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Abstract. In the paper, the authors construct a new class of mixed multi-variable means in terms of the
arithmetic, geometric, and harmonic means, and determine necessary and sufficient conditions for the
mixed two-variable mean to be Schur m-power convex.

1. Preliminaries

We first recall definitions of the majorization, the Schur convexity, and the Schur m-power convexity.

Definition 1 ([9, 23]). For ℓ ≥ 2, let

s = (s1, s2, . . . , sℓ) ∈ Rℓ and t = (t1, t2, . . . , tℓ) ∈ Rℓ

be two ℓ-tuples.

1. The ℓ-tuple s is said to be majorized by t, denoted by s ≺ t, if

k∑
i=1

s[i] ≤

k∑
i=1

t[i] and
ℓ∑

i=1

si =

ℓ∑
i=1

ti

for 1 ≤ k ≤ ℓ − 1, where

s[1] ≥ s[2] ≥ · · · ≥ s[ℓ] and t[1] ≥ t[2] ≥ · · · ≥ t[ℓ]

are rearrangements of s and t in descending order.
2. A set Ω ⊆ Rℓ is called to be convex if

(λs1 + µt1, λs2 + µt2, . . . , λsℓ + µtℓ) ∈ Ω

for all s and t ∈ Ω, where λ, µ ∈ [0, 1] with λ + µ = 1.
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3. A function φ : Ω → R is said to be Schur-convex if the majorizing relation s ≺ t on Ω implies the
inequality φ(s) ≤ φ(t). If the majorizing relation s ≺ t on Ω implies the inequality φ(s) ≥ φ(t), then
we say that the function φ : Ω→ R is Schur-concave.

Definition 2 ([31–33]). Let f : R × (0,∞)→ R be defined by

f (m, s) =


sm
− 1

m
, m , 0;

ln s, m = 0.
(1.1)

A function φ : Ω ⊆ (0,∞)ℓ → R is said to be Schur m-power convex on Ω if the majorizing relation

f (m, s) = ( f (m, s1), f (m, s2), . . . , f (m, sℓ)) ≺ f (m, t) = ( f (m, t1), f (m, t2), . . . , f (m, tℓ)) (1.2)

onΩ implies the inequality φ(s) ≤ φ(t). If the relation (1.2) onΩ implies the inequality φ(s) ≥ φ(t), then we
say that the function φ : Ω ⊆ (0,∞)ℓ → R is Schur m-power concave on Ω.

Remark 1. The function f (m, s) defined in (1.1) can be reformulated as

f (m, s) =
∫ s

1
um−1 d u. (1.3)

This function and its reciprocal have been being systematically investigated and extensively applied from
the late 1990s to current. The first two papers dedicating to initially studying of the function f (m, s)
are [18, 19] and the latest three papers relating to this function are [1, 13]. This function has been applied
in the theory of mean values, analytic number theory, and differential geometry (see [6–8, 14, 16, 21] and a
number of closely-related references therein).

Remark 2. The definitions of the Schur-convexity (see [9, 23]), Schur-geometric convexity (see [4, 37]), and
Schur-harmonic convexity (see [2, 28, 29]) correspond to f (1, s) = s − 1, f (0, s) = ln s, and f (−1, s) = 1 − 1

s in
Definition 2 respectively.

For ℓ ≥ 2 and q ∈ R, let

s = (s1, s2, . . . , sℓ) and sq = (sq
1, s

q
2, . . . , s

q
ℓ).

When si > 0 for 1 ≤ i ≤ ℓ, by virtue of the arithmetic, harmonic, and geometric means Aℓ(s), Hℓ(s), and
Gℓ(s), we define a new mixed mean

Bℓ(s;ω; q) =


[Aℓ(sq) + ωHℓ(sq)

1 + ω

]1/q
, q , 0

Gℓ(s), q = 0
(1.4)

for ω ≥ 0. For ℓ = 2, the mean Bℓ(s;ω; q) in (1.4) can be formulated as

B2(α, β;ω; q) =


[A(αq, βq) + ωH(αq, βq)

1 + ω

]1/q
, q , 0

G(α, β), q = 0
(1.5)

for (α, β) ∈ (0,∞)2, ω ∈ [0,∞), and q ∈ R.
In this paper, we will determine necessary and sufficient conditions on (m, q, ω) for the mixed mean

B2(α, β;ω; q) to be Schur m-power convex (or Schur m-power concave, respectively) with respect to (α, β) ∈
(0,∞)2.
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2. Lemmas

We need the following lemmas.

Lemma 1 ([31–33]). Let Ω ⊂ (0,∞)ℓ be a symmetric set with nonempty interior Ω◦ and let φ : Ω → (0,∞) be
continuous and symmetric on Ω and differentiable on Ω◦. Then φ is Schur m-power convex on Ω if and only if

sm
1 − sm

2

m

[
s1−m

1
∂φ(s)
∂s1

− s1−m
2
∂φ(s)
∂s2

]
≥ 0, m , 0 (2.1)

and

(ln s1 − ln s2)
[
s1
∂φ(s)
∂s1

− s2
∂φ(s)
∂s2

]
≥ 0, m = 0 (2.2)

for s ∈ Ω◦.

Remark 3. If letting m = 1, 0,−1 in Lemma 1 respectively, then we deduce criteria theorems for the Schur-
convexity (see [9, 23]), the Schur-geometric convexity (see [4, 37]), and the Schur-harmonic convexity
(see [2, 28, 29]) respectively.

Remark 4. Basing on the integral representation (1.3), we unify (2.1) and (2.2) as[ 1
sm−1

1

∂φ(s)
∂s1

−
1

sm−1
2

∂φ(s)
∂s2

] ∫ s1

s2

um−1 d u ≥ 0, m ∈ R. (2.3)

Remark 5. An anonymous referee pointed out that the inequalities (2.1) and (2.2) were equivalently written
in [24, Remark 2.7] as

(s1 − s2)
[
s1−m

1
∂φ(s)
∂s1

− s1−m
2
∂φ(s)
∂s2

]
≥ 0, m ∈ R. (2.4)

The different expressions in Lemma 1, (2.3), and (2.4) are all useful and can not be replaced by each other.

Lemma 2. Let r ∈ (−1, 1) and

Vr(x) =
1

(x + 1)2

xr+1
− 1

xr−1 − 1
, x ∈ (0, 1). (2.5)

Then the function Vr(x) is decreasing in x ∈ (0, 1) for r ∈ (−1, 1) and the double inequality

r + 1
4(r − 1)

< Vr(x) < 0

is valid for x ∈ (0, 1) and r ∈ (−1, 1).

Proof. A direct differentiation gives

V′r(x) =
hr(x)

xr(x + 1)3(1 − x1−r)2 ,

where

hr(x) = 2x1+r
− 2x2−r + (1 − r)x3

− (1 + r)x2 + (r + 1)x + r − 1. (2.6)

When r ∈ (−1, 0] ∪
(

1
2 , 1
)
, we have

h′r(x) = 2(1 + r)xr
− 2(2 − r)x1−r + 3(1 − r)x2

− 2(1 + r)x + r + 1,
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h′′r (x) = 2r(1 + r)xr−1
− 2(1 − r)(2 − r)x−r + 6(1 − r)x − 2(1 + r),

h(3)
r (x) = 2r(1 − r)

[
(2 − r)x−r−1

− (1 + r)xr−2
]
+ 6(1 − r),

h(4)
r (x) = 2r(1 − r)(1 + r)(2 − r)x−3

(
xr
− x1−r

)
≤ 0.

Hence, the third derivative h(3)
r (x) is decreasing in x ∈ (0, 1) and

h(3)
r (x) ≥ lim

x→1−
h(3)

r (x) ≥ 0, x ∈ (0, 1).

Thus, the second derivative h′′r (x) is increasing in x ∈ (0, 1). From limx→1− h′′r (x) = 0, we deduce h′′r (x) < 0
on (0, 1). Accordingly, the first derivative h′r(x) is decreasing on (0, 1). From limx→1− h′r(x) = 0, it follows
that h′r(x) > 0 on (0, 1). Therefore, the function hr(x) is increasing in x ∈ (0, 1). As a result, we acquire that
hr(x) ≤ limx→1− hr(x) = 0 for x ∈ (0, 1).

When r ∈
(
0, 1

2

]
, let ϕr(x) = (1 − 2r)(1 − x) − xr + x1−r for x ∈ (0, 1]. It is easy to see that

ϕ′r(x) = −(1 − 2r) − rxr−1 + (1 − r)x−r and ϕ′′r (x) = r(1 − r)x−r−1
(
x2r−1

− 1
)
≥ 0.

Then ϕr(x) is decreasing in x ∈ (0, 1] and ϕr(x) ≥ ϕr(1) = 0 for x ∈ (0, 1]. Combining this with the function
in (2.6) leads to

hr(x) = 2x1+r
− 2x2−r + (1 − r)x3

− (1 + r)x2 + (r + 1)x + r − 1

≤ 2(1 − 2r)x(1 − x) + (1 − r)x3
− (1 + r)x2 + (r + 1)x + r − 1

= (1 − r)(x − 1)3

≤ 0

for x ∈ (0, 1).
In a word, the derivative V′r(x) is negative and the function Vr(x) is decreasing in x ∈ (0, 1), with the

limits

lim
x→0+

Vr(x) = 0 and lim
x→1−

Vr(x) =
r + 1

4(r − 1)
.

The proof of Lemma 2 is thus complete.

Lemma 3. For ω ≥ 0 and r ∈ R, define

Fr,ω(x) = (x + 1)2
(
1 − x1−r

)
+ 4ωx1−r

(
xr+1
− 1
)
, x ∈ (0, 1]. (2.7)

Then Fr,ω(x) ≥ 0 in x ∈ (0, 1] if and only if

(r, ω) ∈
{
(r, ω) : r < 1,

r + 1
r − 1

ω ≥ −1, ω ≥ 0
}
,

while Fr,ω(x) ≤ 0 in x ∈ (0, 1] if and only if (r, ω) ∈ {(r, ω) : r ≥ 1, ω ≥ 0}.

Proof. It is easy to show that Fr,ω(1) = 0 for ω ≥ 0 and r ∈ R and

Fr,ω(x)
{
≥ 0, r ≤ −1
≤ 0, r ≥ 1

for x ∈ (0, 1] and ω ≥ 0.
When r ∈ (−1, 1), we can write the function Fr,ω(x) in (2.7) as

Fr,ω(x) = (x + 1)2
(
1 − x1−r

)
[1 + 4ωVr(x)], x ∈ (0, 1),

where Vr(x) is defined as in (2.5). Applying Lemma 2 reveals that Fr,ω(x) ≥ 0 for x ∈ (0, 1) if and only if
1 + 4ωVr(x) ≥ 1 + ω r+1

r−1 ≥ 0 for x ∈ (0, 1). If ω > 0, by the limit limx→0+ Vr(x) = 0, the negativity Fr,ω(x) < 0 is
not necessarily true for x ∈ (0, 1). The proof of Lemma 3 is thus complete.
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3. Necessary and sufficient conditions

Our main results are the following necessary and sufficient conditions.

Theorem 1. For fixed q ∈ R and ω ≥ 0, the mixed mean B2(α, β;ω; q) is Schur 0-power convex with respect to
(α, β) ∈ (0,∞)2 if and only if

(q, ω) ∈ E1 = {(q, ω) : q = 0, ω ≥ 0} ∪ {(q, ω) : q > 0, 0 ≤ ω ≤ 1},

while it is Schur 0-power concave with respect to (α, β) ∈ (0,∞)2 if and only if

(q, ω) ∈ E2 = {(q, ω) : q = 0, ω ≥ 0} ∪ {(q, ω) : q < 0, 0 ≤ ω ≤ 1}.

Proof. When q = 0, by the definition in (1.5), we have B2(α, β;ω; q) = G(α, β) for (α, β) ∈ (0,∞)2. Using
Lemma 1 gives the trivial result

(lnα − ln β)
[
α
∂G(α, β)
∂α

− β
∂G(α, β)
∂β

]
= 0.

When q , 0, considering the expression (1.5) and differentiating yield

∂B2(α, β;ω; q)
∂α

=
[
αq−1(αq + βq)2 + 4ωαq−1β2q

]
B(α, β;ω; q) (3.1)

and

∂B2(α, β;ω; q)
∂β

=
[
βq−1(αq + βq)2 + 4ωα2qβq−1

]
B(α, β;ω; q), (3.2)

where

B(α, β;ω; q) =
[B2(α, β;ω; q)]1−q

2(1 + ω)(αq + βq)2 . (3.3)

By the partial derivatives in (3.1) and (3.2) and in light of Lemma 1, we acquire

Θ1(α, β;ω; q) = (lnα − ln β)
[
α
∂B2(α, β;ω; q)

∂α
− β
∂B2(α, β;ω; q)

∂β

]
= (lnα − ln β)(αq

− βq)
[
(αq + βq)2

− 4ωαqβq
]
B(α, β;ω; q).

When q > 0, we assume α ≥ β > 0 and put x =
(
β
α

)q
. Then 0 < x ≤ 1 and

Θ1(α, β;ω; q) = (lnα − ln β)(αq
− βq)β2q

[
(x + 1)2

− 4ωx
]
B(α, β;ω; q) ≥ 0

for ω ≤ 1. When ω > 1, we define Qω(x) = (x + 1)2
− 4ωx for x ∈ (0, 1]. It is easy to show that

Qω
( 1

4ω

)
=
( 1

4ω
+ 1
)2
− 1 > 0 and Qω

( 1
ω

)
=
( 1
ω
+ 1
)2
− 4 < 0.

This means that, for ω > 1, the sign of Θ1(α, β;ω; q) does not keep the same.
When q < 0, by similar arguments to the above, we obtain

Θ1(α, β;ω; q) = (lnα − ln β)(αq
− βq)β2qQω(x)B(α, β;ω; q) ≤ 0, ω ≤ 1.

Meanwhile, for ω > 1, the sign of Θ1(α, β;ω; q) does not keep the same too.
In conclusion, the mixed mean B2(α, β;ω; q) is Schur 0-power convex (or Schur 0-power concave, respec-

tively) with respect to (α, β) ∈ (0,∞)2 if and only if (q, ω) ∈ E1 (or (q, ω) ∈ E2, respectively). The proof of
Theorem 1 is finished.
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Theorem 2. For q ∈ R, m , 0, andω ≥ 0, the mixed mean B2(α, β;ω; q) is Schur m-power convex (or Schur m-power
concave, respectively) with respect to (α, β) ∈ (0,∞)2 if and only if (m, q, ω) ∈ S1 (or (m, q, ω) ∈ S2, respectively),
where

S1 =
{
(m, q, ω) : q > 0,m < q, ω ≥ 0,

q +m
q −m

ω ≥ −1
}
∪ {(m, q, ω) : m ≤ q ≤ 0, ω ≥ 0}

and

S2 =
{
(m, q, ω) : q < 0,m > q, ω ≥ 0,

q +m
q −m

ω ≤ −1
}

∪ {(m, q, ω) : m ≥ q ≥ 0, ω ≥ 0} ∪ {(m, q, ω) : m = −q > 0, ω ≥ 0}.

Proof. When q = 0, using the definition B2(α, β;ω; q) = G(α, β) for (α, β) ∈ (0,∞)2 and Lemma 1, we deduce

αm
− βm

m

[
α
∂G(α, β)
∂α

− β
∂G(α, β)
∂β

]
=
αm
− βm

2m
(α−m

− β−m)

≤ 0, m > 0,
≥ 0, m < 0.

When q , 0, by the partial derivatives in (3.1) and (3.2), we arrive at

Θ2(α, β;ω, q; m) =
αm
− βm

m

[
α1−m ∂B2(α, β;ω; q)

∂α
− β1−m ∂B2(α, β;ω; q)

∂β

]
=
αm
− βm

m

[
(αq + βq)2(αq−m

− βq−m) + 4ω(αβ)q−m(βq+m
− αq+m)

]
B(α, β;ω; q),

(3.4)

where B(α, β;ω; q) is defined in (3.3).
In what follows, without loss of generality, we assume α > β > 0 and r = m

q . Then αm
−βm

m ≥ 0.

When q > 0, let x =
(
β
α

)q
. Then 0 < x ≤ 1 and, by virtue of the equation (3.4),

Θ2(α, β;ω; q; m) =
(αm
− βm)α2q−m

m
B(α, β;ω; q)

[
(x + 1)2

(
1 − x1−r

)
+ 4ωx1−r

(
xr+1
− 1
)]
.

Making use of Lemma 3 reveals that,

1. the non-negativity Θ2(α, β;ω; q; m) ≥ 0 for (α, β) ∈ (0,∞)2 is true if and only if

(m, q, ω) ∈ S11 =
{
(r, ω) : r < 1, ω ≥ 0,

r + 1
r − 1

ω ≥ −1
}

=
{
(m, q, ω) : q > 0,m < q, ω ≥ 0,

q +m
q −m

ω ≥ −1
}
;

2. the non-positivity Θ2(α, β;ω; q; m) ≤ 0 for (α, β) ∈ (0,∞)2 is valid if and only if

(m, q, ω) ∈ S21 = {(r, ω) : r ≥ 1, ω ≥ 0} = {(m, q, ω) : m ≥ q > 0, ω ≥ 0}.

When q < 0, let y =
(
α
β

)q
. Then 0 < y ≤ 1 and, by virtue of the equality (3.4),

Θ2(α, β;ω, q; m) = −
(αm
− βm)β2q−m

m
B(α, β;ω; q)

[
(y + 1)2

(
1 − y1−r

)
+ 4ωy1−r

(
yr+1
− 1
)]
.

By Lemma 3, we reveal that,

1. the non-negativity Θ2(α, β;ω; q; m) ≥ 0 for (α, β) ∈ (0,∞)2 holds if and only if

(m, q, ω) ∈ S12 = {(r, ω) : r ≥ 1, ω ≥ 0} = {(m, q, ω) : m ≤ q < 0, ω ≥ 0};
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2. the non-positivity Θ2(α, β;ω; q; m) ≤ 0 for (α, β) ∈ (0,∞)2 is valid if and only if

(m, q, ω) ∈ S22 =
{
(r, ω) : r < 1, ω ≥ 0,

r + 1
r − 1

ω ≥ −1
}

=
{
(m, q, ω) : q < 0,m > q, ω ≥ 0,

q +m
q −m

ω ≤ −1
}
.

Consequently, we conclude that,

1. the non-negativity Θ2(α, β;ω; q; m) ≥ 0 for (α, β) ∈ (0,∞)2 validates if and only if

(m, q, ω) ∈ S1 = S11 ∪ S12 ∪ {(m, q, ω) : m ≤ q = 0, ω ≥ 0};

2. the non-positivity Θ2(α, β;ω; q; m) ≤ 0 for (α, β) ∈ (0,∞)2 holds if and only if

(m, q, ω) ∈ S2 = S21 ∪ S22 ∪ {(m, q, ω) : m ≥ q = 0, ω ≥ 0}.

The proof of Theorem 2 is complete.

4. Conclusions

In this paper, our authors constructed the new mixed mean Bℓ(s;ω; q) in (1.4) and determined in The-
orems 1 and 2 necessary and sufficient conditions for the mixed mean B2(α, β;ω; q) in (1.5) to be Schur
m-convex or Schur m-convex for m ∈ R.

The integral representations (1.3) and (2.3) in Remarks 1 and 4 are new observations which base on our
experienced research since the late 1990s.

It seems that the investigations of various Schur convexities of mathematical means such as the extended
mean values E(r, s;α, β) started off from the early 2000s in the preprints [11, 15], which were later formally
published in [12, 16] respectively, while the second author of this paper was visiting the Research Group
in Mathematical Inequalities and Applications (RGMIA) by invitation and partly financial support from
Professor Dr. Sever Silvestru Dragomir at the Victoria University of Technology in Australia. This visit was
the first time that the second author of this paper went abroad and this visit was also practically, physically,
and financially supported by Professor Shi-Ying Yuan, the President of the Jiaozuo Institute of Technology
in China.

The researches of various Schur convexities of mathematical means by the ideas, methods, tools, and
techniques in the theory of majorization have been attracting more and more mathematicians and have
been producing a number of literature such as [2–5, 10, 17, 20–22, 25–36], for example.

Acknowledgements. The authors are grateful to the anonymous referees for their careful corrections,
valuable comments, and helpful suggestions to the original version of this paper.
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