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Abstract. This paper is dedicated to the pursuit of Parseval-Goldstein type relations for the Kontorovich-
Lebedev transform and the Mehler-Fock transform of general order.

1. Introduction and Preliminaries

The Kontorovich-Lebedev transform, introduced by M. 1. Kontorovich and N. N. Lebedev in 1938, is
a specific form of index integral transformation. It employs the Macdonald function, a modified Bessel
function of the second kind, with a purely imaginary index as its kernel. This transform has been effectively
applied to address boundary value problems in fields such as diffraction theory and electrodynamics, as
evidenced by references [9, 10]. Multiple authors have presented a range of definitions for the Kontorovich-
Lebedev transform. For a comprehensive understanding, one refer to the following references [6, 7, 13, 15,
16, 19-21, 24-26]. In [18], there is a comprehensive and systematic examination of various general families
of integral transforms with kernels involving Bessel, Whittaker and other special functions.

The Kontorovich-Lebedev transform of a suitable complex-valued function f defined in R, is given by
[21]

(F (1) = fo FKi(x)dx, T>0, 1.1)

where K;;(x) is the modified Bessel function of the third kind (or the Macdonald function) defined by [2,
Chapter 7]

Tt

Kir(x) = ZsinGrn) [[-ir(x) — Iz ()],
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where
0 (%)i”(+2n
I; = _
i(x) nz;a n'T'it+n+1)

We first recall from [2, p. 82, Entry 21] that

Kir(x) = fo N eTx N cos(tu)du, x >0, T> 0,
which readily yields the following inequality

Kz (x)] < fo ) e7xeoshugy = Ko(x). (1.2)
On the other hand, from [27, p. 172, Entry 3] and [27, p. 173, Entry 4] we have that

Ko(x) ~ —ln(%) as x— 40

Vre™

2 Wx
where C = ¢” and y = 0.5772 - - - is the Euler-Mascheroni constant. Observe that Ky is unbounded in (0, o).
Set

Ko(x) ~

as x — +oo,

(F*9)(x) = fo HOKn (), x> 0. 13

For g € L'(R,) the integral (1.3) converges for each x > 0 since |(F *g)(x)| < fooo |g(7)ldT - Ko(x) < o0.
Now observe that for each 7 > 0

(F )] < fo @K@ < oo,

then for each f € L'(R., Ko(x)dx) the integral (1.1) converges for each 7 > 0.
The concept of the Mehler-Fock transform originated from the pioneering work of F. G. Mehler [12] and V.
A. Fock [5]. It was subsequently developed into an independent integral transform, and its applications
extended to address a wide range of mathematical physics problems. Numerous authors have conducted
comprehensive investigations of this transform. For detailed study, one can refer to the following references,
amongst others [6-8, 11, 16, 17, 22, 23].

We also consider the Mehler-Fock transform of general order u € C of a suitable complex-valued function
f defined in R, is given by [21]

(Fuf)() = Lm f(x)P:gHT(coshx)dx, >0, R(u) > _71, (1.4)

where P:i ir (coshx) is the associated Legendre function of the first kind [1, Chapter 3].
We next recall the following integral representation [1, p. 156, Entry 7].

sinh x

P*  (coshx)= ————
i O = 5, VAl (p + 3)

TU
) -1
f (cosh x + sinh x cos u)_%m‘“(sin udu, x>0, >0, R(u) > >
0

It follows that
sinh x
2R 1t |F(y +

I'(R 1 _
= L)TZ)P_?{(”)(coshx), x>0, t>0, Ru) > —1 (1.5)
P+ 2

7T
P .. (coshx)| - )| f (cosh x + sinh x cos u)~2~RM) (gin u)? 2@ gy,
1 O Jo
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where [14, p. 171, Entry 12.08]

xH

u N
P_%(coshx) —ZPF(/J ) as x— +0
_ 2 -
PH(coshx) ~ ———xe? as x — 400,
—%( ) Vral(u + 3)

observe that for R(u) >0, Pf?{(“ )(cosh x) is bounded and so
~2

(R
P (coshx)| < M JR(#)( osh x)
~1+it |r([u + 2)|
< My, for some M, > 0. (1.6)
Set
(Frg)(x) = f g(mP” . (coshx)dx, x >0, R(y) > _71 (1.7)
0 3 1T

For g € L(R,) the integral (1.7) converges for each x > 0 since |(7:; g (x)‘ < fooo lg(T)ldT - P“K(F)(cosh X) < o0.

—‘R(M

Now, we consider the space L' (1R+, %(”)(cosh x)dx) Observe that for f € L! (]R+, (coshx)dx) the

integral (1.4) converges for each 7 > 0 since |(?-'y f)(’[)‘ < fo P_%(‘,l)(cosh x)| f(xX)ldx < oo. Also observe that
for R(u) > 0: LY(Ry) € L! (]R+,P ”)(cosh x)dx) since P_ (H)(cosh x) is bounded. Furthermore it is a proper
2

subset as the function f(x) = x" ¢ L!(R,) for any r. However f(x) = x" € L (]R+, ‘1"\(# )(coshx)dx) for

r>-1-R(u).

The CX(R;), k € IN, denotes as it is usual the space of compactly supported functions on R which are
k-times differentiable with continuity.

The Parseval-Goldstein relations for integral transforms establish a connection between the norm in the
original domain and its transformed counterpart [3, 4]. The present article deals with the study of Parseval-
Goldstein type relations for the Kontorovich-Lebedev transform and the Mehler-Fock transform of general
order.

The content of this article is as follows: Section 1 is concerned with definitions and useful results
which are used in the entire sequel. Section 2 deals with continuity features over Lebesgue spaces of the
Kontorovich-Lebedev transform and its adjoint transform and Parseval-Goldstein type relations for the
Kontorovich-Lebedev transform. Section 3 focuses on exploring continuity properties within Lebesgue
spaces of both the Mehler-Fock transform of general order and its adjoint transform, as well as delving into
Parseval-Goldstein type relationships associated with the Mehler-Fock transform of general order. Section
4 gives concluding notes.

2. Parseval-Goldstein type relations for the Kontorovich-Lebedev transform

2.1. The F transform over the spaces L*(IR.., Ko(x)dx)

Proposition 2.1. The Kontorovich-Lebedev transform F given by (1.1) is a bounded linear operator from L} (IR, Ko(x)dx)
into L°(Ry). If f € LY(R+, Ko(x)dx) then

IF flli=®.) < Ifll R, Ko@)dx)

and F f is a continuous function on R,. Moreover, the Kontorovich-Lebedev transform ¥ is a continuous map from
LY(R+, Ko(x)dx) to the Banach space of bounded continuous functions on R,.
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Proof. Let 1y > 0 be arbitrary. Since the map 7 — Kj;(x) is continuous for each fixed x > 0, we have
Kiz(x) = Kiry(x) as © = 7o.
Further, we have that |KiT (%) = Kiz, (x)| |f(x)| is dominated by the integrable function 2K (x)|f(x)|. Therefore,

by using dominated convergence theorem, we get

|(F (@) = (F )wo)| < f |Kir(x) = Kir, (0| [f@)ldx — 0, as T — 1o.
0
Thus, ¥ f is a continuous function on R,.
Since for each > 0

|(F o)

IA

fo K (Ol F o)l

IA

fo Ko@)l f@ldx = 1fll . ke @.1)

one has that # f is a bounded function.
The linearity of the integral operator implies that the ¥ transform is linear. Also from (2.1) we get that
IF flle=®,) < Ifll (R, ko@)ax) and hence F : LY(R;, Ko(x)dx) — L*(R,) is a continuous linear map. [J

Proposition 2.2. The Kontorovich-Lebedev transform given by (1.1) is a bounded linear operator from L (R, Ko(x)dx)
into L1(R,, w(x)dx), 0 < q < oo, when w > 0 a.e. on Ry and fooo w(x)dx < co.

Proof. Observe that from (2.1) for each 7 > 0
POl < [ Kl
0

Sf Ko@) f ldx = | fllirwr, ko))
0

Then, for 0 < g < oo, one has

( [ I(Tf)(x)lqw(x)dx) < Il koo ( [ w(x)dx)q <o
0 0
O

Remark 2.3. Examples of weights w for Proposition 2.2 are:
@) wx) =1 +x), forr < -1.

(ii) w(x) = €%, forr < 0.

2.2. The transform F* over the spaces L*(IR.)

Proposition 2.4. The F* given by (1.3) is a bounded linear operator from LY (IRy) into L1(R,, w(x)dx), 0 < g < oo,
when w > 0 a.e. on R, and Ko(x) € L1(R,, w(x)dx).

Proof. Observe that for each x > 0

IA

(7 F) @) fo IKie ) D)l

A

< Ko(x)‘f0 |f(T)ldT.
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Then, for 0 < g < oo, one has

(f o w(x)dx)q < Wl ( f (Ko(x))! w(x)dx)q < 0.
| 0
|

Remark 2.5. Examples of weights w for Proposition 2.4 are:

(i) w(x) =", forr > -1.
(ii) w(x) = (1 + x)", forallr.
(iii) w(x) = €%, forr < q; and r = q being q > 2.

2.3. Parseval-Goldstein type theorems
Theorem 2.6. If f € L'(R,, Ko(x)dx) and g € L*(R,), then the following Parseval-Goldstein type relation holds

f (F Hx)gx)dx = f FOF )@ 22)
0 0

Proof. In fact, for each 7 > 0

I(F A<l r, ko) -

Therefore,

j; I(F HOlg(OldT < NIfll R, ko@an 1911w,

Also, foreach x > 0
I(F )0l < f IKiz ()] [g(D)ldT < Ko()lIgllr2 (R, )-
0
Then

f FOIFP@dx < f @Ko @dllgls
0 0

= Ifllrr, Ko @an 191l R, )-

Thus, by using Fubini’s theorem one obtains the relation (2.2). O

Remark 2.7. From this result the transform ¥ becomes the adjoint of the Kontorovich-Lebedev transform ¥ over
LY(R+, Ko(x)dx).

Denote

A, =xDxD, — x% = xzDi +xD, — x> (2.3)
and

A =D xDyx — x* = X*D? + 3xD, + (1 — x%). (2.4)
One has, fork € N,

AY(Kir (1) = (-1 7 Kie(x), 2.5

and so, for f € C*(R,), k€ N,

(f (A;k f)) (1) = (~)}XF F)(T), T > 0. 2.6)
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Theorem 2.8. If f € C*(R,), k € N, and g € L'(R,), then the following Parseval-Goldstein type relation holds

(-1 f (F D@ dx = f (AL )T ) ). @7)
0 0
Proof. For f € C3(R,), then f and A, f € L}(IR,, Ko(x)dx). Also for T > 0,
A = B A K- (x)d
(FaN@ = [ @nekie
- fo () (Ax(Kie (1)) ()
= -1 ) Kiz(x)d
. fo FOK (@ix
= 2FH).

Then for f € CX(R,) and g € L'(R,) and using Theorem 2.6 above, one has
[ () @i = [ o
Thus
- [ e p@ami = [ @i
Also, in general, for f € C*(R,), k € N, and g € L'(R,) one obtains

(1) fo (F gy d = fo (AL H)F ) (x)dx.

O

3. Parseval-Goldstein type relations for the Mehler-Fock transform of general order

3.1. The ¥, transform over the spaces LY(R,, P:z{(m(cosh x)dx)
2

Proposition 3.1. Set R(u) > 5. The Mehler-Fock transform ¥, given by (1.4) is a bounded linear operator from
L (1R+, P~ 2®(cosh x)dx) into L°(Ry). If f € L! (]R+,P_?§(”)(cosh x)dx) then
T2 T2

TR + 3)
2| fl
TG+ 3)|
and F.f is a continuous function on Ry. Moreover, the Mehler-Fock transform ¥, is a continuous map from

L! (IR+,P:?(# )(cosh x)dx) to the Banach space of bounded continuous functions on R,.
2

||7:Hf||L°°(IR+) S —R(u)

Lt (IR+,P (cosh x)dx)

-1
2

Proof. Let 1y > 0 be arbitrary. Since the map 7 — P_’fm (cosh x) is continuous for each fixed x > 0, we have
-2

—u -
P_%m(cosh x) — P_%H,To(cosh X)as t — T.

Further, we have that |f(x)| is dominated by the integrable function

P:g m(cosh xX) — P:g iy (coshx)

T(R(u) + %) —R(u)
—|T(y+%)| P_% (coshx)|f(x)l.



J. Maan, E. R. Negrin / Filomat 38:19 (2024), 6691-6701 6697

Therefore, by using dominated convergence theorem, we get

|(FuH(0) = (Fuf)o)| < f ) ‘ij(cosh x) =P~ (coshx)|If(x)ldx — 0, as T — To.
0 2 27t

Thus, ¥, f is a continuous function on ..
Since for each 7 > 0

IA

|(Fuf)@)]

f‘” ‘P:‘;. (coshx)||f (x)ldx
0 2 1T

TR +3) [ ~R ()
2 h
|r(# + %)| 0 P*% (coshax)lf(vldx

(R 1

3.1)
[T+ 3)]

—R(y)

L1(1R+,P (cosh x)dx)'

-1
2

one has that , f is a bounded function.
The linearity of the integral operator implies that the ¥, transform is linear. Also from (3.1) we get
1 _
that [|F, fllrew,) < TRG)+ ) ) and hence ¥, : L' (]R+,P_Z{(”)(coshx)dx) — L®(R,) is a
2

[T(u+3)] I ||L1(uz+,p’“§<*‘>(coshx)dx
"2

continuous linear map. [

Proposition 3.2. Set R(u) > 5. The Mehler-Fock transform ¥, given by (1.4) is a bounded linear operator from
L (R+,Pj{(m(cosh x)dx) into L1(R,, w(x)dx), 0 < q < oo, when w > 0 a.e. on Ry and fom w(x)dx < oo.

Proof. Observe that from (3.1) for each 7 > 0

f ‘P:‘i .. (coshx)
0 bR
TR +3) [~

IN

| £ (x)|dx

P:?(H )(cosh x)|f (x)ldx

T+ )| Jo
_ [Rw+y,
|r( i+ %)| L (]RMP:?“)(coshx)dx)‘

Then, for 0 < g < oo, one has

1

: T TR+ ) . q
[ wnern) < T B e conond ([ wwas] <o

O

Remark 3.3. Examples of weights w for Proposition 3.2 are:

(i) wx) =1 +x), forr < -1.
(if) w(x) = €™, forr < 0.



J. Maan, E. R. Negrin / Filomat 38:19 (2024), 6691-6701 6698

3.2. The transform F; over the spaces LY(Ry)

Proposition 3.4. Set R(u) > 0. The F; given by (1.7) is a bounded linear operator from LY(R,) into L(Ry). If
f € LY(R,) then

71

and ¥, f is a continuous function on R.. Moreover, the ¥ is a continuous map from LY(IR,) to the Banach space of
bounded continuous functions on Rs.

| &) < Mallfllw,), for some M, > 0,

Proof. Let xo > 0 be arbitrary. Since the map x — P~} ,;(coshx) is continuous for each fixed 7 > 0, we have
T2
K K
Pi%m(coshx) - Pi%m(cosh Xp) s X — Xg.

Further, from (1.6) and being R(u) > 0 we have that:
'P:g m(cosh X) — P:g m(cosh xo)' |f(7)] is dominated by the integrable function 2M,|f(7)|, for some M, > 0.

Therefore, by using dominated convergence theorem, we get

|(77Hf) (x) - (ﬁ,f) (x0)| < j:o 'P:gm(cosh x) — P:gm(cosh xo)||f(T)ldTt — 0, as x — xo.

Thus, 7‘1’[ f is a continuous function on R.

Since for each x > 0
f ‘P_’f _ (coshx)
0 —3+iT

(7))
My j:o |f(7)ldT
< Mullfli,), (3.2)

one has that ¥ f is a bounded function.

IA

|f(D)ldT

IA

A

The linearity of the integral operator implies that the ] is linear. Also from (3.2) we get that ”7:; f ) =R, <

My|lfll v,y and hence 7“; : LY(R;) — L*(R,) is a continuous linear map. [

Proposition 3.5. Set R(u) > ‘71 The ¥ ; given by (1.7) is a bounded linear operator from L'(R,)into L1(R,, w(x)dx),
0 < g < oo, whenw > 0a.e. on Ry and P:‘?(”)(cosh x) € L1(R;, w(x)dx).

Proof. Observe that for each x > 0

f ) ‘Pj ,.(coshx)

0 2

T(R(w) + %) —R () “

e h dr.
|F(y+ %)| 1 (cos x)fo‘ If(D)ldT

Then, for 0 < g < oo, one has

IA

(%) @) F(0)lde

o i T(R(u)+ 1) © g i
( fo ((ﬁlf)(x))qw(x)dx) s‘r(y—_'_%)‘zufllU(K)( fo (Pi?(‘)(coshx)) w(x)dx) < .
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Remark 3.6. Examples of weights w for Proposition 3.5 are:
(1) w(x) =", forr> -1 —-qR(w).
(i) w(x) = (1 +x)", forall r and R(u) > _71

(iii) w(x) = €, forr < g and R(u) > _71

3.3. Parseval-Goldstein type theorems

Theorem 3.7. Set R(u) > 3. If f € L! (IRJ,,P:?(”)(coshx)dx) and g € L'(R,), then the following Parseval-
Goldstein type relation holds ’

[ Funesed= [ oo (33)
0 0

Proof. In fact, for each 7 > 0

(R 1
Rl + Z)IIfIIL

(Fup@) € 7 2
DO T

1(]R+ P20 (cosh x)dx)'
2

Therefore,
T(R(u) +

> )
jo‘ (Fupellgtolde < m”f ||L1(R+,Pi’%““)(coshx)dx

)”g”Ll(]RQ*

Also, for each x > 0

<) TR +3) __we
(F x|sf‘P‘j, h )| g()ldt € —————>P" *(cosh x)lIgll;1(r,)-
(F ) ) i _14ir(C0sh D) lg(T)ldT Tl - (cosh®)llgllL (.
Then

= ) TR +3) [ .
[ v < EEE [ cos i,
0 L+ D] Jo ]

T(R(u) + 3)
h |1—'(‘u + %)| ||f||L1(R+,P:<‘;;(“)(coshx)dx)||g||L1(R+)'

Thus, by using Fubini’s theorem one obtains the relation (3.3). O

Remark 3.8. From this result the transform F; becomes the adjoint of the Mehler-Fock transform ¥ over

L! (R+,Pj{(y)(cosh x)dx).

Denote

B, = (sinh x)™#'D,(sinh x)***' D, (sinh x) ™. (3.4)
and

B, = (sinh x)™#D,(sinh x)***!D,(sinh x)™#~1. (3.5)
One has, for k € IN,

Bt (P:Lh(coshx)) N ((u ; %)2 + 12) P (coshx), (3.6)
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and so, for f € C**(R,), k€ N,

(ﬂ (B;k f)) (1) = (~1) ((p + %)2 + Tz)k (Fuf)@), ©> 0. 3.7)

Theorem 3.9. Set R(u) > 3. If f € C*(R,), k € N, and g € L'(R,.), then the following Parseval-Goldstein type
relation holds

I~ 2 k 00
0 [T Fpemg(a+3) +2) = [ @l pwramn 68)

Proof. For f € C3(R,), then f and B, f € L! (]R+,ij )(cosh x)dx). Also for 7 > 0,

FEN© = [ EGnors i
f i f(x) (Bx (P:ﬁm (cosh x))) (x)dx
0 3
_ ((M + %)Z + 12) Lm f(x)P:gm(cosh x)dx

(R

Then for f € C2(R;) and g € L}(IR;) and using Theorem 3.7 above, one has

[ Fa () @i = [ @ pwams

Thus
® 1)? >
- [+ 3) + ) Fupsne = [ @nwriowan

Also, in general, for f € C¥*(R,), k € N, and g € L!(R,) one obtains

© 12\ o
(~1)F fo (ﬂf)(f)y(f)((wi) +f2) dr = fo (B, ) (F9) ()
0

Remark 3.10. For the case when R(u) > 0 and one considers the space L'(R.), which is a proper subset of
L! (1R+, ij )(cosh x)dx), the results of the Proposition 3.1, Proposition 3.4 and Theorem 3.7 agree with those results
obtained in Theoren 3.1, Theorem 6.1 and Theorem 6.2 of [8], respectively.

4. Conclusions

The present research article extensively investigates continuity properties over Lebesgue spaces for the
Kontorovich-Lebedev transform and the Mehler-Fock transform of general order, including their adjoints.
Emphasizing Parseval-Goldstein relations, the study reveals energy-preserving traits and inter-domain
consistency. This significant analysis contributes to understanding the fundamental properties and appli-
cations of these integral transforms in mathematical analysis. The findings presented in this article open
the door to the study of numerous other integral transforms.
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