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Higher order class of finite difference method for time-fractional
Liouville-Caputo and space-Riesz fractional diffusion equation

Safar Irandoust-Pakchin® Somaiyeh Abdi-Mazraeh?, Iraj Fahimi-Khalilabad?

?Department of Applied Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, University of Tabriz, Tabriz, Iran

Abstract. In this paper, a class of finite difference method (FDM) is designed for solving the time-
fractional Liouville-Caputo and space-Riesz fractional diffusion equation. For this purpose, the fractional
linear barycentric rational interpolation method (FLBRI) is adopted to discretize the Liouville-Caputo
derivative in the time direction as well as the second order revised fractional backward difference formulae
2 (RFBDEF2) is employed in the space direction. The energy method is used to prove unconditionally
stability and convergence analysis of the proposed method. Eventually, it is concluded that the proposed
method is convergent with the order O(h) + h2), where h; and h, are the temporal and the spatial step sizes
respectively, and 1 < y < 7 is the order of accuracy in the time direction. Finally, the presented numerical
experiment confirms the theoretical analysis, the high accuracy and efficiency of the offered method.

1. Introduction

In recent decades, many researchers are enthusiastic about fractional differential equations (FDE)s due
to its significant role in various fields of science such as control, electromagnetism, biophysics, physics,
mathematics, mechanics, signal and image processing, blood flow phenomena and etc [1, 2, 4, 5, 14, 23—
25, 29]. Since obtaining the analytical solution for the fractional differential equations often is difficult
[7, 11, 25, 30-32, 39] and sometimes even impossible, therefore trying to earn the numerical solution for
them can be valuable. One of the most important part of FDEs is fractional partial differential equations
(FPDE)s. In this regard, there are several numerical schemes to solve them, for instance, the FDM [6, 22, 40—
43, 47], finite element method [18, 20, 26], fractional order of linear multistep methods(LMM)s (recalled
FLMMs)[21, 46], L1 method [19, 44] and so on [13, 33-37].

In the same direction, the fractional backward difference formulae (FBDF)s are the one of the most
popular methods which have been utilized for solving FPDEs. The FBDFs have proper characteristics
such as good stability properties, satisfactory accuracy, and smaller computational costs [16, 27, 28]. The
main problems about these methods are unstability and less accuracy of them when the order of fractional

differentiation lies in (1,2] [17, 22]. In order to overcome to these problems, Li et al. [8] have introduced
RFBDEF2 by constructing new generating functions.
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Furthermore, Irandoust-pakchin et al. [12] have just developed FLBRI by extending the linear barycen-
tric rational interpolation (LBRI) scheme in the fractional form for solving FDEs. Recently, Fahimi-
khalilabad et al. [9] have used FLBRI for Liouville-Caputo type in time direction and central difference
method in space direction for solving the time-fractional sub-diffusion equation.

In this work, a higher order of FDM based on FLBRIs in the temporal-direction and RFBDF2 in the
spatial-direction is developed for solving the following time-fractional Liouville-Caputo and Riesz-space
fractional diffusion equations as

LcDﬁ,tv(x, t) = ka ‘9‘;;5;2” + f(x,b), (vt e©O,L)x(O,T, Be©1), ac(l,2],
v(x,0) = p(x), x€l[0,L], (1.1)
v(0,t) =v(L,t)=0, tel0,T],

where k, > 0 is the diffusion coefficient and cDg’tv(x, t) denotes the Liouville-Caputo fractional derivative
with respect to t by [25] as follows

1 g _p0v(x, &)
1cDj v(x, 1) = Fh fo (=87 — Fds pe@). (1.2)
0% t
Also, 80|3(:|C",‘ ) denotes Riesz fractional derivative with respect to x which is defined below [14],
0*v(x, t) N N
lela =0q (RLDH,X +RL Dx,b) v(x, t), (13)

where coefficient o, = Furthermore, r. Dy, and RLD;’ , are the left and right Riemann-Liouville

" 2c0s( Za)’
derivatives of order a defined by [29]

g 2 [T =) (s, bds, a e (1,2),

rLDg v(x, 1) = (1.4)
2*v(x )
ox2 7/

a =2,
and

2 b _
ﬁ;? [ (s — 0" (s, t)ds, a € (1,2),
rDSu(x, t) = (1.5)
?v(x,t) -9

ox2 7/

This paper is formed as: The 2, FLBRI and the relation between the FLBRI and the FLMMs is expressed in
section 2. In section 3, the coefficients of the RFBDFs especially RFBDF2 method introduced for approx-
imation of Riesz derivatives. In Section 4, the implementation of the proposed method is presented for
solving time-fractional Liouville-Caputo and Riesz-space fractional diffusion equations. Section 5 contains
the investigation of the stability analysis and the convergence order of the new scheme. In section 6, for
confirming the theoretical analysis, a numerical experiment is performed. A brief conclusion, in the last
section, is presented.

2. FLBRI and its relations with FLMMs

At the first of this part, LBRI weights are defined and the relations between linear multistep methods
(LMM)s and LBRI are clearly expressed. Then, the FLBRI weights and their relations with FLMMs are
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brought up and using them, the temporal direction of Eq. (1.1) is approximated in the Section 4.

The new efficient and high accurate version of the interpolate polynomials based on the Lagrange polyno-
mials in the distinct nods (7;, fi), i = 0, ..., n of the interval [g, b] is introduced by Floter et.al [10] as the
following form

n—m

2. Ni(7)si(7)
Put)= S, nzm, (2.6)
Y. Ni(7)
=0
where s;(7) is an interpolating polynomial for m + 1 values f;, fii1, ..., fism With at most degree m and
Ni(7) = mf_l)’ ,1=0, ..., n—m. If we use the nodes with equal distances, the polynomials s; can be written
[T (t—x)
k=i
in Lagrange form and the barycentric weights are defined as the following form
A:(‘l)i_mz m A=tk {01, i—mhk—m<r<i 2.7)
1 2WZ kEA‘ l_ k 7 1 7 Ly ey 7 — — . .

Note that the order of these interpolating polynomials for the smooth function f is O(h"*!) where h, =

r?ax |Tk+1—Tk|. To reveal the relationship between LBRI and LMMs the approximation of integer derivative
0<k<n-1

for the function f using Floater-Hormann family of LBRI can be defined as [3]

: 1y
f(Tjmnsr) = W Z Yrif(Tjonsi), k=0, ...,n, (2.8)
T =0
wheren, j€e N, n < jand
A ,
(v i#k, 29
Vi T gy, ik 2
t=0, t#k

where T, Tj—y41, -...., Tj for uniform grid 7o < 71 < < 1; = T are interior nodes of interval 1o, 7;] with the
constant step size h; = 141 -1, j=0,1, ..., [-1.If f € C"*+2[1y, T], the convergence order of (2.8) will be
m. When n — m is odd, the order increases to m + 1 (for more details see [15]).

Applying Eq.(2.8) for the following initial value problems (IVP)s

y(@©=V(ry), t€lt,Tl],
¥(0) = yo, (2.10)

one can obtain the LMMs as the following LBRI form

Y Guryiner = VT y(@), jEn o1, (211)
r=0
with generating function
v(d/7)
W(r) = , 212
= v/ 1

where

Q(T) = Yo+ Pu1T+ ... + Py t”, P(7) =7". (2.13)
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The starting nodes y1, y2, ..., ¥i-1 can be calculated by other proper numerical methods [3]. The order of
convergence is m when n — m is even and m + 1 when n — m is odd. If m = n and m = n + 1 are chosen the
LMM with LBRI is the same with BDF of order m and m + 1, respectively ( [3]).

Consider the fractional IVP as [12]

1D} y(m) = V(ty), 0<p<1, Te[r,T],
¥(0) = yo, (2.14)
Similarly, for generalizing LMMs based on LBRI in (2.10) to FLMMSs based on FLBRI in (2.14), the first

and second characteristic functions ¢(7) and ¢(t) must be created. Thus the generating functions based on
FLBRI are defined as

- 1/ p n . =B, _r
WER(T) = (%) = (Unn + Yun1T+ ...+ Pyt )y = rZ:O‘w£ Per, (2.15)

Using Miller’s recurrence [45] in (2.15), the FLBRI weights are obtained as follows:

0 P = @fwi, i=0,1,..,
wo =1, (2.16)
l,bn,n—l l,bn,n—Z an,O

wi-1 + (26,‘ - 1) Wiy + ... + (7151‘ - 1)—wi_,,,

Using the relation between the Riemann-Liouville and Liouville-Caputo derivatives in (2.14), it can be
achieved that

1cD},y(t) =re Dy (7)) = yo),
-6
TT’

I'(1-p)

Assuming b, = r(’l;fﬁ), Yk = Y(Tr —khy), V, = V(Ty, y(r,)) and using (2.19), the following relation would be
obtained

=rt D} (1)) — yo = V(1 y(1)) 0<p<1. (2.17)

Y WPy, = byo = WV, (2.18)
k=0

where w,(;ﬁ ), k=0, 1,..., are defined in equation (2.16).

Lemma 2.1. [12] The coefficients wg_ﬁ ) =0, 1, ... have the following properties:

]((_'g), k=p,p+1, .., peZ forall case (s,m), s <20, m < 6 holds.

For example, according to Figure 1, after p > 23 when (s, m) = (20, m), m < 6, the monotonicity of w,(:ﬁ ) holds (
for more details see [12]).

(i) The monotonicity of the coefficients w

(ii) wé_ﬁ)>0, w,((_ﬁ)<0,k:p,p+l, s, PEZ.

(iii) The Riemann-Liouville (R-L) fractional derivative is approximated by the FLBRI at T = 1, as
wDhy(r) =1 Y W Py(r, - ki) + O, (2.19)
k=0

providing y(19) =0, j=0,1,...,p—1, 1 <p <7, p € Zand it has the order m + 1 and m when s — m is odd
and s — m is even, respectively.
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3. RFBDFs

In this section, the coefficients of the RFBDFs especially RFBDF2 are presented which require for the
next section to approximate the spatial direction.

Generally, the p-th order (p = 1, ..., 6) approximation of R-L fractional derivative is defined by Lubich
for smooth function g for 1 < @ < 2 as [21]

rDf,g0) = b “Zw g(x, — khy) + O(H), (3.20)

where the generating functions are defined as

Wp(x):(i%l x)’) iw;l“” <1, (3.21)
1=0

=0

providing g?(lp) =0, 1=0,1,...,p-1,1<p<7,peZ

The application of (3.20) to the spatial FDEs with the Riemann— Liouville derivatives (or Riesz deriva-
tives) is also unstable (see [8]). To overcome this problem, using shifted Lubich’s numerical differential
formula, it can be derived that

L1+l

RLD%g(x) = hi® Z w0l D= (k= D) + O(h), p=1,2,..,6. (3.22)
k=0

Considering Eq.(3.22), it is clear that only 1st-order accuracy obtains. Recently, Ding et.al [8] proposed the
following shifted and modified FBDFs of Lubich’s numerical differential formula which not only has the p
order of accuracy but also has the stability properties. In this paper, their method is used in a particular case
involving FBDF2 for solving spatial direction in Eq.(1.1). In this case, the generating function is defined as

wo(x) = (3&2“ 2 3(aa— D) ) Z K xg, x| < 1. (3.23)
=0

where

(@) _ <3a—2 )“
Koo=\2a ) »

(@) _ 4a(l-a)_(a)
Ko1 = 3a2 Ko7 (3.24)

W 1z2

K(“) = [4(1 a)a - £+ 1)k

6’(3(1 % +(a—2)Q2a — £+ 2)x

2,0-1

Remark 3.1. For the right Remman-Liouville derivative, the following approximation holds
RLDS L og(x) = RY5(x) + O(3),

where

(e8]

RYg(x):h‘“Z COg(x + (k = 1)hy).

k=0
Also, supposing that g(t) is defined on [a, b] and g(a) = g(b) = 0, it can be result that

reDSLg(x) =k D% ,g(x) = 'Y5(x) + O(h3) = "AS(x) + O(h3) (3.25)
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and
RLDS,9(x) =L Df 100ff(0) = BY5(0) + O(3) = RAS(x) + O(y), (3.26)
where
L%JH
EASg) =it Y ST g0c— (k= i),
k=0
and

L5+

FASg0) =l Y Vg + (k= D).

k=0
Combining Egs.(1.3), (3.25) and (3.26), the 2nd-order difference scheme can be obtained as

aag(x)

Dl e (“A39() +* ASg(x)) + O(2). (3.27)

4. Establishment of the method

In this section, the offered method is implemented for solving the time-fractional Liouville-Caputo and
Riesz-space fractional diffusion equations (1.1). lett, =nh;, (n =0, 1, .., N),and x; = ih,, (=0, 1, ..., M),

T L . . . S
where h; = N and h, = 3 are time and space mesh sizes, respectively. For the numerical approximation of

Liouville-Caputo fractional derivative in temporal direction of function v(x, t) at t, = nh;, using Eqgs.(2.17)—
(2.18), one can write

LCDg,tv(xi/ tn) =rL Dg,t (Wi, tn) = v(xi, to))

=1P Y W) i, t) - v, 1) + O(H)), (4.28)
k=0

where 0 < <1, 1 <y < 7. Afterward, the following second - order formula is used for the numerical
approximation of Riesz-space fractional [8]

aav(xi!tn) -1 L R 2
= A% +R A%) (x; h 4.29
e = easg (A% AT vl ) + OC), (4.29)
where
1 7+l
LAY (x;,t,) = — = (€= Dhy, t,), 4.30
Tl ) hg;m,zv(x (€= D, 1) (4:30)
and
1 M-j+1
RAY(x;,t,) = — i+ (€= Dhy, t,), 431
T ) = 7o ; k20006 + (€ = Dhs, 1) (431)

In order to summarize, it can be defined that

6% = —— LA® 4R A2) 432
= sy (A5 ) (4.32)




S. Irandoust-Pakchin et al. / Filomat 38:2 (2024), 505-521
Therefore, equation (4.29) is rewritten as follows

aav(xir tn)

a|x|a = 6?1)(3@', t?l) + O(hi)/

Next, substituting (4.28) and (4.33) into (1.1), one obtain
n? Z @ (0, tr) — V(X 1)) = kaOSV(x;, b) + F(xi, ) + O(h] + 1),
= Z w0 Pu, t) - Z @ P, o) = kel 620(xi, ba) + 1 (i, 1) + 17,

where ' = O(I1t7+’g + h’f h2). Now, we have

o, b) = Zw x,,tk)+Zw Lol o)

+kh&wub0+hf@h0+ﬁ,

n—1 ZU n ( ﬁ)
= v(xl/ 71) Z — k v(xl/ tk) + Z ( xl/ to)
k=0 W Wy
kahf W
6av(xi/ tn) + _f(xi/ tl’l) + R‘fl/
wt B X wP :
O 0

! .
where R = —4; and there exists a constant ¢ such that
Wy

mﬂﬁﬁwf+%%03iﬁhﬂlﬁnSN

Finally, omitting R!in (4.34) and assuming v(x;, t,) = v, one can write

1) ) 0, W

Vl_ n— n—k t o t n

vy = Z (,;)v + X Ut ( FOF VY + <—;s)fi/
:0 o) k=0 “o Wy Wy

VW =p), 0<i<M,

n — n —

V=l =0, 1<n<N

Denote by v" = (v}, v}, ..., v}, )7, "= (f, £y, fir )T and @ = (@(x1), @(x2), ..., p(xm-1)),

representation of the equation (4.36) can be expressed in the following form

n-1 (ﬁ) r no )P 0 kl
—k

Z )U +Z rl t

k= k=0 @

0

- O%v" + (ﬂ)fn
W0 =g,

where0<f<land1l<a<2.

5. Analysis of Stability properties and order of convergency

511

(4.33)

(4.34)

(4.35)

(4.36)

then the vector

(4.37)

In this section, to investigate the stability properties and order of convergency of the new scheme, first,

some definitions and lemmas are presented.
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Definition 5.1. Let v = (vg, v1,...,0m)", Vo = vm = 0and v" = (vy, vy, - ..,vz’fA)T, Denote the inner product (., .)m

and the norm ||.||p1 as

M-1
0w =) v v, @€ RMDA
=1

and
lolly = V, V)
Lemma 5.2. [8] Let the operator 6% is defined by (4.32), then the following inequality
(6%v,v) <0,
holds for all € (1, 2].
Theorem 5.3. The FDM (4.37) is unconditionally stable.
Proof. Taking the inner product of the equation (4.37) with v", it is obtained that

nlw(ﬁ) n (ﬁ) ﬁ ﬁ

n 0 a,n
", V" Z (v v)+Z (v,v ( (6v v (
=0 W w w

0 0
based on the Cauchy-Schwartz inequality and Lemma 2.1 and Lemma 5.2, it can be written that

71

O/‘\

n—p w -1 ( .3)
" < Z ||vk||||v"|| Z = ||v°||||v"||
k=0 w n—p+1 wo
5, el s
t n
. [l
) ( )
k=n—p+1 Wy o Wy f

n-p w(*ﬁ) n-1 ( /3)| P
n < _ n—k 1.k 0
"l < T M Z ||v I
k=0 Wy k=n—p+1 w k=0
P W
k
. I+
k=n—p+ wo
Assuming
n-1 ( ﬁ) -1 (—ﬁ
k n k
5 Bty 4 Z w( llell,
k=n-p+1 Wo n—p+l %o

from Eq.(5.43), it can be derived that

B) B B

= pw w'” i h
n < n t
"l < 6, — ﬁ)llv Il + z ( 5 lloll + llgl| 5
= Wy Wy

o

Now, it can be asserted that

VI <Y, 1<n <N,

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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where

/3
max ||f"||
w) .5) 1<

Y= max(Gp) + llpll + —

For proving this assertion, the mathematical induction is used.
For n =1, Eq.(5.45) can be expressed as

ﬁ
= MRS
0

Suppose that [[v"|| <Y, n=1, 2, ,.., m—1. For n = m, one can write

mp o ( 13) hﬁ
m < k t ™
"]l < 6, - Z e ||v ||+Z e * (_ﬁ)uf I
0
m—p w(—ﬁ) ( ﬁ)
m _ m—k Wik
o™l < 6, ) (_ﬁ)mz 5T+ el + —
k=0 wo k=0 wo ()
2
t
e ERS
0P

According to energy method, the proof is finished. [

Result 1: According the Theorem 5.3, one can conclude that (4.37) is convergent.

513

(5.47)

(5.48)

(5.49)

Theorem 5.4. Let v(x;, t,) and v} are the exact solutions of the equation (1.1) and FDM (4.36), respectively for
i=0,1,...,M, n=0,1, ..., N—p, (the number p is defined in Lemma 2.1). In addition, v(x;,t,) = v} =0 for

i=0,1,...,M, n=N-p+1, N-p+2 ..., N. Definee} = v(x;, t,) — v}, e" =

that
le"ll < C(h] +Hh3), 1<y<7,

therefore, the rate of convergence order of new scheme (4.37) is O (hi/ + h,zc) .

Proof. From equation (4.34), (4.36) one can write

n-p _ (=P n-p _ (=p)
, — wﬂ k . wn k
v(xil tTl) - = ( IS) v(xl/ tk) + ( ,8) v(xl/ t())
k=0 Wy k=0 Wy
B B
all 8%v(x;, ty) + i —f(xi, t) + R?
( B) b ( B) v
Wy )
and
n—p _ (=p) n-p _ (=P B ﬁ
w w k.
n_ _ n—k k n-k 04 Yt ca o n n
vi = P Vi +Z cpli t e 5 0xVi e R
k=0 Wy k=0 Wy Wy

= (el €, .. eX,I)T R" =0(n +12)

and R" = (R, R}, R}, ... R;’VI)T Then there exists a positive constant C independent of n, h;, w %) and h, such

(5.50)

(5.51)
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Subtracting (5.51) form (5.50), one can derive

n—p w(fﬁ) n—p ( ﬁ)
. — n e —
v(xl/ tl’l) Ui - ( ﬁ) (v(xl/ tk) Z ( ﬁ) (v(xl/ tO) )
k=0 Wy k=0
2
Lo%(w(x;, ) — v + R?
,3) X rtn i i*

Assuming e} = v(x;, t,) — v} and using (5.52), it can be obtained

n—p _ (=P n—p _ (=p) B
w w
el =- ?_ﬁk) ef + E ?:ﬁk)e? el + R
k=0 wo k=0 wo 0

514

(5.52)

(5.53)

Define e" = (eg, €], ...,eX,I)Tand R" = (R}, R}, R}, ..., R]’\’A)T. Then the vector representation of the equation

(5.53) can be expressed as

np . B np () i
w w
no_ _ n—k _k ‘rlkO "‘tan n
e = Z P T L (ﬁ)é +R%.
k=0 %o k=0 %o

Using the inner product for the equation (5.54) by e”, one can write

(=P)

n-p
w
n
(ﬁ)(e e’) + Z

k=0 Wy k=0

n-p (ﬁ)

(e",e")

(ee

hﬁ
trsan on non
(6e e+ (R", e"),

O

based on the Cauchy-Schwartz inequality and Lemma 5.2, it is resulted that

=

3

IIeOIIIIe"II +[[Rllle"]l.

lle

P
ZU
2 < k
IIF < Ile llle”ll + E

5)
k=0

ogf-\

Simplifying the Eq.(5.56), it is derived that

np (/3)

lle"|l < —
k=0

Now it can be asserted that

lle”|l < max |IR"|, p<n <N.
p<n<N

For proving this assertion, the mathematical induction on # is used.
For n = p, Eq.(5.57) can be expressed as

lle”ll < IIR”|l < max |IR"].
p<n<N

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)
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Suppose that ||e"|| < ma>}i]||R”||, n=p,p+1,,.., m—1. Forn =m, one has
<n<

( B) ( ﬁ)
le™ < - Z e LKk +Z —K el + IIR",
k=0 W
( ﬁ) w( ﬁ)
—2 e — 5 (max [R"]) +Z — 5 (max [IR") (5.60)

+||R’"|I < [IR™|| < max IIR”II,
p<n<N

From the Eq.(4.35), it can be obtained that

max |[R"| =o(h] +h) [1+1+...+1 (5.61)
p<n<N ~————
N-p+1

=o(h +h2)\N-p+1=CH +1?),
where C = 0 4/N — p + 1. Finally, it is resulted that
le"l < C(hl +h3), p<n<N,1<y<7, (5.62)

the proof is completed. O

6. Numerical example

In this part, the results of numerical experiments are reported to illustrate the effectiveness of the
proposed method. The numerical experiments are performed on a computer Intel(R) Pentium(R) CPU
G2030 @ 3.00GHz 3.00GHz 12.00GB RAM by running some codes written in MATLAB 2020 software. In
the following tables, the maximum of L, error of the proposed method and exact solution are calculated as
follows

N-1

Ewo(he, ) = max [le’[ly = max J htZ(v(x], 2 = VR (6.63)

j=0

Consider the following equation.

1eDf e ) = 580 4 fx,1), (6,0 €O,L)x(O,T], pe(©1), ac(l,2],
v(x,0)=0, x€]0,L], (6.64)
v(0,t) =v(L,t)=0, te]0,T],

where
CT@+B+9) 1oy L BB S A4+ 0)
flot) = T@eo Y (1-2)"+ 2c05() ;(‘1) 04 -0!T(G+(-p)
X[x4+(—ﬁ +(1- x)4+€—,8]. (6.65)

The exact solution of the problem is v(x, t) = t**F*8x%(1 — x)*. In all tables, maximum errors L, and com-
putational costs are listed for the proposed method. Furthermore, these tables illustrate the numerical
convergence orders of the proposed method in the temporal and spatial directions, respectively.

Suppose E(hy, i) = O, + hz/). If h, is sufficiently small, it can be written that

h . Eo(hy,h Eo(hy, h
Eult )~ il Eoli, My By o Exllalt) - o (Ealliach)

— . (6.66)
Ecollty, %) Ecolly, 1)
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The numerical results are reported for the fixed values o = 0.25 and p = 1.5 in Table 1. This table shows that
the convergence rate of new scheme for (m,s) = (4,1), s = 2 and m € {4,16, 18} are approximately second
order in the temporal direction. Assuming a = 0.25 and = 1.5, the results are reported for (m,s) = (3,2),
s = 3 and m € {13,15,19} for Table 2. This table illustrates that the convergence rate of the new scheme is
around third order in the temporal direction.

In Table 3, for (m,s) = (12,3), = 1.5 and «a € {0.25,0.45,0.65, 0.85}, the results demonstrate that the rate
of convergence order of the proposed method is approximately fourth order in the temporal direction.

Considering Table 4, the convergence rate of the new scheme is around fifth order in the temporal
direction, fora = 0.5, B =1.5, s € {4,5} and m € {5,7,19}.

The results in Table 5 show that for & = 0.85, f = 1.5 5 € {5,6} and m € {6, 8, 18}, the rate of convergence
order of the new scheme is approximately sixth order in the temporal direction.

Table 6 demonstrates the rate of convergence order of our method for « = 0.85, f = 1.5, m € {7,9,11}
and s = 6 is near seventh order in the temporal direction.

Table 7 shows the convergence rat of new scheme for § = 1.5, a € {0.25,0.45,0.4,0.50} and (s,m) €
{(4,1),(8,2),(9,3),(12,4)} is around second order in the spatial direction.

The numerical results indicate that the rate of convergence order of new method for a« = 0.5, § €
{1.9,1.95,1.4} and (s,m) € {(7,5),(12,6),(19,6)} is approximately second order in the spatial direction for
Table 8.

7. Conclusion

In this work, an efficient numerical scheme based on fractional linear barycentric rational interpolation,
and modified fractional backward difference formulae, have been established for time-fractional Liouville-
Caputo and Riesz-space fractional diffusion equations. The unconditional stability of this method has been
proven by the energy method. Also, it has been shown that the new scheme is convergent using local
truncation error. Finally, the numerical experiments and the theoretical results have confirmed that the
scheme is convergent with order O(7” + h*) where 1 <y < 7.

References

[1] M.L Abbas, M.A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect
to a certain function, Symmetry. (2021) 13:264. https://doi.org/10.3390/sym13020264.
[2] ML.L. Abbas, M.A. Ragusa, Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions,
Applicable Analysis,(2020) 99:1-19. https://doi.org/10.1080/00036811.2020.1839645
[3] A.Abdi, S.A. Hosseini, H. Podhaisky,Adaptive linear barycentric rational finite differences method for stif ODEs, Journal of Computa-
tional and Applied Mathematics, (2019) 357:204-214. https://doi.org/10.1016/j.cam.2019.02.034
[4] A.O. Akdemir, S.I. Butt, M. Nadeem, M.A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional
integral operators, Mathematics. (2021) 9:122. https://doi.org/10.3390/math9020122.
[5] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity
and Chaos, World Scientific; 2012.
[6] B. Baeumer, M. Kovacs, M.M. Meerschaert, Numerical solutions for fractional reaction—diffusion equations, Computers and Mathe-
matics with Applications. (2008) 55:2212-2226. https://doi.org/10.1016/j.camwa.2007.11.012
[7] J. Chen, E Liu, V. Anh, Analytical solution for the timefractional telegraph equation by the method of separating variables, Journal of
Mathematical Analysis and Applications, (2008) 338:1364-1377. https://doi.org/10.1016/j.jmaa.2007.06.023
[8] H.E Ding, C.P. Li, High—order numerical algorithms for Riesz derivatives via constructing new generating functions, Journal of Scientific
Computing, (2017) 71:759-784. https://doi.org/10.1007/s10915-016-0317-3
[9] 1. Fahimi-khalilabad, S. Irandoust-pakchin, S. Abdi-mazraeh, High-order finite difference method based on linear barycentric
rational interpolation for Caputo type sub-diffusion equation, Mathematics and Computers in Simulation, (2022) 199:60-80.
https://doi.org/10.1016/j.matcom.2022.03.008
[10] M.S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numerische Mathematik.
(2007) 107:315-331. https://doi.org/10.1007/s00211-007-0093-y
[11] F. Huang, B. Guo, General solutions to a class of time fractional partial differential equations, Applied Mathematics and Mechanics,
(2010) 31:815-826. https://doi.org/10.1007/s10483-010-1316-9
[12] S. Irandoust-pakchin, S. Abdi-mazraeh, H. Kheiri, Construction of new generating function based on linear barycentric rational
interpolation for numerical solution of fractional differential equations, Journal of Computational and Applied Mathematics, 375
(2020), 112799. https://doi.org/10.1016/j.cam.2020.112799



[13]
[14]
[15]
[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]

S. Irandoust-Pakchin et al. / Filomat 38:2 (2024), 505-521 517

S.Irandoust-pakchin, M. Dehghan, S. Abdi-mazraeh, M. Lakestani, Numerical solution for a class of fractional convection diffusion equa-
tions using the flatlet oblique multiwavelets, Journal of Vibration and Control, 20(6), (2014), 913-924. d0i:10.1177/1077546312470473
A.A. Kilbas, H.M. Srivastava, Trujillo JJ, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

G. Klein,Applications of linear barycentric rational interpolation (Ph.D. thesis), University of Fribourg, 2012.

C.P. Li, H.F Ding,Higher order finite difference method for the reaction and anomalous-diffusion equation, Applied Mathematical
Modelling, 38 (15 16),(2014), 3802-3821. https://doi.org/10.1016/j.apm.2013.12.002

C.P. Li, EH. Zeng,Numerical methods for fractional calculus. Chapman and Hall/CRC, 2015.

C.P. Li, EH. Zeng,Finite element methods for fractional differential equation, Recent Advances in Applied Nonlinear Dynamics with
Numerical Analysis, World Scientific, Singapore, (2013) 49-68. https://doi.org/10.1142/9789814436465_0003

C.P. Li, M. Cai,Theory and Numerical Approximations of Fractional Integrals and Derivatives, SIAM, Philadelphia, 2019.

C.P.Li, Z.G. Zhao, Y.Q. Chen,Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion,
Computers and Mathematics with Applications, (2011) 62:855-875. https://doi.org/10.1016/j.camwa.2011.02.045

C. Lubich,Discretized fractional calculus, SIAM Journal on Mathematical Analysis,(1986)17:704-719.https://doi.org/10.1137/0517050
M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations, Journal of Computa-
tional and Applied Mathematics, (2004) 172:65-77. https://doi.org/10.1016/j.cam.2004.01.033

K.S. Miller, B. Ross,An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.

K.B. Oldham, ]. Spanier,The Fractional Calculus, Academic Press, New York, 1974.

L. Podlubny,Fractional Differential Equations, Academic Press, San Diego, 1999.

J.P. Roop,Numerical approximation of a one-dimensional space fractional advection-dispersion equation with boundary layer, Computers
and Mathematics with Applications, (2008) 56:1808-1819. https://doi.org/10.1016/j.camwa.2008.04.025

M.S. Heris, M. Javidi,On Fractional Backward Differential Formulas Methods for Fractional Differential Equations with Delay, Interna-
tional Journal of Applied and Computational Mathematics, 4(72) (2018). https://doi.org/10.1007/s40819-018-0493-y

M.S. Heris, M. Javidi,On FBDF5 Method for Delay Differential Equations of Fractional Order with Periodic and Anti-Periodic Conditions,
Mediterranean Journal of Mathematics, 14(134) (2017). https://doi.org/10.1007/s00009-017-0932-8

S.G. Samko, A.A. Kilbas, O.I. Marichev,Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science
Publishers, 1993.

H.M Srivastava, An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcen-
dental Functions, . Adv. Engrg. Comput. 5 (2021), 135-166.

H.M Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral
transformations, J. Nonlinear Convex Anal. 22 (2021), 1501-1520.

H.M Srivastava, Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments, KYUNGPOOK Math. J.
60(2020), 73-116. https://doi.org/10.5666/KM].2020.60.1.73

H.M Srivastava, M. Izadi, N. Okhovati, Viscous splitting finite differtence schemes to convection-diffusion equations with discontinuos
coefficient, Appl. Anal. Optim. 6 (2022), 313-328.

H.M Srivastava, M. 1zadi, The Rothe-Newton approach to simulate the variable coefficient convection-diffusion equations, . Mahani Math.
Res. Cent., 11 (2022), 141-157.

M. Izadi, HM Srivastava, An optimized second order numerical scheme applied to the non-linear Fisher’s reaction-diffusion equation, J.
Interdisciplinary Math., 25 (2022), 471-492, http://dx.doi.org/10.1080/09720502.2021.1930662

V.M. Tripathi, H.M. Srivastava, H. Singh, C. Swarup, S. Aggarwal, Mathematical analysis of non-isothermal reactiondiffusion models
arising in spherical catalyst and spherical biocatalyst, Appl. Sci., 11 (2021), Article ID 10423,1-14.https://doi.org/10.3390/ app112110423
H. M. Srivastava, H.I. Abdel-Gawad, Kh.M. Saad Oscillatory states and patterns formation in a two-cell cubic autocat-
alytic reaction-diffusion model subjected to the Dirichlet conditions, Discrete Continuous Dyn. Syst. - S 4 (2021), 3785-3801.
http://dx.doi.org/10.3934/dcdss.2020433

H. M. Srivastava, H. Ahmad, I. Ahmad, P. Thounthong, M. N. Khan Numerical simulation of three-dimensional fractional-order
convection-diffusion PDEs by a local meshless method, Thermal Sci., 25 (1A) (2021), 347-358.

N.T. Shawagfeh,Analytical approximate solutions for nonlinear fractional differential equations, Applied Mathematics and Computa-
tion, (2002) 131:517-529. https://doi.org/10.1016/50096-3003(01)00167-9

E. Sousa,Numerical approximations for fractional diffusion equations via splines, Computers and Mathematics with Applications,
(2011), 62:938-944. https://doi.org/10.1016/j.camwa.2011.04.015

E. Sousa,Finite difference approximations for a fractional advection diffusion problem, Journal of Computational Physics, (2009) 228:4038—
4054. https://doi.org/10.1016/j.cam.2004.01.033

L. Su, W. Wang, H. Wang,A characteristic finite difference method for the transient fractional convection—diffusion equations, Applied
Numerical Mathematics, (2011) 61:946-960. https://doi.org/10.1016/j.apnum.2011.02.007

Q.Q. Yang, F. Liu, L. Turner,Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied
Mathematical Modelling, (2010) 34:200-218. https://doi.org/10.1016/j.apm.2009.04.006

Z.Yuxin, H.F. Ding,Numerical algorithm for the time—Caputo and space-Riesz fractional diffusion equation, Communications on Applied
Mathematics and Computation, (2020) 2:57-72. https://doi.org/10.1007/s42967-019-00032-x

D. Zeilberger,The jcp miller recurrence for exponentiating a polynomial, and its q-analog*, Journal of Difference Equations and Appli-
cations, (1995)1:57-60. https://doi.org/10.1080/10236199508808006

EH. Zeng, C.P. Li, F. Liu, and L. Turner, The use of finite differencefelement approaches for solving the time-fractional subdiffusion equation,
SIAM ]J. Sci. Comput., 35(6): A2976-A3000, (2013). https://doi.org/10.1137/130910865

P. Zhuang, F. Liu, V. Anh, L. Turner,New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion
equation, SIAM Journal on Numerical Analysis. (2008) 46:1079-1095. https://doi.org/10.1137/060673114



S. Irandoust-Pakchin et al. / Filomat 38:2 (2024), 505-521

518

Table 1: Maximum L, error, rate of convergence oreder in time direction for FLBRI of order 2, hy = 51ﬁ' a =0.25, = 1.5 and run time.

(m,s) h Maximum L, error ~ Time convergence orders Cpu time(s)
1 0.1005¢ - 02 - 0.17
5 3.259% - 04 1.6249 0.26
(41) &+ 9.0579%-05 1.8476 0.41
& 21282 -05 2.0895 0.82
1 7.2425e-04 - 0.23
1 1.8988e—04 1.9314 0.26
4,2) L 47183¢-05 2.0088 0.37
=+ 1.0763e — 05 2.1321 0.83
5 7.2458¢-06 - 0.84
o 1.5985¢-06 2.1804 1.46
(16,2) 1  3.7200e — 07 2.1034 2.82
7 1.0303e — 07 1.8528 5.32
5 2.1854¢-03 - 0.10
1 7.0334e-04 1.6356 0.19
(18,2) 3 1.6978¢ — 04 2.0505 0.27
L 3.5438¢-05 2.2603 0.61
% 7.0413¢-06 2.3314 0.74
2 1.5005e - 06 2.2304 1.36

Table 2: Maximum L, error, rate of convergence order in time direction for FLBRI of order 3, i,

= 51m, a =025, =15 and run time.

(m,s) hy  Maximum L, error  Time convergence orders Cpu time(s)
}3 1.2917e — 04 - 0.24
3,2) % 1.8224¢ - 05 2.8254 0.66
é 2.0993¢ — 06 3.1179 0.67
é 2.6368e — 07 2.9930 1.63
% 8.6315¢ — 05 - 0.23
1]—6 1.0861e — 05 2.9905 0.38
(13,3) 3 1.3125¢-06 3.0487 0.82
61—4 2.1364e — 07 2.6191 1.34
5  86254¢-05 - 2.50
% 1.0781e — 05 3.0001 0.49
(15,3) 3% 1.2648e — 06 3.0915 0.73
61—4 2.0787e — 07 2.6052 151
5 8.6208¢-05 - 0.22
(19,3) 11—6 1.0722¢ — 05 3.0073 0.38
31—2 1.2114e - 06 3.1457 0.75
é 1.9906e — 07 2.6054 1.44
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Table 3: Maximum L, error, rate of convergence order in time direction for FLBRI of order 4, (s, m) = (12,3), hy = 5270, B = 1.5, various
values of @ and run time.

o h; Maximum L, error ~ Time convergence orders Cpu time(s)
1 3.8932¢-04 - 0.08
025 1 44317¢-05 3.1350 0.15
= 3.2901e - 06 3.7516 0.27
% 3.0411e-07 3.4355 0.55
= 8.3277¢-06 - 0.26
% 3.5060e — 06 3.8769 0.33
045 &4 1.7433¢-06 3.8321 0.39
% 9.7849¢ - 07 3.7466 0.47
¢ 5.8965¢-04 - 0.11
+ 2.246le-04 3.3549 0.15
065 i 1.6615¢—05 3.7568 0.34
= 1.134% - 06 3.8719 0.56
§  3.8934e 04 - 0.15
& 2.9073¢—05 3.7433 0.30
085 & 1.9463¢—06 3.9009 0.53
& 1.6998e — 07 3.5173 1.07

Table 4: Maximum L, error, rate of convergence order in time direction for FLBRI of order 5, various values of (m,s), hy = ﬁ, a=0.5,
B = 1.5 and run time.

(m,s) h  Maximum L, error Time convergence orders Cpu time(s)
§  1.8170e—04 - 1.36
L 8.1474¢-06 4.4791 2.74
(5,4) & 1.1042¢-06 4.9290 3.74
= 2.6064e — 07 5.0186 5.19
5 8.9648¢—08 4.7828 6.44
5 2254le—04 - 1.09
= 1.2615¢-05 4.1594 1.99
(7,4) & 1.8557¢-06 4.7269 3.07
= 4.5091e — 07 49178 3.85
5 1.5130e — 07 4.8936 5.09
s 1327804 - 0.98
= 6.5351e - 06 4.3447 1.77
(7,5) 5 9.4586e—07 4.7670 2.97
% 23249 - 07 4.8779 3.40
5 82752¢—08 4.6292 428
z 11938 -04 - 1.05
(19,5) 1  4.6691e—06 4.6763 2.16
= 6.2365¢—07 4.9650 3.00
= 15619 - 07 4.8126 3.94
1 6.103% 08 4.2106 4.25




S. Irandoust-Pakchin et al. / Filomat 38:2 (2024), 505-521

Table 5: Maximum L, error, rate of convergence order in time direction for FLBRI of order 6, various values of (m,s), hx = 1555,

a =0.85, f = 1.5 and run time.

(m,s) hy  Maximum L, error Time convergence orders Cpu time(s)
% 8.933% — 05 - 0.93
11—6 2.0680e — 06 5.4330 1.75
(6,5) 21—4 1.9649¢ — 07 5.8050 2.66
zl_s 8.6520e — 08 5.3211 3.05
5 1.1374e—-04 - 0.95
% 3.3117e - 06 5.1020 1.76
(8,5) i 3.3060e — 07 5.6832 2.62
5 7.138% —08 5.3279 5.21
% 6.4822¢ — 05 - 1.67
11_5 1.6997¢ — 06 5.2531 2.47
(8,6) 21—4 1.7378¢ — 07 5.6242 3.90
21—8 7.9301e — 08 5.0894 4.09
% 1.7181e — 05 - 1.78
(18,6) = 1.6998¢—06 5.7053 2.42
% 3.1822¢ — 07 5.8243 3.53
21—5 9.6140e — 08 5.3639 3.81

Table 6: Maximum L; error, rate of convergence order in time direction for FLBRI of order

a = 0.85, = 1.5 and run time.

7, various values of (m,s), hy = ﬁ,

(m,s) hy Maximum L, error Time convergence orders Cpu time(s)
3 1.0421e-04 - 0.60
ﬁ 8.3192¢ — 06 6.2345 0.89
(7,6) % 1.2254¢ — 06 6.6578 1.56
zlo 2.787% — 07 6.6348 1.84
= 1.2753¢-05 - 1.33
9,6) % 2.0186¢ — 06 6.4078 1.14
% 4.6457¢ — 07 6.5833 1.52
ﬁ 1.5054¢ — 07 6.1807 1.85
11—2 1.4771e — 05 - 1.60
(11,6) % 2.5043¢ — 06 6.1688 1.13
% 5.9598¢ — 07 6.4334 1.58
ﬁ 1.9041e — 07 6.2584 2.23
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Table 7: Maximum L error and second order of convergence in space direction of FLBRI for h; = 101W , different values of (s, m), = 1.5,

various values of a and run time.

(s,m) «a h, Maximum L, error Space convergence orders Cpu time(s)
1 1.8015¢-06 - 0.16
% 1.2671e — 05 1.2111 0.21
4,1) 025 L 49212¢-06 1.3645 0.38
é 1.8015e — 06 1.4498 0.76
}1 2.7493e — 05 - 0.14
3—3 1.2029¢ — 05 1.1925 0.21
8,2) 045 % 4.7130e — 06 1.3518 0.39
é 1.7299¢ — 06 1.4459 0.76
1 2.8015¢—05 - 0.14
51; 1.2209e — 05 1.1982 0.24
9,3) 040 1]—6 4.7715e — 06 1.3555 0.38
3%2 1.7498e — 06 1.4472 0.85
1 2.6926e — 05 - 0.13
% 1.1834¢ — 05 1.1860 0.19
(12,4) 0.50 % 4.6487¢ — 06 1.3481 0.41
% 1.7073e — 06 1.4451 0.79

Table 8: Maximum L, error, second order of convergence in space direction of FLBRI for h; = ﬁ, different values of (s, m), various
values of B, @ = 0.5 and run time.

(s,m) B h,  Maximum L, error ~ Space convergence orders Cpu time(s)
¥ 9.0479¢-06 - 0.21
% 3.3325¢-06 1.4410 0.39

7,5 19 &  1.1760e - 06 1.5027 0.83
o 41558007 1.5007 1.53
:  83326e-06 - 0.22
L 3.0534¢-06 1.4483 0.38

(12,6) 195 %  1.0726e — 06 1.5093 0.73
o 3.7827¢-07 1.5036 149
1 1.1623¢-05 - 0.21
L 4.6876¢ - 06 1.3102 0.38

(19,6) 14 & 1.7410e-06 1.4290 0.73
& 6.3086¢ - 07 1.4645 1.50
& 5.6456¢ — 07 1.4760 1.78
=  5.0912¢-07 14776 1.93
& 3.57260-07 1.4807 241

1

2.6830e — 07 1.4843 2.88

b=
=
~




