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Abstract. Let {Xk,i; k ≥ 1, i ≥ 1} be an array of random variables, {Xk; k ≥ 1} be a strictly stationary φ-
mixing sequence, where Xk = (Xk,1,Xk,2, · · · ,Xk,p). Let {pn; n ≥ 1} be a sequence of positive integers such
that 0 < c1 ≤ pn/nτ ≤ c2 < ∞, where τ > 0, c2 ≥ c1 > 0. In this paper, we obtain a strong limit the-
orem of Ln = max1≤i< j≤pn |ρi j|, where ρi j denotes the Pearson correlation coefficient between X(i) and X( j),
X(i) = (X1,i,X2,i, · · · ,Xn,i)′. The strong limit theorem is derived by using Chen-Stein Poisson approximation
method.

1. Introduction

Random matrix theory has demonstrated its efficacy across diverse domains such as statistics, high-
energy physics, electrical engineering, and number theory. The correlation coefficient matrix holds signifi-
cance as a crucial statistic in multivariate analysis, playing pivotal roles in the statistical test of multivariate
data. The maximum likelihood estimator is the sample correlation matrix.

Consider a p-dimensional population represented by a random vector X = (X(1), · · · ,X(p)) with unknown
mean µ = (µ1, · · · , µp), unknown covariance matrix Σ and unknown correlation coefficient matrix R. Let
Xn = (Xk,i) be an n × p matrix whose rows are an observed random sample of size n from the X population;
that is, the rows of Xn are independent copies of X. Set X̄(i) =

∑n
k=1 Xk,i/n, 1 ≤ i ≤ p. X(i) denotes the ith

column of Xn. Let

Ln = max
1≤i< j≤p

|ρi j|,

where

ρi j =
∑n

k=1(Xk,i−X̄(i))(Xk, j−X̄( j))
√∑n

k=1(Xk,i−X̄(i))2
√∑n

k=1(Xk, j−X̄( j))2
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is the Pearson correlation coefficient between the ith and jth columns of Xn. Then Γn := (ρi j) is a p by p
symmetric matrix. It is called the sample correlation matrix generated by Xn. This paper investigates a
logarithmic law of the largest entries of a sample correlation matrices under a φ-mixing assumption.

This investigation is the promotion of the statistical hypothesis testing problem studied by [11]. When
both n and p are large, [11] considered the statistical test with null hypothesis H0 : R = I, where I is the
p × p identity matrix. In general, this null hypothesis asserts that the components of X = (X(1), · · · ,X(p)) are
uncorrelated whereas when X has a p-variate normal distribution, this null hypothesis asserts that these
components are independent.

[11]’s test statistic is Ln. Let e = (1, · · · , 1)′ ∈ Rn, ∥ · ∥ denotes the Euclidean norm in Rn. We can rewrite
ρi j as

ρi j =
(X(i)
− X̄(i)e)′(X( j)

− X̄( j)e)
∥X(i) − X̄(i)e∥ · ∥X( j) − X̄( j)e∥

, (1)

[11] proved the following strong limit theorem concerning the test statistic Ln when p = pn and {Xk,i; k ≥
1, i ≥ 1} is an array of independent and identically distributed (i.i.d) random variables.

Theorem 1.1. Suppose {ξ,Xk,i; k ≥ 1, i ≥ 1} are i.i.d random variables. Let Xn = (Xk,i) be an n × p matrix.
E|ξ|30−ε < ∞ for any ε > 0. If n/p→ γ ∈ (0,∞), then

lim
n→∞

√
n

log n
Ln = 2 a.s.

Under the i.i.d. assumption, [11] found an asymptotic distribution of Ln.

Theorem 1.2. Suppose {ξ,Xk,i; k ≥ 1, i ≥ 1} are i.i.d random variables. Let Xn = (Xk,i) be an n × p matrix.
E|ξ|30+ε < ∞ for some ε > 0. If n/p→ γ, then

P(nL2
n − 4 log n + log(log n) ≤ y)→ e−Ke−y/2

as n→∞ for any y ∈ R, where K = (γ2
√

8π)−1.

Subsequently, [24] showed the asymptotic distributions of Ln that the moment condition E|X1,1|
r < ∞ for

some r > 30 can be weakened to x6P(|X1,1X1,2| ≥ x) → 0 as x → ∞ under lim supn→∞ p/n < ∞. Another
moment condition for the asymptotic distributions of Ln to hold has been obtained by [18] who showed
that the asymptotic distributions of Ln holds under the condition (x6/ log3 x)P(|X1,1X1,2| ≥ x)→ 0 as x→ ∞
and p = O(nα) as p/n → ∞. As for the strong limit, [13] established the strong limit theorems of Ln
under some more relaxed assumption, [14], [15] had further improved the assumption of the result, under
the assumption the p/n bounded away from zero to infinity. They actually obtained some necessary
and sufficient conditions under which the limit theorem holds. As p/n → ∞, [7] considered the ultra-
high dimensional case where p can be as large as enα for some 0 < α ≤ 1 and they extended the result
to dependent case. Afterwards, [8] derived the limiting theorem of Ln under the assumption that the
population has a spherical distribution. In fact, a phase transition phenomenon occurs at three different
regimes: (log p)/n → 0, (log p)/n → α ∈ (0,∞) and (log p)/n → ∞. Without the Gaussian assumption,
[21] obtained the limit theorem as log p = o(nα) for some 0 < α ≤ 1. As for the dependent case, [10]
investigated the limiting distribution of the largest off-diagonal entry of the sample correlation matrix in
the high-dimensional setting when the correlation matrix admits a compound symmetry structure, namely,
is of equi-correlation. [17] showed the asymptotic distribution of Ln for φ-mixing assumptions as follow.

Assumption 1.1. Let Xk = (Xk,1,Xk,2, · · · ) be an infinite dimensional random vector, suppose that {Xk; k ≥ 1} is
a sequence of strictly stationary φ−mixing random vector, satisfied with the Var(X1,1) = 1 and for some T > 3,
φ(n) = O(1/nT).

Assumption 1.2. Let X(i) = (X1,i,X2,i, · · · )′ be an infinite dimensional random vector, suppose that {X(i); i ≥ 1} is a
sequence of independent and identically distributed random vector.
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Theorem 1.3. Under the Assumption 1.1 and 1.2, let EX6
1,1I{|X1,1| ≥ n} = o((log n)−3), and suppose c1 ≤ n/pn ≤ c2,

where c1, c2 > 0. Then

P
(
nL2

n − 4ES2
n

log pn

n
+ ES2

n
log(log pn)

n
≤ y

)
→ e−Ke−y/(2σ2)

(2)

for any y ∈ R, where K = (
√

8π)−1, Sn = Σ
n
k=1Xk,1Xk,2, σ2 := limn→∞ ES2

n/n.

Afterwards, [22] showed the asymptotic distribution of Ln for α-mixing assumption, also under the
α-mixing assumption [23] get the logarithmic law of Ln . [12] showed the limiting behavior of largest entry
of random tensor constructed by high-dimensional data. Most of the aforementioned work mainly focus
on the improvement of the moment assumption on X1,1 from the data matrix (Xi, j)n×p as well as relaxing the
range of p relative to n to obtain the asymptotic distributions of Ln. The strong law of large numbers for Ln
remains largely unknown. [7], [8] show that under regularity conditions√

n
log p

Ln
P
→ 2 as n→∞

where P
→ denotes convergence in probability.

In this paper, we will give a strong limit theorem for Ln almost sure convergence under φ-mixing
assumptions. Let {Xn; n ≥ 1} be a sequence of random variables on some probability space (Ω,F,P). Let F b

a
denote the σ-field generated by the random variables Xa,Xa+1, · · · ,Xb. For any two σ-fieldsA,B ⊂ F, put

φ(A,B) := sup{|P(B|A) − P(B)|; A ∈ A,B ∈ B},

ρ(A,B) := sup
{

Cov(X,Y)
∥X∥2∥Y∥2

; X ∈ L2(A),Y ∈ L2(B)
}
,

where, and in the sequel ∥X∥p = (E|X|p)1/p for 1 ≤ p < ∞. The mixing coefficients of the sequence {Xn; n ≥ 1}
are defined as usual:

φ(n) := sup
k≥1
φ(F k

1 ,F
∞

k+n), ρ(n) := sup
k≥1
ρ(F k

1 ,F
∞

k+n),

the sequence {Xn; n ≥ 1} is called φ-mixing if φ(n) → 0, is called ρ-mixing if ρ(n) → 0. It is easy to know
that ρ(n) ≤ 2φ1/2(n), thus φ-mixing sequence is ρ-mixing sequence (See [20]).

The rest sections of this paper are organized as follows. Our main result is present in Section 2. Section
3 gives detailed proof of our main results. In section 4, we give the significance of the main result and its
applications.

2. Main result

Assumption 2.1. Let Xk = (Xk,1,Xk,2, · · · ,Xk,p) be an random vector, suppose that {Xk; k ≥ 1} is a sequence of strictly
stationary φ−mixing random vector, satisfied with the Var(X1,1) = 1 and φ(n) = O

(
1/nT

)
, for some T > 6+ 8τ+ ε,

ε > 0, τ > 0, the definition of τ is in the Theorem 2.1

Assumption 2.2. Let X(i) = (X1,i,X2,i, · · · ,Xn,i)′ be an random vector, suppose that {X(i); i ≥ 1} is a sequence of
independent and identically distributed random vector.

Remark 2.1. Let Bi := {Xk,i; 1 ≤ k ≤ n} be a random sampling of X(i), under the condition of H0 : R = I, it is
reasonable to suppose {Bi; 1 ≤ i ≤ p} is independent. Therefore in order to obtain the strong limit theorem of Ln,
Assumption 2.2 is reasonable.

The following theorem is our main result.
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Theorem 2.1. Under the Assumption 2.1 and 2.2, let Sn = Σ
n
k=1Xk,1Xk,2, define σ2 := limn→∞ ES2

n/n. Suppose that
EX1,1 = 0, and 0 < c1 ≤ pn/nτ ≤ c2 < ∞, where τ > 0, c2 ≥ c1 > 0. E|X1,1|

4+4τ+ε < ∞, for some ε > 0. Then

lim
n→∞

√
n

log pn
Ln = 2σ a.s. (3)

Remark 2.2. Compare with [17], who showed the asymptotic distribution of Ln under EX6
1,1I{|X1,1| ≥ n} =

o((log n)−3). We proved the logarithm law of Ln under E|X1,1|
4+4τ+ε < ∞, for some ε > 0.

3. Proofs

The proof of Theorem 2.1 is intricate and complex. In this section, we will gather and establish several
technical tools that contribute to the proof of Theorems 2.1. The following lemmas are useful for the proof
of our result. First, we present Lemma 3.1, from [6].

Lemma 3.1. Let {(Sk, σk); k ≥ 1} be a sequence of complete separable metric spaces. Let {Xk; k ≥ 1} be a sequence of
random variables with values in Sk and let {Lk; k ≥ 1} be a sequence of σ-fields such that Xk is Lk-measurable. Suppose
that for some ϕk ≥ 0

|P(AB) − P(A)P(B)| ≤ ϕkP(A)

for all A ∈ ∨ j<kL j and B ∈ Lk. Then without changing its distribution we can redefine the sequence {Xk; k ≥ 1} on
a richer probability space together with a sequence {Yk; k ≥ 1} of independent random variables such that Yk has the
same distribution as Xk and

P{σk(Xk,Yk) ≥ 6ϕk} ≤ 6ϕk k = 1, 2, · · · .

The following result provides some inequalities. It will be applied to the proofs later.

Lemma 3.2. Let {ξn; n ≥ 1} be a φ-mixing sequence. Put Tk(n) =
∑k+n

i=k+1 ξi. Suppose that there exists an array
{Ck,n} of positive numbers such that

max
1≤k≤n

ET2
k (n) ≤ Ck,n f or every k ≥ 0, n ≥ 1.

Then for every q ≥ 2, there exists a constant K depending only on q and φ(·) such that

E max
i≤n
|Tk(i)|q ≤ K

(
Cq/2

k,n + E max
k<i≤k+n

|ξi|
q
)

for every k ≥ 0, n ≥ 1.

Proof. See [20].

The following Lemma is the Rosenthal type maximal inequality.

Lemma 3.3. Suppose that {Xn; n ≥ 1} is a sequence of independent random variables and E|Xn|
q < ∞ for any q ≥ 2,

n ≥ 1 then there exists a positive constant C(q) depending only on q such that

E

max
1≤i≤n

∣∣∣∣∣∣∣
i∑

k=1

(Xk − EXk)

∣∣∣∣∣∣∣


q

≤ C(q)

 n∑
k=1

E|Xk − EXk|
q +

 n∑
k=1

E|Xk − EXk|
2


q/2 .

Proof. See [1].
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This is an inequality with an atmosphere of the Marcinkieiwicz-Zygmund inequalities. The following is a
corollary of the Marcinkiewicz-Zygmund inequality.

Lemma 3.4. If {ηn; n ≥ 1} are i.i.d. random variables with Eη1 = 0, E|η1|
p < ∞, p ≥ 1, and Sn =

∑n
i=1 ηi. Then

E|Sn|
p =

O(np/2), if p ≥ 2,
O(n), if 1 ≤ p < 2.

Proof. See [9].

Lemma 3.5. For any sequence of independent random variables {ξn; n ≥ 1} with mean zero and finite variance, there
exists a sequence of independent normal variables {ηn; n ≥ 1} with Eηn = 0, Eη2

n = Eξ2
n such that for all Q > 2 and

y > 0,

P

max
k≤n

∣∣∣∣∣∣∣
k∑

i=1

ξi −

k∑
i=1

ηi

∣∣∣∣∣∣∣ ≥ y

 ≤ (AQ)Qy−Q
n∑

i=1

E|ξi|
Q

whenever E|ξi|
Q < ∞, i = 1, 2, · · · ,n. Here A is a universal constant.

Proof. See [19].

Lemma 3.6. Let {ηk; 1 ≤ k ≤ n} be independent symmetric random variables and Sn =
∑n

k=1 ηk. Then, for each
integer j ≥ 1, there exist positive numbers C j and D j depending only on j such that for all t > 0,

P
(
|Sn| ≥ 2 jt

)
≤ C jP

(
max
1≤k≤n

|η j| ≥ t
)
+D j (P(|Sn| ≥ t)) j .

Proof. See [16].

The next one is the Chen-Stein Poisson approximation method, which is a special case of Theorem 1
from [3].

Lemma 3.7. Let {ηα;α ∈ I} be random variables on an index set I and {Bα;α ∈ I} be a set of subsets of I, that is, for
each α ∈ I,Bα ⊂ I. For any t ∈ R,set λ =

∑
α∈I P(ηα > t), Then we have∣∣∣∣∣P (

max
α∈I
ηα ≤ t

)
− e−λ

∣∣∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3),

where

b1 =
∑
α∈I

∑
β∈Bα

P
(
ηα > t

)
P
(
ηβ > t

)
,

b2 =
∑
α∈I

∑
α,β∈Bα

P
(
ηα > t, ηβ > t

)
,

b3 =
∑
α∈I

E
∣∣∣∣P (
ηα > t|σ(ηβ, β < Bα)

)
− P

(
ηα > t

)∣∣∣∣ ,
and σ(ηβ; β < Bα) is the σ−algebra generated by {ηβ; β < Bα}. In particular, if ηα is independent of {ηβ; β < Bα}, for
each α, then b3 vanishes.

The next one is Ottaviani’s inequality.

Lemma 3.8. Let {Xn; n ≥ 1} is a sequence of independent random variables. Sk =
∑k

i=1 Xi. For ∀ x > 0,

P
(
max
1≤k≤n

|Sk| > 2x
)
≤

P (|Sn| > x)
min1≤k≤n P (|Sn − Sk| ≤ x)

.
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Proof. See [9].

The following lemma refers to Lemma 2 in [4], we generalize his result to the φ-mixing condition.

Lemma 3.9. Under the Assumption 2.1 and 2.2, let a > 1/2, b ≥ 0 and M > 0 be constants.

(1) E|X1,1|
(1+b)/a < ∞;

(2) c =

EX1,1, if a ≤ 1,
any number, if a > 1

is the sufficient condition for

max
j≤Mnb

∣∣∣∣∣∣∣n−a
n∑

i=1

(Xi, j − c)

∣∣∣∣∣∣∣→ 0 a.s. as n→∞.

Proof. Without loss of generality, assume that c = 0. Since, for ε > 0 and N ≥ 1,

P

max
j≤Mnb

∣∣∣∣∣∣∣ 1
na

n∑
i=1

Xi, j

∣∣∣∣∣∣∣ ≥ ε, i.o.


≤

∑
k≥N

P

 max
2k−1<n≤2k

max
j≤M2kb

∣∣∣∣∣∣∣
n∑

i=1

Xi, j

∣∣∣∣∣∣∣ ≥ ε′2ka


≤

∑
k≥N

M2kbP

 max
2k−1<n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Xi,1

∣∣∣∣∣∣∣ ≥ 2kaε′

 ,
where ε′ = 2−aε, to conclude that the probability on the left-hand side of this inequality is equal to zero, it
is sufficient to show that

∞∑
k=1

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Xi,1

∣∣∣∣∣∣∣ ≥ 2kaε

 < ∞. (4)

Let Yi,k = Xi,1I{|Xi,1| < 2ka
} and Zi,k = Yi,k −EYi,k. Then |Zi,k| ≤ 2ka+1 and EZi,k = 0. Let 1 be an even integer

such that 1(a − 1/2) > b + 2a. It is easy to see

Xi,1 = Xi,1I{|Xi,1| < 2ka
} + Xi,1I{|Xi,1| ≥ 2ka

}

= Zi,k + EYi,k + Xi,1I{|Xi,1| ≥ 2ka
}.

We have that
∞∑

k=1

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Xi,1

∣∣∣∣∣∣∣ ≥ 2kaε


≤

∞∑
k=1

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Zi,k

∣∣∣∣∣∣∣ ≥ 2kaε
4

 + ∞∑
k=1

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

EYi,k

∣∣∣∣∣∣∣ ≥ 2kaε
2


+

∞∑
k=1

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Xi,1I{|Xi,1| ≥ 2ka
}

∣∣∣∣∣∣∣ ≥ 2kaε
4

 .
Then, note that {Zi,k} is a sequence of φ-mixing random variables by Assumption 2.1. By Lemma 3.2, we
have

P

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Zi,k

∣∣∣∣∣∣∣ ≥ ε2ka

4

 ≤ C
E
∣∣∣∣∑2k

i=1 Zi,k

∣∣∣∣1
2k1a

≤ C
2kE|Z11,k|

2k1a
+ C

2k1/2(EZ2
1,k)1/2

2k1a
, (5)
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by the following bounds:

∞∑
k=1

2kb−k1a+kE
∣∣∣∣Z11,k∣∣∣∣ ≤ C

∞∑
k=1

2k(b−1a+1)E
∣∣∣∣X11,1∣∣∣∣ I {∣∣∣X1,1

∣∣∣ < 2ka
}

≤ C
∞∑

k=1

2k(b−1a+1)

 k∑
l=1

E|X1,1|
1I

{
2a(l−1)

≤ |X1,1| < 2al
}
+ 1


≤ C

∞∑
l=1

(
E|X1,1|

1I
{
2a(l−1)

≤ |X1,1| < 2al
}
+ 1

) ∞∑
k=l

2k(b−1a+1)

≤ C
∞∑

l=1

2l(b−1a+1)
(
E|X1,1|

1I{2a(l−1)
≤ |X1,1| < 2al

} + 1
)

≤ C
∞∑

l=1

E|X1,1|
(b+1)/aI

{
2a(l−1)

≤ |X1,1| < 2al
}
+ C1 < ∞.

Note that 1a − b − 1 > 1(a − 1/2) − (b + 2a) > 0 and when (1 + b)/a ≥ 2, EZ2
1,k ≤ EX2

1,1 < ∞,

∞∑
k=1

2kb−k1a+k1/2(EZ2
1,k)1/2 ≤ C

∞∑
k=1

2k(b+2a−1(a−1/2)) < ∞.

If (1 + b)/a < 2, we have
∞∑

k=1

2kb−k1a+1k/2
(
EZ2

1,k

)1/2
≤

∞∑
k=1

2kb−k1a+k1/2
(
EZ(1+b)/a+2−(1+b)/a

1,k

)1/2−1 (
EZ2

1,k

)
≤ C

∞∑
k=1

2kb−k1a+k1/22ka(2−(1+b)/a)(1/2−1)EX2
1,1I

{∣∣∣X1,1

∣∣∣ < 2ka
}

≤ C
∞∑

k=1

2k(b+ 12−2a− (1+b)1
2 +1+b)

 k∑
l=1

EX2
1,1I

{
2(l−1)a

≤ |X1,1| < 2la
}
+ 1


≤ C

∞∑
k=1

2k(b−2a−b1/2+1+b)
k∑

l=1

E|X1,1|
2I

{
2(l−1)a

≤ |X1,1| < 2la
}
+ C1

= C
∞∑

l=1

2l(b−2a−b1/2+1+b)E|X1,1|
2I

{
2(l−1)a

≤ |X1,1| < 2la
}
+ C1

≤ C
∞∑

l=1

2l(b−2a− b1
2 +1+b)E|X1,1|

(1+b)
a +2− (1+b)

a I{2(l−1)a
≤ |X1,1| < 2la

} + C1

≤ C
∞∑

l=1

2l(b−2a− b1
2 +1+b)2la(2− (1+b)

a )E|X1,1|
(1+b)

a I{2(l−1)a
≤ |X1,1| < 2la

} + C1

≤ CE|X1,1|
1+b

a + C1 < ∞.

We obtain that
∞∑

k=N

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Zi,k

∣∣∣∣∣∣∣ ≥ ε2ka

 < ∞. (6)
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Now we estimate EYi,k for large k. We have

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

EYik

∣∣∣∣∣∣∣ ≤ 2k
|EY1k|

≤

2kE|X11|I{|X11| ≥ 2ka
} ≤ 2k(a−b)E|X11|

(1+b)
a I{|X11| ≥ 2ka

}, if a ≤ 1 + b
2k log k + 2k(a−b)E|X11|

(1+b)
a I{|X11| > log k}, if a > 1 + b

≤2−1ε2ka

(7)

for all ε > 0, Hence,
∞∑

k=N

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

EYik

∣∣∣∣∣∣∣ ≥ ε2ka

2

 < ∞. (8)

Finally, since E|X11|
(b+1)/a < ∞, we have

∞∑
k=1

2kbP

 2k⋃
i=1

{
|Xi1| ≥ 2ka

} ≤ ∞∑
k=1

2k(b+1)P
{
|X11| ≥ 2ka

}
< CE|X1,1|

b+1
a < ∞.

(9)

Hence,
∞∑

k=N

2kbP

max
n≤2k

∣∣∣∣∣∣∣
n∑

i=1

Xi1I{|Xi1| ≥ 2ka}

∣∣∣∣∣∣∣ ≥ ε2ka

4

 < ∞. (10)

Then, (4) follows from (6), (8) and (10).

Now we define

Wn = max
1≤i< j≤pn

∣∣∣∣∣∣∣
n∑

k=1

Xk,iXk, j

∣∣∣∣∣∣∣ , n ≥ 1. (11)

For any square matrix A = (ai, j), define 9A9 = max1≤i, j≤n |ai, j|; that is, the maximum of the absolute values
of the off-diagonal entries of A.

Lemma 3.10. Recall X(i) in (1). Let hi = ∥X(i)
− X̄(i)e∥/

√
n for each i. Then

9nΓn − X′nXn9 ≤ (b2
n,1 + 2bn,1)Wnb−2

n,3 + nb−2
n,3b2

n,4,

where

bn,1 = max1≤i≤pn |hi − 1|, Wn = max
1≤i< j≤pn

|(X(i))′X( j)
|

bn,3 = min1≤i≤pn hi, bn,4 = max
1≤i≤pn

|X̄(i)
|.

Proof. See [7].

Lemma 3.11. Under the Assumption 2.1 and 2.2, EX1,1 = 0, Var(X1,1) = 1. Suppose that 0 < c1 ≤ pn/nτ ≤ c2 < ∞,
where τ > 0, c2 ≥ c1 > 0. If E|X1,1|

(2+2τ)/(1−a) < ∞ for some a ∈ (0, 1/2), then

nabn,1 → 0 a.s., bn,3 → 1 a.s. and nabn,4 → 0 a.s.

as n→∞.
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Proof. The second limit follows from the first one. Easily, ∥X(i)
− X̄(i)

∥
2 = (X(i))′X(i)

− n|X̄(i)
|
2. Using the fact

that |x − 1| ≤ |x2
− 1| for any x > 0, we have that

nabn,1 = na max
1≤i≤pn

∣∣∣∣∣∣∣
√

(X(i))′X(i)

n
− |X̄(i)|2 − 1

∣∣∣∣∣∣∣
≤ na max

1≤i≤pn

∣∣∣∣∣∣ (X(i))′X(i)
− n

n
− |X̄(i)

|
2

∣∣∣∣∣∣
≤ max

1≤i≤pn

∣∣∣∣∣∣ (X(i))′X(i)
− n

n1−a

∣∣∣∣∣∣ +
(
n

a
2 max

1≤i≤pn

|X̄(i)
|

)2

.

(12)

Note as (X(i))′X(i) =
∑n

k=1 X2
k,i. By Lemma 3.9 the first and second maximum above go to zero when

E|X1,1|
(2+2τ)/(1−a) < ∞. It is true under the assumptions of Theorem 2.1. So the first limit is proved. Under

the condition that E|X1,1|
(1+τ)/(1−a) < ∞, we have

nabn,4 = na max
1≤i≤pn

|X̄(i)
| = max

1≤i≤pn

∣∣∣∣∣∣
∑n

k=1 Xk,i

n1−a

∣∣∣∣∣∣
the limit that nabn,4 → 0 a.s. is proved by noting the relationship between nabn,4 and the right most term in
(12).

We introduce some notations now. Let 1/2 − δ < µ < 1/2, where δ > 0 sufficiently small, and δ <
1
2 −

4+8τ
(4+4τ+ε)(2+4τ+ε) ,

Sn,i, j =

n∑
k=1

Xk,iXk, j, Yk,i, j = Xk,iXk, jI{|Xk,iXk, j| ≤ nµ},

S′n,i, j =
n∑

k=1

(Yk,i, j − EYk,i, j).

Let ρ = 1/2, α = 1/2, for some ε′ > 0, Tαρ + ρ − 1 − 2τ > 1 + ε′. Set z = zn = [nρ], q = qn = [nαρ],
mn = [n/(zn + qn)] ∼ n1−ρ, Nn = mn(zn + qn). Define

Hi,n = { j : i(z + q) + 1 ≤ j ≤ (i + 1)z + iq},
Ii,n = { j : (i + 1)z + iq + 1 ≤ j ≤ (i + 1)(z + q)},

and um,i, j =
∑

k∈Hm,n
(Yk,i, j − EYk,i, j), vm,i, j =

∑
k∈Im,n

(Yk,i, j − EYk,i, j), 1 ≤ m ≤ mn.

Lemma 3.12. Under the condition of Theorem 2.1. Let {Y∗m,i, j; m = 1, 2, · · · ,mn} be i.i.d. normal random variables
with mean 0 and variance Eu2

m,i, j, σ
2 = limn→∞ ES2

n/n. Then

ES2
n∑mn

m=1 EY∗2m,i, j

→ 1, as n→∞.

Proof. We have ES2
n = E

(
S′n,1,2 +

∑n
k=1 Xk1Xk2I{|Xk1Xk2| ≥ nµ}

)2
, where we have S′n,1,2 =

∑mn
m=1 um,1,2+

∑mn
m=1 vm,1,2+
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k=Nmn+1(Yk,1,2 − EYk,1,2). Since E|X1,1|

4+4τ+ε < ∞, for some ε > 0, we have that

n∑
k=1

E|Xk,1Xk,2|I{|Xk,1Xk,2| ≥ nµ}

≤

n∑
k=1

E|Xk,1Xk,2|I{|Xk,1| ≥ n
µ
2 } +

n∑
k=1

E|Xk,1Xk,2|I{|Xk,2| ≥ n
µ
2 }

≤

n∑
k=1

E|Xk,1|I{|Xk,1| ≥ n
µ
2 }E|Xk,2|

+

n∑
k=1

E|Xk,1|E|Xk,2|I{|Xk,2| ≥ n
µ
2 }

≤

n∑
k=1

E|Xk,1|
4+4τ+ε

|Xk,1|
1−(4+4τ+ε)I{|Xk,1| ≥ n

µ
2 }E|Xk,2|

+

n∑
k=1

E|Xk,1|E|Xk,2|
4+4τ+ε

|Xk,2|
1−(4+4τ+ε)I{|Xk,2| ≥ n

µ
2 }

≤ Cn1− µ(3+4τ+ε)
2 = o

(√
n

log n

)
,

as n→∞. Therefore,
n∑

k=1

E|Xk,1Xk,2|I{|Xk,1Xk,2| ≥ nµ} = o
(√

n
log n

)
,

as n→∞. By Lemma 3.2, we have that

E

 mn∑
m=1

vm,1,2


2

≤ CmnqnE|Xk1Xk2|
2I{|Xk1Xk2| ≤ nµ}

≤ Cn1−ρ+αρ = o
(

n
log n

)
,

as n→∞. And we obtain

E

 n∑
k=Nmn+1

(Yk,1,2 − EYk,1,2)


2

≤ C(zn + qn)E|Xk1Xk2|
2I{|Xk1Xk2| ≤ nµ}

≤ C(nρ + nαρ) = o
(

n
log n

)
as n → ∞.

∑mn
m=1 Y∗m,i, j, i, j ≥ 1 is a sum of mn i.i.d normal random variables with mean zero and vari-

ance
∑mn

m=1 Eu2
m,i, j. We have that ES2

n = E
(∑mn

m=1 um,1,2

)2
+ o

(
n

log n

)
, using the fact that |EXY − EXEY| ≤

2(φ(n))
1
2 ∥X∥2∥Y∥2, we obtain∣∣∣∣∣∣∣∣E
 mn∑

m=1

um,1,2


2

−

mn∑
m=1

EY∗2m,1,2

∣∣∣∣∣∣∣∣ ≤ C
mn∑
j=1

|H j,n|
1
2

j−1∑
i=1

φ
1
2 (|Ii,n|)|Hi,n|

1
2

≤ Cn−Tαρ/2+2−ρ = o
(

n
log n

)
,
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as n→∞. Hence,
∣∣∣∣ES2

n −
∑mn

m=1 EY∗2m,i, j

∣∣∣∣ = o
(

n
log n

)
, n→∞. Therefore,

ES2
n∑mn

m=1 EY∗2m,i, j

→ 1,

as n→∞, where EY∗2m,i, j = Eu2
m,i, j.

Lemma 3.13. Let {Y∗m,i, j; m = 1, 2, · · · ,mn} be i.i.d. normal random variables with mean 0 and variance Eu2
m,i, j. Then

lim sup
n→∞

max1≤i< j≤pn

∣∣∣∣∑mn
m=1 Y∗m,i, j

∣∣∣∣√
n log pn

≤ 2σ a.s. (13)

Proof. Given t ∈ (0, 1), let ωn = (2 + t)σ
√

n log pn, we can suppose σ = 1. By Lemma 3.12, we have
ES2

n/
∑mn

m=1 EY∗2m,i, j → 1, as n→∞, where EY∗2m,i, j = Eu2
m,i, j. Then we can obtain,

max
1≤i, j<∞

P


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,i, j

∣∣∣∣∣∣∣ > ωn

 = max
1≤i, j<∞

P


∣∣∣∣∑mn

m=1 Y∗m,i, j
∣∣∣∣√∑mn

m=1 Eu∗2m,i, j

>
wn√∑mn

m=1 Eu∗2m,i, j


=2

1 −Φ
 (2 + t)

√
n log pn√∑mn

m=1 Eu∗2m,i, j




≤C

√∑mn
m=1 Eu∗2m,i, j

√
2π(2 + t)

√
n log pn

exp

− (2 + t)2n log pn

2
∑mn

m=1 Eu∗2m,i, j


≤C

1

(2 + t)
√

2π log pnp(2+t)2/2
n

= O
( 1

nτ(2+t)2/2

)
,

(14)

as n is large, where we use the fact that

1 −Φ(x) =
1
√

2π

∫
∞

x
e−t2/2dt ∼

1
√

2πx
e−x2/2 (15)

as x→ +∞ (see e.g., page 49 from [9]). And we define W′
n = max1≤i< j≤pn

∣∣∣∣∑mn
m=1 Y∗m,i, j

∣∣∣∣, nk = k1, for any integer

1 >
(
2 + τ(2 + t)2

)
/(t2 + 4t)τ,

max
nk≤n≤nk+1

W′

n ≤ max
1≤i, j≤pnk+1

 max
nk≤n≤nk+1

∣∣∣∣∣∣∣
mn∑

m=1

Y∗m,i, j

∣∣∣∣∣∣∣


≤ max
1≤i, j≤pnk+1

∣∣∣∣∣∣∣
mnk∑
m=1

Y∗m,i, j

∣∣∣∣∣∣∣ + rn,

(16)

where

rn = max
1≤i, j≤pnk+1

max
nk≤n≤nk+1

∣∣∣∣∣∣∣
mn∑

m=1

Y∗m,i, j −
mnk∑
m=1

Y∗m,i, j

∣∣∣∣∣∣∣ . (17)
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By (14),

P

 max
1≤i, j≤pnk+1

∣∣∣∣∣∣∣
mnk∑
m=1

Y∗m,i, j

∣∣∣∣∣∣∣ > ωnk

 ≤ p2
nk+1

P


∣∣∣∣∣∣∣

mnk∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ > ωnk


≤ p2

nk+1
P


∣∣∣∑mnk

m=1 Y∗m,1,2
∣∣∣√∑mnk

m=1 Eu∗2m,i, j

>
ωnk√∑mnk

m=1 Eu∗2m,i, j


≤ 2p2

nk+1

1 −Φ

 (2 + t)
√

nk log pnk√∑mnk
m=1 Eu∗2m,i, j




≤ C(k + 1)21τ

√∑mnk
m=1 Eu∗2m,i, j

√
2π(2 + t)

√
nk log pnk

exp

− (2 + t)2nk log pnk

2
∑mnk

m=1 Eu∗2m,i, j


= O

(
k−

(t2+4t)1τ
2

)
.

Since
∑

k k−(t2+4t)1τ/2 < ∞, by the Borel-Cantelli lemma,

lim sup
n→∞

max1≤i, j≤pnk

∣∣∣∣∑mnk
m=1 Y∗m,i, j

∣∣∣∣√
nk log pnk

≤ 2 + t a.s. (18)

Now let us estimate rn as in (17).
Let partial sums S0 = 0 and Sl =

∑l
m=1 Y∗m,i, j. Observe that the distribution of

∑mn
m=1 Y∗m,i, j −

∑mnk
m=1 Y∗m,i, j is

equal to that of Smn−mnk
for all mn ≥ mnk . Thus, by Lemma 3.8, we have

P
(
rn ≥ t

√
nk log pnk

)
≤p2

nk+1
P
(

max
1≤l≤nk+1−nk

|Sl| ≥ t
√

nk log pnk

)
≤2p2

nk+1
P
(∣∣∣Snk+1−nk

∣∣∣ ≥ (t/2)
√

nk log pnk

) (19)

as n is sufficiently large, since min1≤l≤nk+1−nk P
(∣∣∣Snk+1−nk − Sl

∣∣∣ ≤ (t/2)
√

nk log pnk

)
≥ 1/2, where Ottaviani’s

inequality in Lemma 3.8 is used in the last inequality. Note that, for fixed 1 and t, (t/2)
√

nk log pnk ≥
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(2 + t)
√

(nk+1 − nk) log(pnk+1 − pnk ) as n is sufficiently large. By (15), we have

2p2
nk+1

P
(∣∣∣Snk+1−nk

∣∣∣ ≥ (t/2)
√

nk log pnk

)
≤ 2p2

nk+1
P
(∣∣∣Snk+1−nk

∣∣∣ ≥ (2 + t)
√

(nk+1 − nk) log(pnk+1 − pnk )
)

≤ 2p2
nk+1

P

 |Snk+1−nk |√∑nk+1−nk
m=1 Eu∗2m,i, j

≥
(2 + t)

√
(nk+1 − nk) log(pnk+1 − pnk )√∑nk+1−nk

m=1 Eu∗2m,i, j


≤ 4p2

nk+1

1 −Φ

 (2 + t)
√

(nk+1 − nk) log(pnk+1 − pnk )√∑nk+1−nk
m=1 Eu∗2m,i, j




≤ C(k + 1)21τ exp

− (2 + t)2(nk+1 − nk) log(pnk+1 − pnk )

2
∑nk+1−nk

m=1 Eu∗2m,i, j


= O

(
k−(τ1−1)(2+t)2/2+21τ

)
.

Therefore,

P
(
rn ≥ t

√
nk log pnk

)
= O

(
k−µ

)
,

where u = (τ1 − 1)(2 + t)2/2 − 21τ, since 1 is chosen such that u > 1. By the Borel-Cantelli lemma again, we
have

lim sup
n→∞

rn√
nk log pnk

≤ t a.s. (20)

By (16), (18) and (20), we obtain that

lim sup
n→∞

maxnk≤n≤nk+1 W′
n√

nk log pnk

≤ 2 + 2t a.s.

for any sufficiently small t > 0. This implies inequality (13) in Lemma 3.13.

Lemma 3.14. Let {Y∗m,i, j; m = 1, 2, · · · ,mn} be i.i.d. normal random variables with mean 0 and variance Eu2
m,i, j. Then

lim inf
n→∞

max1≤i< j≤pn

∣∣∣∣∑mn
m=1 Y∗m,i, j

∣∣∣∣√
n log pn

≥ 2σ a.s. (21)

Proof. We continue to use the notations in the proof of (13) of Lemma 3.13. For any t ∈ (0, 1), define
vn = (2 − t)σ

√
n log pn, σ2 = limn→∞ ES2

n/n, we can suppose σ = 1. We first claim that

P
(
W′

n ≤ vn
)
= O

( 1
nt′

)
(22)

as n→ ∞, for some positive constant t′ depending on t and the distribution of X1,1X1,2 only. If this is true,
take an integer 1 such that 1 > 1/t′. Then P(W′

nk
≤ vnk ) = O

(
1/kt′1

)
. Since

∑
k k−t′1 < ∞, by the Borel-Cantelli

lemma, we have that

lim inf
n→∞

W′
nk√

nk log pnk

≥ 2 − t a.s. (23)
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for any t ∈ (0, 1). Recalling the definition of rn in (17), we have that

inf
nk≤n≤nk+1

W′

n ≥W′

nk
− rn.

By (20) and (23), we have that

lim inf
n→∞

infnk≤n≤nk+1 W′
n√

nk log pnk

≥ 2 − 2t a.s.

for any t > 0 small enough. This implies (21) of Lemma 3.14.
Now we turn to prove claim (22) by Lemma 3.7.
Take I = {(i, j); 1 ≤ i < j ≤ p}. For α = (i, j) ∈ I, set Bα = {(k, l) ∈ I; one o f k and l = i or j but (k, l) , α},

ηα = |
∑mn

m=1 Y∗m,i, j|, t = vn and Aα = Ai j = {|
∑mn

m=1 Y∗m,i, j| > νn}. By Lemma 3.7,

P(W′

n ≤ νn) ≤ e−λn + b1,n + b2,n. (24)

Evidently

λn =
p(p − 1)

2
P(A12),

b1,n ≤ 2p3P(A12)2 and b2,n ≤ 2p3P(A12A13).
(25)

Remember that
∑mn

m=1 Y∗m,i, j is a sum of i.i.d. normal random variables with mean zero and variance∑mn
m=1 Eu2

m,i, j. Recall (15). We have

P(A12) = P


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ > νn

 = P


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ > (2 − t)
√

n log pn


= P


∣∣∣∑mn

m=1 Y∗m,1,2
∣∣∣√∑mn

m=1 Eu∗2m,1,2

>
(2 − t)

√
n log pn√∑mn

m=1 Eu∗2m,1,2


= 2

1 −Φ
 (2 − t)

√
n log pn√∑mn

m=1 Eu∗2m,1,2




≤ C

√∑mn
m=1 Eu∗2m,1,2

(2 − t)
√

2πn log pn
exp

− (2 − t)2n log pn

2
∑mn

m=1 Eu∗2m,1,2

 = O
( 1

nτ(2−t)2/2

)

(26)

as n→∞. Provided E|X1,1|
4+4τ+ε < ∞ and vn/

√
n log pn → 2 − t,

P (A12A13) = P


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ νn,

∣∣∣∣∣∣∣
mn∑

m=1

Y∗m,1,3

∣∣∣∣∣∣∣ ≥ νn

 . (27)

The two events in (27) are conditionally independent given Y∗m,i, j’s. P1 and E1 represent the conditional
probability and expectation of {Y∗m,i, j; 1 ≤ m ≤ mn, 1 ≤ i, j ≤ pn}, respectively. Then the probability in (27) is

E

P1


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ (2 − t)
√

n log pn


2 . (28)
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Set

An(s) :=

1
n

∣∣∣∣∣∣∣
mn∑

m=1

(∣∣∣Y∗m,1,2∣∣∣s − E
∣∣∣Y∗m,1,2∣∣∣s)

∣∣∣∣∣∣∣ ≤ δ̃


for s ≥ 2 and δ̃ ∈ (1, 1
2 ). Choose β ∈ (a2 + 2, q/(a2 + 1)) and r = a2 + 1. Let ζm =

∣∣∣Y∗m,1,2∣∣∣β − E
∣∣∣Y∗m,1,2∣∣∣β for

m = 1, 2, · · · ,mn. Then E |ζ1|
r < ∞. By the Chebyshev inequality and Lemma 3.4,

P(An(β)c) = P


∣∣∣∣∣∣∣

mn∑
m=1

ζm

∣∣∣∣∣∣∣ > nδ̃

 ≤ E
∣∣∣∑mn

m=1 ζm

∣∣∣r
(nδ̃)r

= O(n− f (r)) (29)

as n → ∞, where f (r) = r/2 if r ≥ 2, and f (r) = r − 1 if 1 < r ≤ 2. Let {ζ′m; 1 ≤ m ≤ mn} be an independent
copy of {ζm; 1 ≤ m ≤ mn}. Then since (29), P(|

∑mn
m=1 ζm| ≤ nδ̃/2) ≥ 1/2 for sufficiently large n, it follows that

P


∣∣∣∣∣∣∣

mn∑
m=1

ζm

∣∣∣∣∣∣∣ > nδ̃

 ≤ 2P


∣∣∣∣∣∣∣

mn∑
m=1

(ζm − ζ
′

m)

∣∣∣∣∣∣∣ > nδ̃/2

 = O
(
n− f (r)

)
(30)

by repeating (29). Given an integer j ≥ 1, let ν = nδ̃/4 j. Then by Lemma 3.6, there are positive constants C j
and D j such that

P


∣∣∣∣∣∣∣

mn∑
m=1

(ζm − ζ
′

m)

∣∣∣∣∣∣∣ > nδ̃/2

 = P


∣∣∣∣∣∣∣

mn∑
m=1

(ζm − ζ
′

m)

∣∣∣∣∣∣∣ > 2 jν


≤ C jP

(
max

1≤m≤mn

∣∣∣ζm − ζ
′

m

∣∣∣ > ν) +D jP


∣∣∣∣∣∣∣

mn∑
m=1

(
ζm − ζ

′

m
)∣∣∣∣∣∣∣ > ν


j

.

Since E|ζ1|
r < ∞, P(max1≤m≤mn |ζm − ζ′m| > ν) ≤ mnP(|ζ1 − ζ′1| > ν) = O(n1−r). By the same argument as the

equality in (30), we obtainP


∣∣∣∣∣∣∣

mn∑
m=1

(
ζm − ζ

′

m
)∣∣∣∣∣∣∣ > ν




j

= O(n− j f (r)).

Take j = [(r − 1)/ f (r)] + 1. It follows that

P


∣∣∣∣∣∣∣

mn∑
m=1

(ζm − ζ
′

m)

∣∣∣∣∣∣∣ > nδ̃/2

 = O(n1−r) (31)

as n→∞. Combining (29), (30) and (31), we obtain that

P(An(β)c) = O(n1−r)

as n→∞. By the same arguments the above still holds if β is replaced by 2. Consequently,

P (A12A13) = E

P1


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ (2 − t)
√

n log pn


2

≤ E

P1


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ (2 − t)
√

n log pn


2

IAn(s)∩An(2)

 + P(An(s)c).

(32)
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Since

P1


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ (2 − t)
√

n log pn


=P1


∣∣∣∑mn

m=1 Y∗m,1,2
∣∣∣√∑mn

m=1 Eu∗2m,1,2

≥
(2 − t)

√
n log pn√∑mn

m=1 Eu∗2m,1,2


≤C exp

− (2 − t)2n log pn

2
∑mn

m=1 Eu∗2m,1,2

 ,
(33)

we can obtain

P1


∣∣∣∣∣∣∣

mn∑
m=1

Y∗m,1,2

∣∣∣∣∣∣∣ ≥ (2 − t)
√

n log pn


2

IAn(s)∩An(2)

≤C exp

− (2 − t)2n log pn∑mn
m=1 Eu∗2m,1,2

 = O
(
nb−(2−t)2

) (34)

for any b > 0. Choosing both b and t small enough, we obtain

e−λn ≤ e−nt
, b1,n ≤

1
√

n
and b2,n ≤

1
√

n
(35)

for sufficiently large n. Then (22) follows from (24) and (35).

Lemma 3.15. Under the condition of Theorem 2.1, take Tn = max1≤i< j≤pn

∣∣∣∣S′n,i, j∣∣∣∣, then

lim sup
n→∞

Tn√
n log pn

≤ 2σ a.s. (36)

lim inf
n→∞

Tn√
n log pn

≥ 2σ a.s. (37)

Proof. S′n,i, j =
∑n

k=1(Yk,i, j − EYk,i, j) =
∑mn

m=1 um,i, j +
∑mn

m=1 vm,i, j +
∑n

k=Nmn+1(Yk,i, j − EYk,i, j). By Markov inequality
and Lemma 3.2, for ∀ δ′ > 0, we obtain

P

 max
1≤i< j≤pn

∣∣∣∣∣∣∣
mn∑

m=1

vm,i, j

∣∣∣∣∣∣∣ ≥ δ′√n log pn

 ≤ C
p2

nE
∣∣∣∑mn

i=1 vi,1,2

∣∣∣q(
n log pn

)q/2

≤ C
p2

nm
q
2
n q

q
2
n

(
E
∣∣∣X1,1X1,2

∣∣∣2 I{|X1,1X1,2| ≤ nµ}
) q

2

(
n log pn

)q/2

+C
p2

nmnqnE|X1,1X1,2|
qI{|X1,1X1,2| ≤ nµ}(

n log pn
)q/2

≤ C
n2τ+ q

2 (1−ρ+αρ)(
n log pn

)q/2 + C
n2τn1−ρ+αρnµq(

n log pn
)q/2

≤ C
1(

log pn
) q

2 n(ρ−αρ) q
2−2τ
+ C

1(
log pn

) q
2 n(1−2µ) q

2+ρ−αρ−1−2τ
= O

( 1
n1+ε′

)
,
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for ε′ > 0 and sufficiently large q, and for ∀ δ′ > 0,

P

 max
1≤i< j≤pn

∣∣∣∣∣∣∣∣
n∑

k=Nmn+1

(Yk,i, j − EYk,i, j)

∣∣∣∣∣∣∣∣ ≥ δ′√n log pn


≤ C

p2
nE|

∑n
k=Nmn+1(Yk,1,2 − EYk,1,2)|q

(n log pn)q/2

≤ C
p2

n(zn + qn)q/2
(
E
∣∣∣X1,1X1,2

∣∣∣2 I{|X1,1X1,2| ≤ nµ}
) q

2

(n log pn)q/2

+C
p2

n(zn + qn)E
∣∣∣X1,1X1,2

∣∣∣q I{|X1,1X1,2| ≤ nµ}

(n log pn)q/2

≤ C
n2τ (nρ + nαρ)q/2

nq/2 (
log pn

)q/2 + C
n2τ(nρ + nαρ)nµq

nq/2 (
log pn

)q/2

≤ C
(nρ + nαρ)q/2

n
q
2−2τ (log pn

)q/2 + C
nρ + nαρ

n(1−2µ) q
2−2τ(log pn)q/2

= O
( 1

n1+ε′

)
,

for sufficiently large q.
By Lemma 3.1, we can construct the independent random variables {u∗m,i, j; 1 ≤ m ≤ mn}, {u∗m,i, j; 1 ≤ m ≤

mn} has the same distribution as {um,i, j; 1 ≤ m ≤ mn}, andP(|um,i, j − u∗m,i, j| ≥ 6φ(|Im,n|)) ≤ 6φ(|Im,n|). We have
that

P

 max
1≤i< j≤pn

∣∣∣∣∣∣∣
mn∑

m=1

(
um,i, j − u∗m,i, j

)∣∣∣∣∣∣∣ ≥ δ′√n log pn


≤ p2

nP


∣∣∣∣∣∣∣

mn∑
m=1

(
um,i, j − u∗m,i, j

)∣∣∣∣∣∣∣ ≥ δ′√n log pn


≤ p2

nmnP(|ui,1,2 − u∗i,1,2| > 6φ(|I1,n|))

≤ Cn2τ+1−ρn−Tαρ
≤

1
nTαρ+ρ−1−2τ = o

( 1
n1+ε′

)
,

for T > 6 + 8τ + ε. Let u∗m,i, j =
∑

k∈Hm,n
(Yi

k,i, j − EYi
k,i, j), 1 ≤ m ≤ mn, where Yi

k,i, j = Xi
k,iX

i
k, jI{|X

i
k,iX

i
k, j| ≤ nµ},

{Xi
k, j; k ∈ Hi,n} is an independent replication of {Xk, j; k ∈ Hi,n}. Thus, we only need to prove

(1) lim sup
n→∞

max1≤i< j≤pn

∣∣∣∣∑mn
m=1 u∗m,i, j

∣∣∣∣√
n log pn

≤ 2σ a.s.

(2) lim inf
n→∞

max1≤i< j≤pn

∣∣∣∣∑mn
m=1 u∗m,i, j

∣∣∣∣√
n log pn

≥ 2σ a.s.

∑mn
m=1 u∗m,i, j =

∑mn
m=1

(
u∗m,i, j − Y∗m,i, j + Y∗m,i, j

)
, where Y∗m,i, j, 1 ≤ m ≤ mn is a sequence of independent normal
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random variables with variance Var
(
u∗m,i, j

)
, 1 ≤ m ≤ mn. Since Lemma 3.5, we have that

P

 max
1≤i< j≤pn

∣∣∣∣∣∣∣
mn∑

m=1

(
u∗m,i, j − Y∗m,i, j

)∣∣∣∣∣∣∣ ≥ δ′√n log pn


≤ p2

nP


∣∣∣∣∣∣∣

mn∑
i=1

(
u∗i,1,2 − Y∗i,1,2

)∣∣∣∣∣∣∣ ≥ δ′√n log pn

 ≤ C
p2

n
∑mn

i=1 E
∣∣∣u∗i,1,2∣∣∣q(

n log n
) q

2

≤ C
p2

nmnz
q
2
n (E|Xi

k,1Xi
k,2|

2I{|Xi
k,1Xi

k,2| ≤ nµ})
q
2

(n log pn)
q
2

+C
p2

nmnznE|Xi
k,1Xi

k,2|
qI{|Xi

k,1Xi
k,2| ≤ nµ}

(n log pn)
q
2

≤ C
p2

nmnnρ
q
2(

n log pn
) q

2

+ C
p2

nmnnρnµq(
n log pn

) q
2

≤ C
1

(log pn)
q
2 n(1−ρ) q

2+ρ−1−2τ
+ C

1

(log pn)
q
2 n(1−2µ) q

2−1−2τ
= O

( 1
n1+ε′

)
,

for sufficiently large q. Thus, since Lemma 3.13, Lemma 3.14 and Borel-Cantelli lemma, we can obtain the
result.

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Recall Wn in (11). Choose a = 1/3, Under the condition that E|X1,1|
4+4τ+ε < ∞,

We have from the triangle inequality, Lemma 3.10 and Lemma 3.11 that

|nLn −Wn| ≤ 9nΓn − X′nXn9 ≤ 4n−1/3Wn + 2n1/3 a.s. (38)

as n is sufficiently large. To prove Theorem 2.1, we need to show that

lim
n→∞

Wn√
n log pn

= 2σ a.s. (39)

Take Tn = max1≤i< j≤pn

∣∣∣∣S′n,i, j∣∣∣∣, we can observe that

|Wn − Tn| ≤ max
1≤i< j≤pn

∣∣∣∣∣∣∣
n∑

k=1

Xk,iXk, jI
{
|Xk,iXk, j| ≥ nµ

}∣∣∣∣∣∣∣ =: Un.

Recall 1/2 − δ < µ < 1/2, where δ > 0 sufficiently small, and 0 < δ < 1
2 −

4+8τ
(4+4τ+ε)(2+4τ+ε) . By Lemma 3.2, let
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q = 4 + 4τ + ε, for any δ′ > 0,

P
(
Un ≥ δ

′
√

n log pn

)
≤P

 max
1≤i< j≤pn

∣∣∣∣∣∣∣
n∑

k=1

Xk,iXk, jI
{
|Xk,iXk, j| ≥ nµ

}∣∣∣∣∣∣∣ ≥ δ′√n log pn


≤p2

n

E
∣∣∣∑n

k=1 Xk,1Xk,2I{|Xk,1Xk,2

∣∣∣ ≥ nµ}|q(
δ′

√
n log pn

)q

≤

Cn2τn
q
2

(
E
∣∣∣X1,1X1,2

∣∣∣2 I
{
|X1,1X1,2| ≥ nµ

}) q
2

nq/2(log pn)q/2

+
Cn2τ+1E

∣∣∣X1,1X1,2

∣∣∣q I
{
|X1,1X1,2| ≥ nµ

}
nq/2(log pn)q/2

≤

Cn2τ
(
E
∣∣∣X1,1

∣∣∣2 I
{
|X1,1| ≥ n

µ
2

}
E|X1,2|

2 + E
∣∣∣X1,2

∣∣∣2 I
{
|X1,2| ≥ n

µ
2

}
E|X1,1|

2
) q

2

(log pn)q/2

+
Cn2τ+1E

∣∣∣X1,1

∣∣∣q I
{
|X1,1| ≥ n

µ
2

}
E|X1,2|

q + Cn2τ+1E
∣∣∣X1,2

∣∣∣q I
{
|X1,2| ≥ n

µ
2

}
E|X1,1|

q

nq/2(log pn)q/2

≤

C
(
E|X1,2|

2 + E|X1,1|
2
) q

2

(log pn)
q
2 n

µ(2+4τ+ε)(4+4τ+ε)
4 −2τ

+
C

n
4+4τ+ε

2 −2τ−1(log pn)q/2
= o

( 1
n1+ε′

)
.

(40)

By the Borel-Cantelli lemma,

Un√
n log pn

→ 0 a.s. as n→∞.

To prove (39), we need to show that

lim
n→∞

Tn√
n log pn

= 2σ a.s.

Lemma 3.15 actually says that limn→∞ Tn/
√

n log pn = 2σ. The reason we did not combine Lemma 3.15
(36) and (37) as a single limit is that the proof of the combined one is relatively long. (39) then follows
immediately from Lemma 3.15, Applying (39), it follows that 4n−1/3Wn = O(n1/6 log pn) almost surely. Hence
nLn −Wn = O(n1/3) a.s. Theorem 2.1 then follows immediately from (39), then we complete our proof of
Theorem 2.1.

4. Examples

In certain applications such as the construction of compressed sensing matrices, the means µi = EX(i)

and µ j = EX( j) are given and one is interested in

ρ̃i j =
(X(i)
− µi)T(X( j)

− µ j)

∥X(i) − µi∥ · ∥X( j) − µ j∥
, 1 ≤ i, j ≤ p

and the corresponding coherence is defined by

L̃n = max
1≤i< j≤p

|ρ̃i j|.
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Compressed sensing is a fast developing field which provides a novel and efficient data acquisition
technique that enables accurate reconstruction of highly undersampled sparse signals. It has a wide range
of applications including signal processing, medical imaging, and seismology. In addition, the development
of the compressed sensing theory also provides crucial insights into high-dimensional regression in statistics.
One of the main goals of compressed sensing is to construct measurement matrices Xn×p, such that for any
k-sparse signal β ∈ Rp, one can recover β exactly from linear measurements y = Xβ using a computationally
efficient recovery algorithm.

Two commonly used conditions are called restricted isometry property (RIP) and mutual incoherence
property (MIP). Roughly speaking, the RIP requires subsets of certain cardinality of the columns of X to be
close to an orthonormal system and the MIP requires the pairwise correlations among the column vectors
of X to be small.

Example 4.1. Given a matrix Φ and any set T of column indices, we denote by ΦT the n × #(T) matrix composed of
these columns. Similarly, for a vector x ∈ RN, we denote by xT the vector obtained by retaining only the entries in
x corresponding to the column indices T. We say that a matrix Φ satisfies the Restricted Isometry Property (RIP) of
order k if there exists a δk ∈ (0, 1) such that

(1 − δk) ∥xT∥
2
ℓN2
≤ ∥ΦTxT∥

2
ℓn2
≤ (1 + δk) ∥xT∥

2
ℓN2

holds for all sets T with #T ≤ k. This condition is equivalent to requiring that the Grammian matrix Φt
TΦT has all of

its eigenvalues in [1 − δk, 1 + δk] (here Φt
T denotes the transpose of ΦT). This was shown by [5].

Example 4.2. A commonly used condition is the mutual incoherence property (MIP) which requires the pairwise
correlations among the column vectors of Xn to be small. Xn = (X(1),X(2), · · · ,X(p)) = (Xk,i)n×p. It has been shown
that the condition

(2k − 1)L̃n < 1

ensures the exact recovery of k-sparse signal β in the noiseless case where y = Xβ, and stable recovery of sparse signal
in the noisy case where y = Xβ + z. Here z is an error vector, not necessarily random. The limiting laws derived in
this paper can be used to show how likely a random matrix satisfies the MIP condition. This was shown by [8].
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