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Abstract. The weak group inverse is characterized from an algebraic point of view. Some equivalent con-
ditions for a matrix to be the weak group inverse are established using range, null space and several matrix
equations. Based on the group inverse, Bott-Duffin inverse and certain projections, some representations
of the weak group inverse are given. In addition, splitting method for computing the weak group inverse
is presented.

1. Introduction

The sets of all natural number, complex number, n dimensional column vectors and m × n complex
matrices will be denoted by N, C, Cn and Cm×n, respectively. The identity matrix in Cn×n and the null
matrix in Cm×n are denoted by In and O. For A ∈ Cm×n, let A∗, r(A), R(A) and N(A) stand for the conjugate
transpose, the rank, the range and the null space of A, respectively. For A ∈ Cn×n, the index of A, denoted
by ind(A), is the smallest nonnegative integer k such that r(Ak) = r(Ak+1). The symbol Cn×n

k stands for the
set of all n × n complex matrices with index k.

The definitions of several helpful generalized inverses are stated now. A matrix X ∈ Cn×m that satisfies
XAX = X is called an outer inverse of A ∈ Cm×n and denoted by A(2). The outer inverse of A ∈ Cm×n with
the range T and null space S is the unique matrix A(2)

T ,S
= X ∈ Cn×m satisfying XAX = X, R(X) = T and

N(X) = S, where A has rank r and the two subspaces T and S of Cn and Cm are of dimensions s ≤ r and
m − s, respectively. We know that such X exists if and only if AT ⊕ S = Cm. For main properties please see
[1, 4, 5, 18].

The Moore-Penrose inverse of A ∈ Cm×n is the unique matrix A† ∈ Cn×m [1, 5, 13] such that AA†A = A,
A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Drazin inverse of A ∈ Cn×n
k is the unique matrix AD [1, 5, 6] satisfying ADAAD = AD, AAD = ADA,

ADAk+1 = Ak. In a particular case that ind(A) = 1, the Drazin inverse becomes the group inverse AD = A#.
The core-EP inverse of A ∈ Cn×n

k is the unique matrix A †O [14] such that A †OAA †O = A †O and R(A †O) =

R((A †O)∗) = R(Ak). It is known that [8], A †O = A(A †O)2 = ADAk(Ak)†.
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For square matrices with arbitrary index, the weak group inverse was defined in [16] as a generalization
of the group inverse. Precisely, the weak group inverse of A ∈ Cn×n

k is the unique matrix AwO = X ∈ Cn×n

satisfying the system of equations

AX2 = X, AX = A †OA.

Notice that, by [16], AwO = (A †O)2A. Some interesting properties of the weak group inverse were established
in [7, 12, 16, 17, 19].

Inspired by recent research about weak group inverse, our aim is to present new characterizations and
representations for the weak group inverse. In Section 2, new characterizations of weak group inverse are
given by equations and subspaces. In Section 3, some representations for the weak group inverse are given
based on the Bott-Duffin inverse and certain projections. Section 4 gives splitting method for computing
the weak group inverse.

2. New characterizations of weak group inverse by equations and subspaces

We begin with several lemmas which will be used in later.

Lemma 2.1. [1] Let L and M be complementary subspaces of Cn, PL,M be a projection onto L along M and
A ∈ Cn×n. Then

(a) PL,MA = A if and only if R(A) ⊆ L;
(b) APL,M = A if and only ifM ⊆ N(A).

The Lemma 2.2 can be got by [12, Lemma 2.4].

Lemma 2.2. [12] Let A ∈ Cn×n
k . Then

(a) AwO = A(2)
R(Ak),N((Ak)∗A)

= A(2)
R(Ak(Ak)∗A),N(Ak(Ak)∗A)

;

(b) AAwO = PR(Ak),N((Ak)∗A);
(c) AwOA = PR(Ak),N((Ak)∗A2).

Lemma 2.3. [12, Theorem 2.1] Let A ∈ Cn×n
k and k ≤ l ∈N. Then AwO = Al(Al+2)†A.

The core-EP decomposition of a square matrix was given in [15] and the corresponding formula of the
weak group inverse was verified in [16].

Lemma 2.4. [15, 16] Let A ∈ Cn×n
k and r(Ak) = t. Then there exists a unitary matrix U ∈ Cn×n such that

A = A1 + A2 = U
[

T S
O N

]
U∗, (1)

A1 = U
[

T S
O O

]
U∗, A2 = U

[
O O
O N

]
U∗,

where N is nilpotent with index k, T is t× t invertible matrix. The representation is called the core-EP decomposition
of A, while A1 = AA †OA and A2 are the core part and nilpotent part of A, respectively. In addition,

AwO = U
[

T−1 T−2S
O O

]
U∗. (2)

In the following theorem, we will show that the condition R(X) = R(Ak) in [19, Theorem 3.1 (d) − ( f )]
can be relaxed as the condition R(X) ⊆ R(Ak).
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Theorem 2.5. Let A ∈ Cn×n
k , X ∈ Cn×n and A = A1 + A2 is the core-EP decomposition of A, where A1 and A2 are

the core part and nilpotent part of the core-EP decomposition of A. Then the following are equivalent:
(a) X = AwO;
(b) R(X) ⊆ R(Ak), AX = A †OA;
(c) R(X) ⊆ R(Ak), A2X = PR(Ak)A;
(d) R(X) ⊆ R(Ak), (Ak)∗A2X = (Ak)∗A;
(e) R(X) ⊆ R(Ak), A1X = A †OA.

Proof. (a)⇒ (b). It can be obtained directly from Lemma 2.2 and the definition of the weak group inverse.
(b)⇒ (c). Follows by AA †O = PR(Ak).
(c)⇒ (d). Pre-multiplying by (Ak)∗ on A2X = PR(Ak)A gives (Ak)∗A2X = (Ak)∗A by (Ak)∗PR(Ak) = (Ak)∗.
(d) ⇒ (a). We have r(X) ≤ r(Ak) by R(X) ⊆ R(Ak), then r(Ak) = r((Ak)∗A) = r((Ak)∗A2X) ≤ r(X) ≤ r(Ak)

implies r(X) = r(Ak). So R(X) = R(Ak). The proof is finished by [19, Theorem 3.1 ( f )].
(b)⇒ (e). Follows directly from A †O = A(A †O)2.
(e) ⇒ (a). Firstly note that R(X) ⊆ R(Ak) implies A †OAX = X. Also, by A1X = A †OA we obtain

X = A †OAX = A †OAA †OAX = A †OA †OA = AwO.

Using the result of Lemma 2.2 thatN((Ak)∗A) ⊆ N(AwO), we will give several different characterizations
of the weak group inverse of a matrix A.

Theorem 2.6. Let A ∈ Cn×n
k and X ∈ Cn×n. Then the following are equivalent:

(a) X = AwO;
(b)N((Ak)∗A) ⊆ N(X), XAk+1 = Ak;
(c)N((Ak)∗A) ⊆ N(X), XAA †O = A †O;
(d)N((Ak)∗A) ⊆ N(X), XAD = (AD)2;
(e)N((Ak)∗A) ⊆ N(X), XA †O = (A †O)2.

Proof. (a) ⇒ (b). By Lemma 2.3 and Lemma 2.1 (b), we have XAk+1 = Ak(Ak+2)†AAk+1 = Ak. The condition
N((Ak)∗A) ⊆ N(X) holds by Lemma 2.2.

(b)⇒ (c).Multiplying XAk+1 = Ak from the right side by (Ak+1)†, we get XAA †O = A †O by A †O = Ak(Ak+1)†.
(c)⇒ (e). Post-multiplying by A †O on XAA †O = A †O gives XA †O = (A †O)2 by A(A †O)2 = A †O.
(a)⇒ (d). By Lemma 2.2, we haveN((Ak)∗A) ⊆ N(X) and XAD = XA(AD)2 = PR(Ak),N((Ak)∗A2)(AD)2 = (AD)2

by Lemma 2.1 (a).
(d) ⇒ (e). By XAD = (AD)2 and A †O = ADAk(Ak)†, we get that XA †O = (AD)2Ak(Ak)† = ADA †O =

ADA(A †O)2 = PR(Ak)(A †O)2 which by Lemma 2.1 (a) yields XA †O = (A †O)2.

(e) ⇒ (a). By XA †O = (A †O)2, we get R(Ak) = R((A †O)2) ⊆ R(X) and r(Ak) = r((A †O)2) = r(XA †O) ≤ r(X),
and byN((Ak)∗A) ⊆ N(X), we have that r(X) ≤ r((Ak)∗A) which together give r(X) = r((Ak)∗A) = r(Ak). Then
we haveN((Ak)∗A) = N(X) andR(X) = R(Ak) = R((A †O)2), which implies that X = (A †O)2L for some L ∈ Cn×n.
Post-multiplying on XA †O = (A †O)2 by L, we obtain XAX = X. Hence, we have X = A(2)

R(Ak),N((Ak)∗A)
= AwO by

Lemma 2.2 (a).

The conditions R(X) = R(Ak), N((Ak)∗A) = N(X) in [19, Theorem 3.2 (b)] can be relaxed. Therefore, we
have the following Theorem 2.7.

Theorem 2.7. Let A ∈ Cn×n
k andX ∈ Cn×n. Then the following are equivalent:

(a) X = AwO;
(b) R(X) ⊆ R(Ak),N(X) ⊆ N((Ak)∗A), XAX = X;
(c) R(Ak) ⊆ R(X),N((Ak)∗A) ⊆ N(X), XAX = X;
(d) R(X) ⊆ R(Ak),N((Ak)∗A) ⊆ N(X), AXA = A †OA2;
(e) R(X) ⊆ R(Ak),N((Ak)∗A) ⊆ N(X), AXA †O = A †O.
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Proof. That (a) implies all other items (b)− (e) can be checked directly using the definition of the weak group
inverse and Lemma 2.2.

(b)⇒ (a). By XAX = X, we have X(AX− In) = O and byN(X) ⊆ N((Ak)∗A), we have (Ak)∗A(AX− In) = O,
that is (Ak)∗A2X = (Ak)∗A. Hence, by Theorem 2.5 (d)⇒ (a) it follows that X = AwO.

(c)⇒ (a). By R(Ak) ⊆ R(X), we have Ak = XL for some L ∈ Cn×n. Then Ak = XL = XAXL = XAk+1. Thus
X = AwO by Theorem 2.6 (b)⇒ (a).

(d) ⇒ (e). From A †O = A(A †O)2 and AXA = A †OA2, we obtain AXA †O = AXA(A †O)2 = A †OA2(A †O)2 =

A †OAA †O = A †O.
(e) ⇒ (a). Since R(X) ⊆ R(Ak), we get A †OAX = X. Pre-multiplying on AXA †O = A †O by A †O, we get

XA †O = (A †O)2. Hence, X = AwO by Theorem 2.6 (e)⇒ (a).

In the following theorems, we present some necessary and sufficient conditions for a matrix X to be
AwO based on the conditions A1X2 = X, XAX = X and XA1X = X, where A1 is the core part of the core-EP
decomposition of A.

Theorem 2.8. Let A ∈ Cn×n
k , X ∈ Cn×n and A = A1 + A2 is the core-EP decomposition of A, where A1 and A2 are

the core part and nilpotent part of the core-EP decomposition of A. Then the following are equivalent:
(a) X = AwO;
(b) A1X2 = X, AX = A †OA;
(c) A1X2 = X, A1X = A †OA;
(d) A1X2 = X, A2

1X = A1;
(e) A1X2 = X, A1X = A#

1A1;
( f ) AX2 = X, (Ak)∗A2X = (Ak)∗A.

Proof. (a)⇒ (b). By the definition of the weak group inverse, we have

A1X2 = AA †OAXX = AA †OX = AA †OA †OA †OA = A †OA †OA = X.

(b)⇒ (c). From AX = A †OA and A(A †O)2 = A †O, we get A1X = AA †OAX = AA †OA †OA = A †OA.
(c)⇒ (d). It follows by A2

1X = A1(A1X) = A1A †OA = AA †OAA †OA = A1.

(d)⇒ (a). By A1X2 = X, we get R(X) ⊆ R(A1) ⊆ R(AA †O) = R(Ak). Pre-multiplying by A †O on A2
1X = A1

gives A †OAA1X = A †OA. Hence, we get A1X = A †OA by Lemma 2.1 (a). The rest follows by Theorem 2.5
(e)⇒ (a).

(a)⇒ (e). From [16, Theorem 3.2], we know AwO = A#
1. Hence, it is obvious that A1X = A1A#

1 = A#
1A1.

(e)⇒ (a). Consequently by X = A1X2 = (A1X)X = A#
1(A1X) = A#

1A#
1A1 = A#

1 = AwO.
(a)⇒ ( f ). This implication is obvious.
( f ) ⇒ (a). Since AX2 = X implies that X = AkXk+1 it follows that R(X) ⊆ R(Ak). Hence, X = AwO by

Theorem 2.5 (d)⇒ (a).

Theorem 2.9. Let A ∈ Cn×n
k , X ∈ Cn×n and A = A1 + A2 is the core-EP decomposition of A, where A1 and A2 are

the core part and nilpotent part of the core-EP decomposition of A. Then the following are equivalent:
(a) X = AwO;
(b) XAX = X, XAk+1 = Ak, AX = A †OA;
(c) XAX = X, XA = (A †O)2A2, (Ak)∗A2X = (Ak)∗A;
(d) XA1X = X, AX = A †OA, XA1 = A †OA;
(e) XA1X = X, A1X = A †OA, XA1 = A †OA;
( f ) XA1X = X, A1X = A †OA, XAA †O = A †O;
(1) XA1X = X, A1X = A †OA, XA †O = (A †O)2;
(h) XA1X = X, A1X = A †OA, XA2

1 = A1;
(i) XA1X = X, A1X = XA1, XA2

1 = A1;
( j) XA1X = X, A1X = XA1, A1XA1 = A1.
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Proof. (a)⇒ (b), (c). It is obvious by the definition of the weak group inverse and Lemma 2.2.
(b)⇒ (a). By XAk+1 = Ak, we get R(Ak) = R(A †O) ⊆ R(XA). By the conditions XAX = X, AX = A †OA and

Lemma 2.1 (a), we have

X = X(AX) = XA †OA = XAA †OA †OA = PR(XA),N(XA)A †OA †OA = A †OA †OA = AwO.

(c)⇒ (a). Since (Ak)∗A2X = (Ak)∗A, we getN(AX) ⊆ N((Ak)∗A) = N(A †OA). Then

X = (XA)X = A †OA †OAAX = A †OA †OAPR(AX),N(AX) = A †OA †OA = AwO.

Notice that we use Lemma 2.1 (b) in the previous equality.
(a) ⇒ (d). Using Lemmas 2.1 and 2.2, we verify that XA1 = XAA †OA = PR(XA),N(XA)A †OA = A †OA and

XA1X = A †OAX = PR(Ak),N((Ak)∗A)X = X.
(d)⇒ (e). This follows similarly as Theorem 2.8 (b)⇒ (c).
(e)⇒ ( f ). Post-multiplying by A †O on XA1 = A †OA gives XAA †O = A †O by A †OAA †O = A †O.
( f )⇒ (1). It follows by A(A †O)2 = A †O.
(1)⇒ (a). Notice that X = X(A1X) = XA †OA = (A †O)2A = AwO.
(e)⇒ (h). By XA1 = A †OA and Lemma 2.1 (a), we have XA2

1 = (XA1)A1 = A †OAA1 = A1.

(h)⇒ (i). This implication is clear by A1X = XA1(A1X) = XA1A †OA = XAA †OAA †OA = XA1.
(i)⇒ ( j). Consequently by A1XA1 = XA1(A1X)A1 = (XA1X)A1A1 = XA1A1 = A1.
( j)⇒ (a). By XA1X = X and A1X = XA1, we have X = A1X2. From A1XA1 = A1 and A1X = XA1, we get

A1 = A2
1X. Hence, X = AwO by Theorem 2.8 (d)⇒ (a).

3. Representations of the weak group inverse

Using Lemma 2.2 (a) and the representation of A(2)
T ,S

inverse from [18, Theorem 2.1], we get new
representations for the weak group inverse.

Theorem 3.1. Let A ∈ Cn×n
k . Then

AwO = Ak(Ak)∗A(Ak+1(Ak)∗A)# = (Ak(Ak)∗A2)#Ak(Ak)∗A.

Mary [11] introduced the inverse along an element, the Lemma 2.2 (a) shows that the weak group is the
inverse along Ak(Ak)∗A. Thus, the Theorem 3.1 also can be got by [11, Theorem 7].

Bott and Duffin [2] defined the Bott-Duffin inverse of A ∈ Cn×n by A(−1)
L
= PL(APL + In − PL)−1 when

APL + In − PL is nonsingular, where L is a subspace of Cn. In [19], the authors showed the weak group
inverse by a special Bott-Duffin inverse. Inspired by that, the following expressions for weak group inverse
are given using different Bott-Duffin inverse.

Theorem 3.2. Let A ∈ Cn×n
k . Then

AwO = (A∗PR(A∗Ak)A)(−1)
R(Ak)

A∗PR(A∗Ak)

= PR(Ak)(A
∗PR(A∗Ak)APR(Ak) + In − PR(Ak))

−1A∗PR(A∗Ak).

Proof. Assume that A is given by (1) and △ = Tk(Tk)∗ + T̃(T̃)∗, L = TT∗ + SS∗, T̃ =
k−1∑
j=0

T jSNk−1− j.

By (1), we get Ak = U
[

Tk T̃
O O

]
U∗, then PR(Ak) = Ak(Ak)† = U

[
It O
O O

]
U∗ and

A∗Ak = U
[

T∗Tk T∗T̃
S∗Tk S∗T̃

]
U∗. (3)
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Applying [4, Ch.3 Corollary 2.3] to (3), we get

(A∗Ak)† = U
[

(Tk)∗△−1L−1T (Tk)∗△−1L−1S
(T̃)∗△−1L−1T (T̃)∗△−1L−1S

]
U∗,

which yields

PR(A∗Ak) = U
[

T∗L−1T T∗L−1S
S∗L−1T S∗L−1S

]
U∗. (4)

Let M = PR(Ak)(A∗PR(A∗Ak)APR(Ak) + In − PR(Ak))−1A∗PR(A∗Ak). A straightforward calculation gives that

M = U
[

It O
O O

] [
(T∗)2L−1T2 O

(S∗T∗ +N∗S∗)L−1T2 In−t

]−1 [
(T∗)2L−1T (T∗)2L−1S

(S∗T∗ +N∗S∗)L−1T (S∗T∗ +N∗S∗)L−1S

]
U∗

= U
[

It O
O O

] [
T−2L(T∗)−2 O

−(S∗T∗ +N∗S∗)(T∗)−2 In−t

] [
(T∗)2L−1T (T∗)2L−1S

(S∗T∗ +N∗S∗)L−1T (S∗T∗ +N∗S∗)L−1S

]
U∗

= U
[

T−1 T−2S
O O

]
U∗

= AwO.

Theorem 3.3. Let A ∈ Cn×n
k . Then AwO = PR(Ak)A∗(APR(Ak)A∗ + In − PR(A∗Ak))−1.

Proof. Assume that A is given by (1) and L = TT∗ + SS∗, T̃ =
k−1∑
j=0

T jSNk−1− j. By (1) and (4), we get

M1 = PR(Ak)A
∗(APR(Ak)A

∗ + In − PR(A∗Ak))
−1

= U
[

T∗ O
O O

]
U∗U

[
TT∗ + It − T∗L−1T −T∗L−1S
−S∗L−1T In−t − S∗L−1S

]−1

U∗

= U
[

T∗ O
O O

] [
(T∗)−1T−1 (T∗)−1T−2S

S∗(T∗)−2T−1 In + S∗((T∗)−1T−1 + (T∗)−2T−2)S

]
U∗

= U
[

T−1 T−2S
O O

]
U∗

= AwO.

Example 3.4. Let

A =

 2 0 0
−a 0 1
a 0 0


with ind(A) = 2, where a is a real number. By Lemma 2.3, the weak group inverse of A is given by

AwO = A2(A4)†A =


3a2+8

5a2+16 0 −a
5a2+16

−3a3
−8a

20a2+64 0 −a
5a2+16

3a3+8a
10a2+32 0 −a2

10a2+32

 .
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By calculation, we get that

PR(A2) =


16

5a2+16
−4a

5a2+16
8a

5a2+16
−4a

5a2+16
a2

5a2+16
−2a2

5a2+16
8a

5a2+16
−2a2

5a2+16
4a2

5a2+16

 , PR(A∗A2) =


9a4+48a2+64
9a4+49a2+64 0 −3a3

−8a
9a4+49a2+64

0 0 0
−3a3

−8a
9a4+49a2+64 0 a2

9a4+49a2+64

 ,

(A∗PR(A∗A2)APR(A2) + I3 − PR(A2))−1 =


9a4+48a2+64

25a4+160a2+256
16a5+111a3+192a

100a4+640a2+1024
−16a5

−111a3
−192a

50a4+320a2+512
−9a5

−49a3
−64a

100a4+640a2+1024
9a6+449a4+2624a2+4096

400a4+2560a2+4096
−9a6

−49a4
−64a2

200a4+1280a2+2048
9a5+49a3+64a

50a4+320a2+512
−9a6

−49a4
−64a2

200a4+1280a2+2048
9a6+149a4+704a2+1024

100a4+640a2+1024

 ,

(APR(A2)A∗ + I3 − PR(A∗A2))−1 =


45a4+128a2+64

80a2+256
3a3+8a

10a2+32
−63a3

−136a
80a2+256

3a3+8a
10a2+32 1 −a2

10a2+32
−63a3

−136a
80a2+256

−a2

10a2+32
117a2+256
80a2+256

 .
Then it can be verified that (A∗PR(A∗A2)A)(−1)

R(A2)A
∗PR(A∗A2) = AwO, PR(A2)A∗(APR(A2)A∗ + I3 − PR(A∗A2))−1 = AwO.

The following theorem provides new formulae for the weak group inverse AwO based on projections
X = PN((Ak)∗A2),R(Ak) and Y = PN((Ak)∗A),R(Ak).

Theorem 3.5. Let A ∈ Cn×n
k , X = PN((Ak)∗A2),R(Ak) and Y = PN((Ak)∗A),R(Ak). Then for any a, b ∈ C \ {0}, we have

AwO = (Ak(Ak)∗A2 + aX)−1Ak(Ak)∗A(In − Y)
= (In − X)Ak(Ak)∗A(Ak+1(Ak)∗A + bY)−1.

Proof. By Lemma 2.1 and Lemma 2.2, it is not difficult to conclude that

(Ak(Ak)∗A2 + aX)AwO = Ak(Ak)∗A(In − Y).

Now we only need to show the invertibility of Ak(Ak)∗A2+aX. Let (Ak(Ak)∗A2+aX)ξ = 0 for some ξ ∈ Cn.
Then Ak(Ak)∗A2ξ = −aXξ. By Lemma 2.2, we have

Ak(Ak)∗A2ξ = −aXξ ∈ R(Ak(Ak)∗A2) ∩ R(X) = R(Ak(Ak)∗A2) ∩N((Ak)∗A2) ⊆ R(Ak) ∩N((Ak)∗A2) = {0},

which gives Ak(Ak)∗A2ξ = −aXξ = 0. Hence,

ξ ∈ N(Ak(Ak)∗A2) ∩N(X) = N(Ak(Ak)∗A2) ∩ R(Ak) ⊆ N((Ak)∗A2) ∩ R(Ak) = {0}.

Thus, ξ = 0 and Ak(Ak)∗A2 + aX is invertible.
Analogously, it can be verified that Ak+1(Ak)∗A+bY is nonsingular and AwO = (In−X)Ak(Ak)∗A(Ak+1(Ak)∗A+

bY)−1.

Example 3.6. In order to illustrate the representations of Theorem 3.5, let

A =

 1 0 0
−i 0 i
2 0 0


with ind(A) = 2, a = − 1

5 and b = 2i, where i stands for the imaginary unit. According to Lemma 2.3, exact calculation
in Mathematica gives

AwO = A2(A4)†A =


2
3 0 1

6
2
3 i 0 1

6 i
4
3 0 1

3

 .
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Simple calculation gives

X = PN((A2)∗A2),R(A2) =

 0 0 0
−i 1 0
−2 0 1

 , Y = PN((A2)∗A), R(A2) =


1
3 0 −

1
6

−
2
3 1 −

1
6 i

−
4
3 0 2

3

 ,
A2(A2)∗A =

 4 0 1
4i 0 i
8 0 2

 , (A2(A2)∗A2
−

1
5

X)−1 =


1
6 0 0

31
6 i −5 0
31
3 0 −5

 ,
(A3A2(A2)∗ + 2iY)−1 =


1
9 −

1
6 i 0 1

36 +
1
12 i

−
1
3 +

1
9 i − 1

2 i − 1
12 +

1
12 i

2
9 +

2
3 i 0 1

18 −
1
3 i

 .
Further, it can be verified that Theorem 3.5 is valid in this example.

Some representations for generalized inverse A(2)
T ,S

of matrices were given in [3]. For the weak group
inverse we have the following results.

Theorem 3.7. Let A ∈ Cn×n
k , a, b, c, d ∈ C \ {0}. Assume that F and E∗ are full column rank matrices, which satisfy

R(Ak) = R(F) andN((Ak)∗A) = N(E). Then

AwO = b(aPN((Ak)∗) + bFEA)−1FE (5)

= dFE(cPN((Ak)∗A) + dAFE)−1. (6)

Proof. In order to show that aPN((Ak)∗) + bFEA is nonsingular, let (aPN((Ak)∗) + bFEA)x = 0 for some x ∈ Cn.
Then aPN((Ak)∗)x = −bFEAx, we have −FEAx ∈ R(FEA) ⊆ R(F) = R(Ak) and aPN((Ak)∗)x ∈ N((Ak)∗), i.e.,

aPN((Ak)∗)x = −bFEAx ∈ N((Ak)∗) ∩ R(Ak) = {0}.

Hence PN((Ak)∗)x = 0 and FEAx = 0. It follows that x ∈ N((Ak)∗)⊥ = R(Ak). Since F is full column rank matrix,
we get EAx = 0, which gives

x ∈ N(EA) = R(A∗E∗)⊥ = (A∗R(E∗))⊥ = R(A∗A∗Ak)⊥ = N((Ak)∗A2).

Hence x ∈ R(Ak) ∩ N((Ak)∗A2) = {0}, so x = 0 and aPN((Ak)∗) + bFEA is nonsingular. By Lemma 2.1(b) and
Lemma 2.2, we obtain PN((Ak)∗)AwO = O and EAAwO = E which together give (5).

Similarly, (6) can be verified.

Theorem 3.8. Let A ∈ Cn×n
k , a, b, c, d ∈ C \ {0}. Suppose that B and C∗ are full column rank matrices which satisfy

N((Ak)∗A) = R(B) and R(Ak) = N(C). Let EB = In − BB†, FC = In − C†C. Then,

AwO = a(aA∗EBA + bC∗C)−1A∗EB (7)

= cFCA∗(cAFCA∗ + dBB∗)−1. (8)

Proof. We show that aA∗EBA + bC∗C is nonsingular. Assume that (aA∗EBA + bC∗C)x = 0 for some x ∈ Cn.
Then, we have bC∗Cx = −aA∗EBAx,

x ∈ R(C∗C) ∩ R(A∗EBA) = R(C∗) ∩ R(A∗EB) = R(Ak)⊥ ∩N((Ak)∗A2)⊥ = {0},

which implies C∗Cx = 0 and A∗EBAx = 0. Hence Cx = 0, EBAx = 0 yield

x ∈ N(C) ∩N(EBA) = R(Ak) ∩N((Ak)∗A2) = {0}.

Thus x = 0 and aA∗EBA + bC∗C is nonsingular. Hence, since R(AwO) = R(Ak) = N(C), we get CAwO = O.
By N(EB) = R(B) = N((Ak)∗A), Lemmas 2.1 and 2.2, we obtain EBAAwO = EB. Therefore, AwO = a(aA∗EBA +
bC∗C)−1A∗EB.

Similarly, (8) can be verified.
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As we know, AwO is an outer inverse of A with rang R(Ak) and null space N((Ak)∗A). The results of
Theorems 2.2 and 2.4 in [3] are applicable to the weak group inverse.

Corollary 3.9. Let A ∈ Cn×n
k . Let B and C∗ be of full column rank matrices and satisfy

N((Ak)∗A) = R(B), R(Ak) = N(C).

Let EB = In − BB†, FC = In − C†C. Then,[
AwO
O

]
=

[
A∗EBA C∗

C O

]−1 [
A∗EB

O

]
,

[
AwO O

]
=
[

FCA∗ O
] [ AFCA∗ B

B∗ O

]−1

.

Corollary 3.10. Let A ∈ Cn×n
k .

(a) Let E and C be of full row rank matrices and satisfyN((Ak)∗A) = N(E), R(Ak) = N(C). Then

AwO =
[

EA
C

]−1 [
E
O

]
; (9)

(b) Let F and B be of full column rank matrices and satisfyN((Ak)∗A) = R(B), R(Ak) = R(F). Then

AwO =
[

F O
] [

AF B
]−1
. (10)

Example 3.11. Let

A =


2 0 1 1
0 2 0 0
0 0 0 3
0 0 0 0


with ind(A) = 2. Using Lemma 2.3, the weak group inverse of A is given by

AwO = A2(A4)†A =


1
2 0 1

4
1
4

0 1
2 0 0

0 0 0 0
0 0 0 0

 . (11)

Let

B =


−1 −1
0 0
2 0
0 2

 , F =


1 0
0 1
0 0
0 0

 , C =
[

0 0 1 0
0 0 0 1

]
, E =

[
2 0 1 1
0 1 0 0

]
.

Let a = 1
5 , b = 3 + 2i, c = −3i and d = 4.

In order to verify the representations (5) and (6), it is necessary to compute

(
1
5

PN((A2)∗) + (3 + 2i)FEA)−1 =


3

52 −
1
26 i 0 −

5
2 −

25
4

0 3
26 −

1
13 i 0 0

0 0 5 0
0 0 0 5

 ,

(−3iPN((A2)∗A) + 4AFE)−1 =


1
24 0 1

48 −
1
6 i 1

48 −
1
6 i

0 −
1
8 0 0

1
48 0 1

96 +
1
3 i 1

96
1
48 0 1

96
1

96 +
1
3 i

 .
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Further calculation gives (3 + 2i)( 1
5 PN((A2)∗) + (3 + 2i)FEA)−1FE = AwO and 4FE(−3iPN((A2)∗A) + 4AFE)−1 = AwO.

According to the representations (7) and (8), it is required to compute

EB =


2
3 0 1

3
1
3

0 1 0 0
1
3 0 1

6
1
6

1
3 0 1

6
1
6

 , FC =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

(
1
5

A∗EBA + (3 + 2i)C∗C)−1 =


477
208 −

29
104 i 0 −

3
26 +

1
13 i − 15

52 +
5

26 i
0 5

4 0 0
−

3
26 +

1
13 i 0 3

13 −
2

13 i 0
−

15
52 +

5
26 i 0 0 3

13 −
2
13 i

 ,

(−3iAFCA∗ + 4BB∗)−1 =


1
12 i 0 1

24 i 1
24 i

0 1
12 i 0 0

1
24 i 0 1

16 +
1

48 i 1
48 i

1
24 i 0 1

48 i 1
16 +

1
48 i

 .
It can be verified that both expressions 1

5 ( 1
5 A∗EBA+ (3+ 2i)C∗C)−1A∗EB and −3iFCA∗(−3iAFCA∗ + 4BB∗)−1 are equal

to AwO as (11).
On the other hand, according to the representations (9) and (10), we compute

[
EA
C

]−1

=


1
4 0 −

1
2 −

5
4

0 1
2 0 0

0 0 1 0
0 0 0 1

 ,
[

AF B
]−1
=


1
2 0 1

4
1
4

0 1
2 0 0

0 0 1
2 0

0 0 0 1
2

 .
Simple calculation verifies that the identities in (9) and (10) coincide with AwO.

4. Splitting method for computing the weak group inverse

Many characterizations of several generalized inverses were investigated in terms of splitting methods
[9, 10, 12]. Corresponding splitting method for finding the weak group inverse is verified in this section.

Theorem 4.1. Let A ∈ Cn×n
k . Suppose that Ak(Ak)∗A2 = H − K, R(Ak) = R(H) andN((Ak)∗A) = N(H). Then

(a) H# exists;
(b) In −H#K is invertible;
(c) AwO = (In −H#K)−1H#Ak(Ak)∗A.

Proof. (a). Notice that ind(H) = 1 by Cn = R(H) ⊕N(H) = R(Ak) ⊕N((Ak)∗A).
(b). In order to check that In −H#K is nonsingular, let (In −H#K)x = 0 for some x ∈ Cn. Then

x = H#Kx ∈ R(H#) = R(H) = R(Ak)

and
x = H#Kx = H#(H − Ak(Ak)∗A2)x = H#Hx −H#Ak(Ak)∗A2x = x −H#Ak(Ak)∗A2x.

Hence, we get H#Ak(Ak)∗A2x = 0. Pre-multiply both sides by H and apply Lemma 2.1 to yield Ak(Ak)∗A2x = 0.
Thus, x ∈ R(Ak) ∩N(Ak(Ak)∗A2) = {0}. Therefore, In −H#K is invertible.

(c). By Lemma 2.1, we have

(In −H#K)AwO = AwO
−H#HAwO +H#Ak(Ak)∗A2AwO = H#Ak(Ak)∗A.
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Example 4.2. Let A and AwO as in Example 3.11. To verify Theorem 4.1, let

H =


1 0 1

2
1
2

0 1 0 0
0 0 0 0
0 0 0 0

 .
We calculate the matrices

H# = H(H3)†H =


1 0 1

2
1
2

0 1 0 0
0 0 0 0
0 0 0 0

 ,

K =


−179 0 −

179
2 −

449
2

0 −63 0 0
0 0 0 0
0 0 0 0

 , (I4 −H#K)−1 =


1

180 0 −
179
360 −

449
360

0 1
64 0 0

0 0 1 0
0 0 0 1

 .
Further verification confirms that the expression (I4 −H#K)−1H#A2(A2)∗A coincides with AwO.

5. Conclusion

The aim of this paper is provide characterizations and representations of the weak group inverse. Several
different characterizations of the weak group inverse are presented based on its range and null space as
well some algebraic ones. Representations using the Bott-Duffin inverse and projectors are given for the
weak group inverse. Splitting method for calculating the weak group inverse is obtained. Some numerical
examples are provided to illustrate the results obtained.

We believe that investigation related to the weak group inverse will attract attention, and we describe
perspectives for further research:
(1) The reverse order law of the weak group inverse.
(2) Extending the weak group inverse inverse to finite potent endomorphisms on arbitrary vector spaces.
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