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Abstract. Let A be a prime *-algebra. In this paper, we suppose that ® : A — A satisfies
@[[A, B], Cls = [[®(A), B], Cl+ + [[A, D(B)], Cl+ + [[A, B], ®(C)]+

where [A,B] = AB+ BA and [A,B]; = A'B + B*'A for all A, B € A. Then, ® is additive *-derivation.

1. Introduction

Let R and R’ be rings. We say the map @ : R — R’ preserves product or is multiplicative if ®(AB) =
D(A)D(B) for all A, B € R. The question of when a product preserving or multiplicative map is additive was
discussed by several authors, see [17] and references therein. Motivated by this, many authors pay more
attention to the map on rings (and algebras) preserving Lie product AB — BA or Jordan product AB + BA (for
example, see [1-3,5-7, 9, 12, 15, 16, 20, 21]). These results show that, in some sense, Jordan product or Lie
product structure is enough to determine the ring or algebraic structure. Historically, many mathematicians
devoted themselves to the study of additive or linear Jordan or Lie product preservers between rings or
operator algebras. Such maps are always called Jordan homomorphism or Lie homomorphism. Here we
only list several results [10, 11, 13, 17-19].

Recall that a map @ : R — R is said to be an additive derivation if

O(A + B) = ®(A) + O(B)
and
®(AB) = ©(A)B + AD(B)

for all A,B € R. A map  is additive »-derivation if it is an additive derivation and ®(A*) = O(A)".

Derivations are very important maps both in theory and applications, and have been studied intensively
([4, 22-24]).
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Recently the authors of [8] discussed some bijective maps preserving the bi-skew Jordan product A*B +
B*A between von Neumann algebras with no central abelian projections. In other words, @ holds in the
following condition

D(A'B + B*'A) = D(A)'D(B) + O(B)' D(A).

They showed that such a map is sum of a linear *-isomorphism and a conjugate linear *-isomorphism.
Moreover, The authors of [14] introduced the concept of Lie triple derivations. A map ® : A — Aisa
nonlinear skew Lie triple derivations if

®([[A, B]., Cl.) = [[®(A), B]., C]. + [[A, ©(B)]., C]. + [[A, B]., P(C)].

for all A,B,C € A where [A, B]. = AB — BA". They showed that if ® preserves the above characterizations
on factor von Neumann algebras then @ is additive *-derivation. In [25], we proved the above problem on
prime +-algebras.

In [26], we considered a map @ on prime *-algebra A which holds in the following conditions

(D(AO/\BQ/\ C):CD(A)O/\BOAC-FAO/\(D(B)O/\ C)+A<>)\B<>/\CD(C)

where A o) B = AB+ ABA" such that a complex scalar |A| # 0,1, then @ is additive. Also, if ®(!) is self-adjoint
then @ is *-derivation.

On the other hand, in [27], the author considered the nonlinear mixed Lie triple derivations on prime
+-algebra. They showed that the map ® which satisfies

([[A, B]., C]) = [[®(A), B]., C] + [[A, ©(B)]., C] + [[A, Bl., P(C)]

is an additive *-derivation.
Motivated by the above results, we prove that if A is a prime *-algebra then the map ® : A — A which
satisfies

O[[A, B], Cl+ = [[®(A), B, Clt + [[A, D(B)], Cls + [[A, B], ®(C)]+
is additive =-derivation, where [A,B] = AB+ BA and [A,B]; = A’ B+ B*Aforall A,B € A.
We say that A is prime, that is, for A, B € A if AAB = {0}, thenA=0o0r B =0.
2. Main Results
Our main theorem is as follows:
Theorem 2.1. Let A be a prime -algebra. Let ® : A — A satisfies in
[[A, B], Cl+ = [[®(A), B, Cl+ + [[A, D(B)], Cl+ + [[A, B], D(C)]+
where [A,B] = AB + BAand [A,Bly = A'B + B*A for all A, B € A. Then, ® is additive »-derivation.

Proof. Let P; be a nontrivial projection in A and P, = Iq — P;. Denote A;; = PiAP;, i,j = 1,2, then
A= lerjzl Ajj. For every A € A we may write A = Ay; + Agp + Az1 + Ap. In all that follow, when we write
Ajj, it indicates that A;; € A;;. For showing additivity of ® on A, we use above partition of A and give
some claims that prove @ is additive on each A;j, i,j = 1,2.

We prove the above theorem by several claims.
Claim 1. We show that ®(0) = 0.

By assuming A = B = C = 0 then we obtain the desired result.
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Claim 2. Forall A;j € Ajj (i, j € {1,2} such that i # j) we have
O(Aii + Aij) = O(Ai) + O(Ay)).

We show that
T = O(A;i + Ajj) — (D(Ai) + O(A;j) =0

For any Xy such that # k € {1,2} and i # | we have
(g o] [ tas-aa] ] [ ]
[[ A + Ai,-] ,Xlk]
ol[ia ) o) )
[l ( ) i+ 4 'kaL * [[5 (i) + D(A)| ’XlkL
+|[5 40+ 45 o]

So [[%, T] , X,kL = 0 then we have

I
[I:EITH + T+ Ty + T22] /XlkL-
Since A is prime, from the above equation, we have T1; =0 for/ =1and Ty =0for/ =2
Similarly by applying iXjy in the above equation and the primeness of A we have Ty, = 0 for / = 1 and

T21 =0forl=2.
Now we show that T;; = Ti1p =0forl=2and Ty, =Ty =0forl=1.

Forl # k € {1,2} we have
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So we have

o[z ([z-40+ 4] ) ]
-o5([[54] ] ]} +o[5
[+(3) ([[ Al xl ) PIH[
[zl o
‘[[é @(Hz ] ), )_ o+ [l5

[l wan] ] )21, [[5
(5[40 ] | ool ]|
Al 2wl -z

e

i) ([5eai]  )] 2)
[o(5) -4+ au] ] )]

:»— D(A; )+®(A])] X,ku Pl]

P
N
545+ 4:] oo )] ],

(s Jowe],
From (1) and (2) we have

Nl N — N~ N —

5[5 oes an] ] |2, = [[5[[5 000+ oan] 5] 2]

so [(([57]. 5] )], =o. ereore

(
(
(
(
5[4 o] )2 +[[5([[5-4]
(
(
(
(

O (sl )] [ o2 4w o),

I I 1
H—,(H—,Tu + T+ Ty + Tzz] erk] ) ;Pl] =0.
27\l2 17t

From the above equation and primeness of A we have Ty = To; =0forl=1and T1; = T1p = 0for [ = 2.

Claim 3. For each A;j € Ajj (i, j € {1,2}), we have

We show that

2
i|= 2®(Aij)
il

2
Z D(Aif)
ij=1

+ CD(Aii).

+ DAy [ =

6684
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Fori # jand [ # k € {1, 2}, from Claim 2, we have

2
I I
(E)' ZAz] + Aii|, Xie| + E’CD ZAij + Aii ||, Xi
ij=1 + i,j=1 +
1 I(%
+ 5, A + Aii |, O(Xik) 5 ZAU + Aii |, (Xik)
- = . i1 .
I 1%
= q)(ﬁ)’ Ajj | + Aii|, X | + 5 Z@(Aij) + O(Ai) |, Xik
i,j=1 +
I
+ [E’[ZAif + Aii |, D(Xk)
L \ij=1 t

So [[%, T] ,XlkL = 0. Therefore
T =T =Tn=Tn=0.

Claim 4. For each A;j € A;; (i, j € {1,2}) we have

Zz]

i,j=1

- Z D(A;).

i,j=1

6685

LetT =@ (Z%jzl Al-j) - 21‘2,]':1 ®(A;j). We prove that T = 0. For [ # kand [, k € {1,2}, from Claim 3, we have

2 2 2
I I 1
‘D(E),ZAU Xi| +|[5P ZAij » Xik +[ ErZAij , O(Xik)
i,j=1 + i,j=1 + i,j=1
T, 2
= E/Z\?{i] /Xlk
L =t +
1 (& I
=0f|= Aii|+An |, Xi| + Q|| =, A2, X
2/ Z 1] 111/ Ik [[2/ 22] 7 lk:L
L \ig=t t
(T
=0 E'ZAAU , Xk
L =1
I\ & I ¢
= ‘D(E),i;z‘lﬁ Xi| + E,;‘D(Aij) erk + IJZ{AU , Xlk

Hence [[ ] Xlk] = 0 then [[’, Tij] ,XlkL = 0 therefore

y2
i,j=1
Ti1 =T =Ty =Ty =0.

Claim 5. For each Ajj, Bij € A;; we have

DA+ Bij) + D(A]; + By)) = D(Ayj) + D(A}) + D(Byj) + D(B;).

+
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From Claim 4 we have

* * I *
D(Ajj + Byj) + ©(A}; + B}) = [[E,Pi + Ai]] Pj+ Bz‘jL
[T I * I *
_ »_¢(§),Pi " Ai]] P+ BijL " [[E,qn(P,- + Ai].)] P+ BUL

+ [i,Pi + A:]] ,@(P]‘ + B,‘]‘):L

112
- I . I .

= __(D(E)’Pi + Az’j] ,Pj + Bi]‘L + [[E, O(P;) + q)(Aij)] ,Pj + BijL
- )

+ __ElPi + Aij] ,(D(Pj) + (D(B,']')L

I . I
o|[z4i] 2 + | 37 2],

= D(A;) + B(A]) + D(Byj) + D(B)

Claim 6. For each A;;, B;; € A;; (i € {1,2}) we have

D(Aji + B;j) = O(A;;) + D(By).

We show that T = ®(A;; + B;;) — D(A;;) + O(B;;) = 0. We can check that

P R Ry o P
-o[[z4, ,.] ol F ]

:,[ (3)-4:] ]+ [z 0] 71,

+ _[2 A,],CD(P]-)]

*;[‘D(i) ) 7 +[[30@0] 7,

e

- _:[Cp(é)'Aii + Bii] erL + [[é/q)(Aii) + CD(B,-I-)] ,p]lr

+ »[é,A,v,- ; Bii] ,cp(Pj)]+ .

So [[%, T] ’Pf]+ = 0 therefore T;j = Tj; = Tj; = 0.
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On the other hand, from Claims 4 and 5, we have
I I I
[[(D(E)/Aii + Bii] /XijL + [[Erq)(Aii + Bii)] /XijL + [[E/Aii + Bii] /CD(Xij)L

I
=0 [[EzAii + Bii] ,XUL
= (D(A;-X,']‘ + B;X,'j) + (D(X;J-A,‘,' + X;Bii)
= (D(A;Xl‘j) + q)(B:,'Xij) + CD(X;]»Aii) + CD(X;]-B,‘,')
= CD(A;X,] + X:]Azz) + CD(BZXU + X:]B“)
I I
=0 [[E/Aii rXijL) + [[ErBii] /XijL

O O N L

+ [[é,Aii + Bii] ’(D(Xij)]+ '

So [[%, T], Xij]:f = (0 then T}; = 0. Hence, the additivity of ® comes from the above claims. In the rest of this
paper, we show that @ is *-derivation.

Claim 7. We show that ®(I) = ®(il) = 0.

q)([[lr I]/ I]‘I‘) = [[CD(I)/ I]/ I]‘I‘ + [[I/ (I)(I)], I]‘I‘ + [[Ir I]/ (D(I)]‘l'
So @(I) = %(CD(I) + @(I)"). We say that P(]) is self-adjoint. It follows that ®(I) = %(@(1) + ®(I)) therefore
d(I) = 0.
Similarly,

O([[L, 1, ill+ = [[DD), 11, il]+ + [[L, P(D)], ill+ + [[L, 1], PGD]+.
It follows that

(i) = — (). (©)
So,

+ [[L, iI], D@ED ]+

It follows that

D(l) = i(D@ED)" — D). 4)
Finally, from (3) and (4), we have ®(i[) =0
Claim 8. @ preserves star.

It is easy to check that

o[ ], = [ e,

equivalently,
DA+ A") = D(A) + D(A)".
So D(A)* = D(AY).
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Claim 9. ®(iA) = iD(A)
By an easy computation, we can write
O(IIL iA] Ty = O([[L, ~AL il

then
[[L, ®GEA)], 1]+ = ([[L, P(-A)], i]+.

So

DAY + D(A) = iD(=A) — iD(-A).

Also
D[[I,iA], i+ = ®[[-I,-A], I]+
it yields
[[L, ©GA)], ills = ([[-1, P(—A)], ill+.
So

—D(iA)" + O(iA) = iD(A) + iD(A)".
Therefore, from (5) and (6), we have ®(iA) = iD(A)
Claim 10. We prove that ® is derivation.
For every A, B € A we have
* * I *
D(AB + B'A") = @[[E,A ],B]
= [[zrow] #] +[[5.4] o)
- 2/ 7 2/ 7
= O(A")'B + O(B)'A" + B'O(A") + AD(B).
On the other hand, since @ preserves star, we obtain
D(AB + B'A™) = ®(A)B + AD(B) + B'D(A™) + D(B) A"
So, from (7), we have

D(i(AB — B'A*) = D(A(B) + (iB)' A"
= ®(A)(iB) + AD(iB) + (iB)' D(A") + D(iB)* A"

Therefore, from Claim 9 it follows that
O(AB — B*'A*) = O(A)B + AD(B) — B'O(A™) — O(B)A™.
By adding equations (7) and (8), we have
D(AB) = ®(A)B + AD(B).

This completes the proof.
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