methods deteriorates as the truncation rate (TR) increases.
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Figure 1: A sample of 100 curves, MSE=0.25

Table 2: MSE comparaison for TFSIM and TNPFDA methods for the three samples sizes (n)

n MSE (TFSIM) MSE (TNPFDA)
50 0.43 0.57

150 0.3 0.48
300 0.21 0.35

To check more the quality of our estimator, we compare the two methods in a different way in the next
example.

Example 5.2. We vary the sample size n = 50, 150, 300 and we consider the functional covariate X1(t) generated
in the following way

X1(t) = 2 − cos
(
W

(
t −

2π
3

))
, t ∈

[
0,

2π
3

]
,

where W⇝ N (0, 1). The scalar response is defined as

Y1 = R (⟨θ,X1⟩) + ϵ1,

where X1 and ϵ1 are independent, the error ϵ1⇝ N (0, 0.1) and nonlinear regression function is considered such that

R (X) =
1
4

exp

2 −
1(∫ 1

0 X′(t)dt
)2

 .
Figure 6 depicts a sample of 300 curves representing a realization of the functional random variable X.
In this model, we implement the truncation mechanism based on the sample (Xi,Yi,Ti)1≤i≤n, where the truncation

variable T1 follows a normal distributionN (0, 2). This choice is made to control the percentage of truncation.
For each sample size case, we partitioned our data into a learning sample and a test sample, following the

methodology employed in the previous example. To assess the performance of our estimator, we computed the mean
squared error (MSE) for both TFSIM and TNPFDA methods (see Table 2).

It is evident from Table 2 that the TFSIM estimator consistently outperforms the kernel TNPFDA estimator across
various sample sizes. Moreover, the quality of both estimators improves with larger sample sizes.
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Figure 2: A sample of 300 curves, MSE=0.2

Figure 3: TR=0%, complete data

In summary, the results from both examples demonstrate the effectiveness of our estimator. Notably,
the FSIM method exhibits superior performance compared to the NPFDA kernel method, even in the case
of truncated data.

6. Proofs of technical lemmas

First of all, we state the following lemma which can be found in the monograph by (Ferraty and Vieu
[15]). It’s proof thus is omitted.

Lemma 6.1. Let (Zi)i a sequence of i.i.d. center random variables such that

∀ m ≥ 2, ∃ Cm > 0,E
(∣∣∣Zm

1

∣∣∣) < Cma2(m−1).

Then

∀ε > 0, P


∣∣∣∣∣∣∣

m∑
i=1

Zi

∣∣∣∣∣∣∣ > εn
 ≤ 2 exp

(
−

nε2

2a2(1 + ε)

)
.

Proof. [Proof of Lemma 3.4]



S. Mekkaoui et al. / Filomat 38:19 (2024), 6911–6935 6924

Figure 4: TR=47%

Figure 5: TR=80%

(i) First, we have

E
(
F̃D(θ, x)

)
=

µ

E [K1(θ, x)]
E

(
E

[
K1(θ, x)

IY1≥T1

µG(Y1)

]
|⟨X1, θ⟩,Y1

)
=

1
E [K1(θ, x)]

E [K1(θ, x)] = 1.

(ii) For establish (6), we have

∣∣∣∣F̂D(θ, x) − F̃D(θ, x)
∣∣∣∣ = ∣∣∣∣∣∣µn

∑n
i=1 G−1

n (Yi)Ki(θ, x)
nE [K1(θ, x)]

−
µ
∑n

i=1 G−1(Yi)Ki(θ, x)
nE [K1(θ, x)]

∣∣∣∣∣∣
≤


∣∣∣µn − µ

∣∣∣
Gn(aF)

− µ

∣∣∣Gn(y) − G(y)
∣∣∣

G(aF)Gn(aF)


∣∣∣∣∣∣∣ 1
nE [K1(θ, x)]

n∑
i=1

Ki(θ, x)

∣∣∣∣∣∣∣ .
From theorem 3.2 of (He and Yang [21]), we have |µn − µ| = Oa.s

(
n−1/2

)
, while Remark 6 of (Woodroofe

[45]) gives |Gn (aF) − G (aF)| = Oa.s

(
n−1/2

)
which are negligible with respect to O

(√
log n

nϕθ,x(hK)

)
. Using Lemma

10 of (Ferraty et al. [13]), we have easily 1
nE[K1(θ,x)]

∑n
i=1 Ki(θ, x) = o(1) which permits to conclude∣∣∣∣F̂D(θ, x) − F̃D(θ, x)

∣∣∣∣ = Oa.s


√

1
n

 .
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Figure 6: A sample of simulated curves

Proof. [Proof of Lemma 3.5] The case where j = 0

(i) Firstly,

E
(
F̃N(θ, y, x)

)
=

µ

nE [K1(θ, x)]

n∑
i=1

E
(
G−1(Yi)K(θ, xi)Hi(y)

)
=

µ

E [K1(θ, x)]
E

{
G−1(Y1)K1(θ, x)E

(
E

[
H1(y|⟨X1, θ⟩)

])}
.

By Integration by parts, changing variables and because (A3) and (A4), we have

I := E
[
H1

(
y|⟨X1, θ⟩

)]
=

∫
R

H1

( y − u
hH

)
f (θ,u,X1)du

=

∫
H′1(z)(θ, y − zhH,X1) − F(θ, y, x))dz + F(θ, y, x)

∫
R

H′1(z)dz

and

E
[
F̃N(θ, y, x)

]
=
µE

[
G−1(Y1)K1(θ, x)

]
E [K1(θ, x)]

∫
H′1(z)F(θ, y − zhH,X1) − F(θ, y, x)dz

+
µ

E [K1(θ, x)]
F(θ, y, x)E

[
G−1(Y1)K1(θ, x)

]
:= I1 + I2.

By using Lemma 6.1, we have I2 = F(θ, y, x)E
(
F̃D(θ, x)

)
= F(θ, y, x).

Then by assumptions (A3) and (A4), we get∫
H′1(z)F(θ, y − zhH,X1) − F(θ, y, x))dz ≤ Cθ,x

∫
H′(z)

(
ha

K + |z|
bhb

H

)
dz

≤ Cθ,x

(
ha

K

∫
H′(z)dz

)
+Cθ,x

(
hb

H

∫
H
′

(z)|z|bdz
)

Then, I1 = O
(
ha

K + hb
H

)
.
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(ii) For establish (8), we use the same arguments as in the proof of (6) of Lemma 3.4. Since, H is bounded
and 1

nE[K1(θ,x)]

∑n
i=1 Ki(θ, x) = o(1), where we use the same techniques used for the proof of the previous

lemma.

(iii) Finally, for (9), using the compactness of SR⊂ R, we can write SR ⊂
⋃τn

k=1 (υk − ln, υk + ln) with ln and
τn can be chosen such that ln = O

(
τ−1

n

)
= O

(
n−

γ
2−

1
2

)
. We also put ky = arg min

{υ1,...,υτn }

∣∣∣y − υk

∣∣∣.
We have the following decomposition, valid for any y ∈ SR∣∣∣∣F̃N(θ, y, x) − E

[
F̃N(θ, y, x)

]∣∣∣∣ ≤

∣∣∣∣F̃N(θ, y, x) − F̃N

(
θ, yky , x

)∣∣∣∣
+

∣∣∣∣F̃N

(
θ, yky , x

)
− E

[
F̃N

(
θ, yky , x

)]∣∣∣∣
+

∣∣∣∣E [
F̃N

(
θ, yky , x

)]
− E

[
F̃N(θ, y, x)

]∣∣∣∣
=: L1 + L2 + L3.

• Clearly L1 and L3 can be treated in the same manner, we deal only with the first term. By the fact that
K is bounded and because the Lipschitz’s condition of H and lim

n→∞
nγhH = ∞. Making use of (A2)-(i)

and (A3), we get

L1 ≤
µ

nE(K1(θ, x))

n∑
i=1

∣∣∣∣∣Ki(θ, x)
G(Yi)

∣∣∣∣∣
∣∣∣∣∣∣H

(
y − Yi

hH

)
−H

( yky − Yi

hH

)∣∣∣∣∣∣
≤

C
G(aF)E(K1(θ, x))

sup
y∈SR

|y − yky |

hH

≤
Cln

G(aF)hHϕθ,x(hK)
= o

(
ln
hH
ϕθ,x(hK)

)
.

Using the fact that lim
n→∞

nγhH = +∞, and choosing ln = n−
γ−1

2 implies

ln
hH
= o


√

log n
nϕθ,x (hK)

 .
Thus, for n large enough, we have L1 = Oa.co.

(√
log n

nϕθ,x(hK)

)
, we can conclude that

L3 ≤ L1 = Oa.co


√

log n
nϕθ,x(hK)

 .
• Concerning L2,

L2 ≤
1
n

n∑
i=1


µG−1(Yi)Ki(θ, x)Hi

(
yky

)
E [K1(θ, x)]

− E

µG−1(Yi)Ki(θ, x)Hi

(
yky

)
E [K1(θ, x)]

︸                                                                   ︷︷                                                                   ︸
Λi


(20)

(Λi)i=1,...,n is a sequence of i.i.d. center random variables. The application of exponential inequality
given in Lemma 6.1 on the latter sequence is based on evaluation ofE

(∣∣∣Λm
1

∣∣∣) for all m ≥ 2. By using the
same arguments as in lemma 6.3 in (Ferraty and Vieu [15]). Indeed, by Newton’s Binomial expansion,
we get
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E
[
Λm

1

]
≤ CE [K1(θ, x)]1−m for all m ≥ 2 (21)

• Proof of (21):

E
[∣∣∣Λm

1

∣∣∣] =
1

E [K1(θ, x)]m

m∑
k=1

Ck
mE

(
µk

Gk(Y1)
Kk

1(θ, x)Hk
i

(
yky

))

×

(
E

[
µ

G(Y1)
K1(θ, x)Hk

i

(
yky

)])m−k

.

Observe that, under (2) and (A4), we have, for all k > 0,

E

(
µ

G(Yi)
K1(θ, x)Hk

i

(
yky

))k

≤
Cµk

Gk (aF)
E [K1(θ, x)]

and

E

(
µ

G(Yi)
K1(x, θ)Hk

i

(
yky

))m−k

≤ C (E [K1(x, θ)])m−k .

It follows that
E

(∣∣∣Λm
1

∣∣∣) ≤ CE (K1(θ, x))1−m .

Then, we apply Lemma 6.1 with a =
√
E [K1(θ, x)]−1. Thus under the fact that E [K1(θ, x)] = O

(
ϕθ,x(hK)

)
we get

P
(∣∣∣∣F̃N(θ, x) − E

(
F̃N(θ, x)

)∣∣∣∣ > ε) = P


∣∣∣∣∣∣∣

n∑
i=1

Li

∣∣∣∣∣∣∣ > εn


≤ exp
(
−

nε2

2 (E (K1(θ, x)))−1 (1 + ε)

)
.

Consequently, for ε = ε0

√
log n

nE(K1(θ,x)) , we get

P (U2 > ε) ≤ 2 exp

−
ε2

0
log n

E[K1(θ,x)]

2
E[K1(θ,x)]

(
1 + ε0

√
log n

nE[K1(θ,x)]

)


≤ 2 exp
(
−cε2

0 log n
)

≤ 2n−cε2
0 .

Finally, an appropriate choice of ε0 and the Borel-Cantelli’s Lemma use completes the proof.

P


∣∣∣∣∣∣∣1n

n∑
i=1

Λi

∣∣∣∣∣∣∣ > ε0

√
log n

nE [K1(x, θ)]

 ≤ 2 exp
(
−cε2

0 log n
)

≤ 2n−cε2
0 .

Now, if j = 1

(i) Firstly,
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E
[

f̃N(θ, y, x)
]
=

µ

nhHE [K1(θ, x)]

n∑
i=1

E
[
G−1(Yi)K(θ, xi)H′i (y)

]
=

µ

hHE [K1(θ, x)]
E

(
G−1(Y1)K1(θ, x)E

(
E

[
H′1

(
y| ⟨X1, θ⟩

)]))
.

Now, by changing variables and using assumptions (A3)-(A4), we have:

M : = E
[
H′1

(
y| ⟨X1, θ⟩

)]
=

∫
R

H′1
( y − u

hH

)
f (θ,u,X1)du

= hH

∫
R

H′1(z)
(

f (θ, y − zhH,X1) − f (θ, y, x)
)

dz

+h′H f (θ, y, x)
∫
R

H1(z)dz,

and

E
[

f̃N(θ, y, x)
]
=
µE

[
G−1(Y1)K1(θ, x)

]
E [K1(θ, x)]

∫
R

H′1(z)
(

f (θ, y − zhH,X1) − f (θ, y, x)
)

dz

+
µ

E [K1(θ, x)]
f (θ, y, x)E

[
G−1(Y1)K1(θ, x)

]
=: M1 +M2.

By using Lemma 6.1, we have:

M2 = f (θ, y, x)E
[
F̃D(θ, x)

]
= f (θ, y, x).

Then, by assumptions (A3) and (A4), we get∫
R

H′1(z)
(

f (θ, y − zhH,X1) − f (θ, y, x)
)

dz ≤ Cθ,x

∫
R

H′1(z)
(
ha

K + |z|
bhb

H

)
dz

≤ Cθ,x

(
ha

K

∫
R

H′1(z)dz + hb
H

∫
R

H′1(z)|z|bdz
)
.

Thus, M1 = O
(
ha

K + hb
H

)
.

(ii) For establish (8) in the case where j = 1 (i.e supy∈SR

∣∣∣∣ f̂N(θ, y, x) − f̃N(θ, y, x)
∣∣∣∣ = Oa.s

(√
1
n

)
), we use the

same arguments as in the proof of Lemma 3.4. Since, H′ is bounded and 1
nhHE[K1(θ,x)]

∑n
i=1 Ki(θ, x) = o(1),

we use the same techniques as the previous lemma.

(iii) Finally, for (9) if j = 1, using the compactness of SR⊂ R, we can write SR ⊂
⋃τn

k=1 (υk − ln, υk + ln) with

ln and τn can be chosen such that ln = O
(
τ−1

n

)
= O

(
n−

3γ
2 −

1
2

)
. We also put ky = arg min

{υ1,...,υτn }

∣∣∣y − υk

∣∣∣.
We have the following decomposition, valid for any y ∈ SR∣∣∣∣ f̃N(θ, y, x) − E

[
f̃N(θ, y, x)

]∣∣∣∣ ≤

∣∣∣∣ f̃N(θ, y, x) − f̃N
(
θ, yky , x

)∣∣∣∣
+

∣∣∣∣ f̃N (
θ, yky , x

)
− E

[
f̃N

(
θ, yky , x

)]∣∣∣∣
+

∣∣∣∣E [
f̃N

(
θ, yky , x

)]
− E

[
f̃N(θ, y, x)

]∣∣∣∣
=: U1 +U2 +U3.
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• Concerning U1 and U3: By the fact that K is bounded and because the Lipschitz’s condition of H′ and
lim
n→∞

nγhH = ∞, we get:

U1 ≤
µ

nhHE(K1(θ, x))

n∑
i=1

∣∣∣Ki(θ, x)G−1(Yi)
∣∣∣ ∣∣∣∣∣∣H′

(
y − Yi

hH

)
−H′

( yky − Yi

hH

)∣∣∣∣∣∣
≤

C
hHG(bF)E(K1(θ, x))

sup
y∈SR

|y − yky |

hH

≤
Cln

h2
Hϕθ,x(hK)G(bF)

.

Since ln = O
(
n−

3γ
2 −

1
2

)
and lim

n→∞
nγ = ∞, we get

ln
h2

Hϕ (hK)
= o


√

log n
nhHϕ (hK)

 .
Thus, for n large enough, we can conclude that

U3 ≤ U1 = Oa.co


√

log n
nhHϕ (hK)

 .
• Concerning U2, it is treated in the same manner as L2 (formula (20) in the proof of (9) in the case where

j = 0).

Proof. [Proof of Lemma 3.6] The proof of (10) is very close to (9) of Lemma 3.5 (formula (21)). It is based on
the exponential inequality given in Lemma 6.1 and the following: F̃D(θ, x) − E

(
F̃D(θ, x)

)
= 1

n
∑n

i=1 Zi where

Zi :=
µG−1(Yi)Ki(θ, x)Hi(y)

E [K1(θ, x)]
− E

(
µG−1(Yi)Ki(θ, x)Hi(y)

E [K1(θ, x)]

)
.

We apply Lemma 6.1 with a =
√
E(K1)−1. Thus, under the fact that E [K1(θ, x)] = O

(
ϕθ,x(hK)

)
we get,

P


∣∣∣∣∣∣∣1n

n∑
i=1

Zi

∣∣∣∣∣∣∣ > ε0

√
log n

nE [K1(x, θ)]

 ≤ 2 exp
(
−cε2

0 log n
)
≤ 2n−cε2

0 .

Concerning (11), the proof is based on the following decomposition, (6) of Lemma 3.4 and (9) of
Lemma 3.5∣∣∣∣F̂D(θ, x) − 1

∣∣∣∣ = ∣∣∣∣F̂D(θ, x) − E
(
F̃D(θ, x)

)∣∣∣∣
≤

∣∣∣∣F̂D(θ, x) − F̃D(θ, y, x)
∣∣∣∣ + ∣∣∣∣F̃D(θ, y, x) − E

(
F̃D(θ, y, x)

)∣∣∣∣ .
Proof. [Proof of Corollary 3.7] It is clear that

F̂D(θ, x) ≤
1
2
=⇒ 1 − F̂D(θ, x) ≥

1
2
=⇒

∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ ≥ 1

2
which implies that

P
(∣∣∣∣F̂D(θ, x)

∣∣∣∣ ≤ 1
2

)
≤ P

(∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ ≥ 1

2

)
< ∞.
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Proof. [Proof of Lemma 4.4] Because the proof of Lemma 3.5 (formula (7)) is uniform on (θ, y, x) ∈ ΘH ×
SR × SH , the proof of Lemma 4.4 is the same of the latter.

Proof. [Proof of Lemma 4.5] Firstly, for equation (12), using similar tools as those to proof from (6) of
Lemma 3.4, one can show that

sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̂D(θ, x) − F̃D(θ, x)
∣∣∣∣ = Oa.s

(
n−

1
2

)
.

By using (U4) and (A5), we get

Oa.s

(
n−

1
2

)
= O

(
log n

nϕ(hK)

)
= O


√

log dSH
n + log dΘHn

nϕ(hK)

 .
Finally, since H and H′ are bounded, the proof of (12) as well as the proof of (13)-(14) are the same.

Proof. [Proof of Lemma 4.6]
∀ x ∈ SH and ∀θ ∈ ΘH , we put:

k(x) = arg min
k∈

{
1,...,d

S
H

n

} ∥x − xk∥ , m(θ) = arg min
m∈

{
1,...,d

Θ
H

n

} ∥θ − θm∥ .

By the compactness property of SR ⊂ R, we have SR ⊂
⋃τn

k=1 (υk − ln, υk + ln) with ln and τn chosen as
ln = O

(
τ−1

n

)
. Recall that ky = arg min

{υ1,...,υτn }

∣∣∣y − υk

∣∣∣.
Let us consider the following decomposition for j = 0, 1∣∣∣∣F̃( j)

N (θ, y, x) − E
[
F̃( j)

N (θ, y, x)
]∣∣∣∣ ≤

∣∣∣∣F̃( j)
N (θ, y, x) − F̃( j)

N (θ, y, xk(x))
∣∣∣∣

+
∣∣∣∣F̃( j)

N (θ, y, xk(x)) − F̃( j)
N (θm(θ), y, xk(x))

∣∣∣∣
+

∣∣∣∣F̃( j)
N (θm(θ), y, xk(x)) − F̃( j)

N (θm(θ), yky , xk(x))
∣∣∣∣

+
∣∣∣∣F̃( j)

N (θm(θ), yky , xk(x)) − E
[
F̃( j)

N (θm(θ), yky , xk(x))
]∣∣∣∣

+
∣∣∣∣E [

F̃( j)
N (θm(θ), yky , xk(x))

]
− E

[
F̃( j)

N (θm(θ), y, xk(x))
]∣∣∣∣

+
∣∣∣∣E [

F̃( j)
N (θm(θ), y, xk(x))

]
− E

[
F̃( j)

N (θ, y, xk(x))
]∣∣∣∣

+
∣∣∣∣E [

F̃( j)
N (θ, y, xk(x))

]
− E

[
F̃( j)

N (θ, y, x)
]∣∣∣∣

=: Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6 +Ψ7,

for (15), chosen as ln = O
(
τ−1

n

)
= O

(
n−

1
2γ
)
.

• ConcerningΨ3 andΨ5, by conditions (A3) and (U4), boundness of K and using Lipcshtz’s condition
on H, we obtain

Ψ3 ≤
1

nE(K1(θ, x))

n∑
i=1

∣∣∣∣∣ µG(Yi)
Ki(θm(θ), xk(x))

∣∣∣∣∣
∣∣∣∣∣∣H

(
y − Yi

hH

)
−H

( yky − Yi

hH

)∣∣∣∣∣∣
≤ sup

y∈SR
C

∣∣∣y − yky

∣∣∣
hH

1
nG(aF)E(K1(θm(θ), xk(x)))

n∑
i=1

∣∣∣Ki(θm(θ), xk(x))
∣∣∣

≤
Cln

hHG(aF)ϕ(hK)
= O

(
ln

hHϕ(hK)

)
.
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Now, the fact that lim
n→∞

nγhH = ∞, choosing ln = n−
1

2γ and using (U4)-(ii), it yields

ln
hHϕ(hK)

= o


√

log dSH
n + log dΘHn

nϕ(hK)

 .
Hence, for n large enough, we have

Ψ5 ≤ Ψ3 = Oa.co


√

log dSH
n + log dΘHn

nϕ(hK)

 .
• ConcerningΨ1 andΨ2 we have

Ψ1 ≤
1

nE(K1(θ, x))
sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

n∑
i=1

∣∣∣∣∣ µG(Yi)

∣∣∣∣∣ ∣∣∣Hi(y)
∣∣∣ × ∣∣∣Ki(θ, x) − Ki(θ, xk(x))

∣∣∣
≤

µ

nG(aF)ϕ(hK)
sup
x∈SH

sup
θ∈ΘH

n∑
i=1

∣∣∣Ki(θ, x) − Ki(θ, xk(x))
∣∣∣

≤
µ

ϕ(hK)G(aF)
sup
x∈SH

sup
θ∈ΘH

1
n

n∑
i=1

1Bθ(x,hK)∪Bθ(xk(x),hK) (Xi)

= O

(
log n

nϕ (hK)

)
.

Then using

log n
nϕ(hK)

= o


√

log dSH
n + log dΘHn

nϕ(hK)

 ,
we get

Ψ1 = Ψ2 = Oa.co


√

log dSH
n + log dΘHn

nϕ(hK)

 .
Similarly, one can show that

Ψ6 = Ψ7 = Oa.co


√

log dSH
n + log dΘHn

nϕ (hK)

 .
Now we deal withΨ4. For all η > 0 we have

P

Ψ4 > η

√
log dSH

n + log dΘHn

nϕ (hK)


≤

τndSH
n dΘHn max

k∈
{
1...d

S
H

n

} max
k∈

{
1...d

Θ
H

n

} max
k∈{1...τn}

P

Ψ4 > η

√
log dSH

n + log dΘHn

nϕ (hK)

 .
Applying Bernstein’s exponential inequality to
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∆i =
1
ϕ(hK)

{
Ki

(
θm(θ), xk(x)

)
Hi

(
yky

)
− E

(
Ki

(
θm(θ), xk(x)

)
Hi

(
yky

))}
one get, under (U4) that

Ψ4 = Oa.co


√

log dSH
n + log dΘHn

nϕ (hK)

 .
For (16), chosen as ln = O

(
τ−1

n

)
= O

(
n−

(3γ+1)
2

)
.

Using the same ideas previous, permit to get, when n tends to infinity

F7 =
∣∣∣∣E [

f̃N(θ, y, xk(x))
]
− E

[
f̃N(θ, y, x)

]∣∣∣∣
≤ F1 =

∣∣∣∣ f̃N(θ, y, x) − f̃N(θ, y, xk(x))
∣∣∣∣ ,

and

F6 =
∣∣∣∣E [

f̃N(θm(θ), y, xk(x))
]
− E

[
f̃N(θ, y, xk(x))

]∣∣∣∣
≤ F2 =

∣∣∣∣ f̃N(θ, y, xk(x)) − f̃N(θm(θ), y, xk(x))
∣∣∣∣ ,

when n tends to infinity

F7 ≤ F1 = Oa.co


√

log dSH
n + log dΘHn

nhHϕ(hK)

 ,
and

F6 ≤ F2 = Oa.co


√

log dSH
n + log dΘHn

nhHϕ(hK)

 .
Concerning the terms F3 and F5 using Lipcshtz’s condition on H′, permits to write∣∣∣∣ f̃N(θm(θ), y, xk(x)) − f̃N(θm(θ), yky , xk(x))

∣∣∣∣ ≤ ln
h2

Hϕ(hK)
,

where
F3 =

∣∣∣∣ f̃N(θm(θ), y, xk(x)) − f̃N(θm(θ), yky , xk(x))
∣∣∣∣

and
F5 =

∣∣∣∣E [
f̃N(θm(θ), yky , xk(x))

]
− E

[
f̃N(θm(θ), y, xk(x))

]∣∣∣∣ .
Now, the fact that lim

n→∞
nγhH = ∞, choosing ln = n−

(3γ+1)
2 and using (U5)-(ii), it yields

ln
h2

Hϕ(hK)
= o


√

log dSH
n + log dΘHn

nhHϕ(hK)

 .
Hence, for n large enough, we have

F5 ≤ F3 = Oa.co


√

log dSH
n + log dΘHn

nhHϕ(hK)

 .
Finally, the evaluation of the term F4 is very close toΨ4 for j = 0, where

F4 =
∣∣∣∣ f̃N(θm(θ), yky , xk(x)) − E

[
f̃N(θm(θ), yky , xk(x))

]∣∣∣∣ .
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Applying Bernstein’s exponential inequality to

∆i =
1

hHϕ (hK)

{
Ki

(
θm(θ), xk(x)

)
H′i

(
yky

)
− E

(
Ki

(
θm(θ), xk(x)

)
Hi

(
yky

))}
,

it follows that

F4 = Oa.co


√

log dSH
n + log dΘHn

nhHϕ (hK)

 .
For (17), we have∣∣∣∣F̃D(θ, x) − E

(
F̃D(θ, x)

)∣∣∣∣ ≤

∣∣∣∣F̃D(θ, x) − F̃D

(
θ, xk(x)

)∣∣∣∣
+

∣∣∣∣F̃D

(
θ, xk(x)

)
− F̃D

(
t j(θ), xk(x)

)∣∣∣∣
+

∣∣∣∣F̃D

(
θ, xk(x)

)
− E

(
F̃D

(
t j(θ), xk(x)

))∣∣∣∣
+

∣∣∣∣E (
F̃D

(
t j(θ), xk(x)

))
− E

(
F̃D

(
θ, xk(x)

))∣∣∣∣
+

∣∣∣∣E (
F̃D

(
θ, xk(x)

))
− E

(
F̃D(θ, x)

)∣∣∣∣
:= I1 + I2 + I3 + I4 + I5.

Using the same ideas as forΨ1,Ψ2,Ψ4 andΨ5, permits to get, for n tending to infinity

I5 ≤ I1 = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hK)


I4 ≤ I2 = Oa.co


√

log dSH
n + log dΘHn

nϕ(hK)

 .
Finally, the evaluation of the term I3 is very close toΨ4. Applying Bernstein’s exponential inequality to

Ei =
1
ϕ(hK)

{
Ki

(
θm(θ), xk(x)

)
− E

[
Ki

(
θm(θ), xk(x)

)]}
,

it follows that

I3 = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hK)

 .
Finally, the proof from (18) is deduced from (12) of Lemma 4.5 and (17) of Lemma 4.6 and the following

decomposition.∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ = ∣∣∣∣F̂D(θ, x) − E

(
F̃D(θ, y, x)

)∣∣∣∣
≤

∣∣∣∣F̂D(θ, x) − F̃D(θ, y, x)
∣∣∣∣

+
∣∣∣∣F̃D(θ, y, x) − E

(
F̃D(θ, y, x)

)∣∣∣∣ .



S. Mekkaoui et al. / Filomat 38:19 (2024), 6911–6935 6934

Proof. [Proof of Corollary 4.7] It is clear that from the inequality inf
θ∈ΘH

inf
x∈SH

∣∣∣∣F̂D(θ, x)
∣∣∣∣ ≤ 1

2
it exist x ∈ SH and

θ ∈ ΘH, such that 1 − F̂D(θ, x) ≥
1
2

.

So, sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ ≥ 1

2
which implies that

P

(
inf
θ∈ΘH

inf
x∈SH

∣∣∣∣F̂D(θ, x)
∣∣∣∣ ≤ 1

2

)
≤ P

 sup
θ∈ΘH

sup
x∈SH

∣∣∣∣F̂D(θ, x) − 1
∣∣∣∣ ≥ 1

2

 < ∞.

Conclusion

This paper studied the nonparametric estimation of the conditional hazard function in the single func-
tional index model for independent data, when the variable of interest is subject to random left truncation.
We established the almost complete convergence and almost uniform complete convergence of the pro-
posed estimators under some standard assumptions in Functional Data Analysis (FDA). Furthermore, we
conducted a simulation study to demonstrate the performance of our estimator.
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