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Certain vector fields on f-Kenmotsu manifold with Schouten-van
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Abstract. The present study investigates various characteristics of conformal Ricci solitons with a
Schouten-van Kampen connection. Characterizations are obtained when the potential vector field in-
volves a torse-forming vector field. Moreover, applications related to submanifolds are also provided.

Lastly, we provided an example of conformal Ricci solitons on a three-dimensional f-Kenmotsu manifold to
validate our findings.

1. Introduction

Schouten-van Kampen is one of the most intuitive connections adapted to a pair of complementary
distributions on a differentiable manifold with an affline connection. Solov’ev conducted a study in 1978 on
hyperdistributions in Riemannian manifolds, utilising the Schouten-van Kampen connection [22]. Bejancu
investigated the Schouten-van Kampen connection on Foliated manifolds in 2006 [2]. Olszak [17] researched
the Schouten-van Kampen connection in 2013 to adapt it to a nearly contact metric structure . Using the
Schouten-van Kampen connection, he characterised several classes of nearly contact metric manitolds. The
Schouten-van Kampen connection in Sasakian manifolds, f-Kenmotsu manifolds and Kenmotsu manifolds
has been investigated by G. Ghosh [10], Yildiz [24] and Chakraborty [5] in recent research. Y. S. Perktas
and A. Yildiz [19] done research on f-Kenmotsu 3-manifolds in relation to the Schouten-van Kampen
connection.

In 1982, the notion of Ricci flow was introduced by R. S. Hamilton [11]. The equation for Ricci flow is
expressed as follows:

adg _
E = —ng

A Riemannian manifold (M, g) is said to be a Ricci soliton if the metric g satisfies the necessary conditions

Log +28+2Ag =0,
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the aforementioned equation involves the Lie derivative operator denoted by L, the Ricci tensor denoted
by S, a vector field on the manifold M denoted by v, and a real constant denoted by A. It is a widely
recognised fact in the field that when A is a smooth function, the soliton is referred to as an almost Ricci
soliton. A Ricci soliton can be classified as expanding, steady, or shrinking based on the value of A, which
is positive, zero, or negative, respectively. A modification to Hamilton’s Ricci flow equation was proposed
by A. E. Fisher [9], which involved the introduction of a conformal Ricci flow equation

dg _
> +2(S+

)
2n+1

) =-pg, 79 =-1,

the aforementioned equation relates the conformal pressure denoted by p to the scalar curvature of the
manifold represented by 7(g). Extensive research has been conducted on solitons in the context of manifolds
and their associated connections [12] [13] [14]. Basu and Bhattacharyya have extended the notion of Ricci
soliton by proposing the conformal Ricci soliton, which is defined by an equation [1]

L,g+28+(p+ -21)g =0. (1)

2n+1

where A is constant and p is conformal pressure.

2. Preliminaries

Let (M?"*!, 0, N,v,g) be a (2n + 1) dimensional almost contact metric manifold where ¢ is (1,1) tensor
field, N is structure vector field, v is an 1-form and g is compatible Riemannian metric such that

*(M1) = =M + v(M)N,
v(IN)=1,

eN =0,vp =0, 2)

where M; is a vector field on M.
The fundamental 2-form @ on the manifold M is defined by

O(My, Mz) = g(My, pMa), (3)

for all M;, M, on M.

An almost contact metric manifold is normal if [¢, ](M;i, M3) + 2dv(M1, M2)N = 0. An almost contact
metric structure (¢, N, v, g) on a manifold M is designated as f-Kenmotsu manifold if the corresponding
condition can be expressed [17]

(Vi @)Mz = f {g(eMy, Mo)N — v(M2)pM}, (4)

where f € C*®(M) such thatdf Av = 0 and V is Levi-Civita connection on M. The manifold is an a-Kenmotsu
manifold [15] if f = @ = constant # 0. For a = 1, a-Kenmotsu manifold reduces to Kenmotsu manifold [16].
If f = 0, then a-Kenmotsu manifold become cosymplectic manifold [15]. The condition for f-Kenmotsu
manifold to be regular is 2 + f” # 0, where ' = N(f). The following holds true for an f-Kenmotsu manifold

VMmN = f (M1 — v(M)N} )
It follows from above

(Vi vIMy = f {g(M1, M) = v(M;)v(M,)} (6)
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The condition df A v = 0is satisfied if dim M > 5. This is not true generally if dim M = 3. In a 3-dimensional
f-Kenmotsu manifold M, we possess [18]

ROy MIMs = (3 +27% + 27 ) (Mo, My)M: = g(My, My)M) @)

- (g 13£2+3 f’) (Mo, MaYu(MDN — g(My, Ma)r(Ma)N
+  v(Mo)v(M3z)My — v(Mq)v(M3)M},

Sy, Mo) = (4 f2+ ) gy, Mo) = (£ 432+ 3F |v(Myvd), ®
aMm; = (;+f2+f')M1—(§+3f2+3f’)v(M1)N, ©)

RMy, MIN = =(f2+ f) W(M2)My = v(M1)Ma}, (10)
RN, MM, = = (f2+ f'){gM1, M)N = v(Mp)M}, (11)
SMi,N) = =2(f2 + f)v(h), (12)
VRN, MDMa) - = =(f2 + ) {g(Mn, Ma) = v(M2)v(My)}, (13)

where R, S, Q, 7 denotes curvature tensor, Ricci tensor, Ricci operator and scalar curvature respectively.

The relationship between the Schouten-van Kampen connection V and the Levi-Civita connection ¥ on
a manifold M is defined as follows [17]:

Vi, Ma = Var, My = v(M2) Vi, N + (Var, v)(M)N, (14)
for all the vector field My, M, on M. Using the aid of (5), (6), we have
Vi Ma = Y, My + £ {g(My, Mo)N = v(My)M; ). (15)

Let R and R be the curvature tensor with respect to Levi-Civita connection V and the Schouten-van Kampen
connection V, as a result, R and R are linked by the following formula

R(M;, My)M; R(My, Mo)Ms + F2{g(My, M3)M; — g(My, M3)My) (16)
FgMa, Ma)v(M)N = g(My, Ma)v(M)N

V(Ma)v(M3)My — v(M1)v(M3)Ma}.

+ o+

Upon computing the inner product of the aforementioned equation with a vector field M4 and subsequently
contracting it, we obtain the following result

S(My, M3) = S(Ma, M) + 2% + f/)g(Ma, M3) + f'v(Ma)v(Ms), (17)

where 8 and S denote the Ricci tensor with respect to connection VandV, respectively. As an outcome of
the preceding (17), we have the Ricci operator

QM, = QM + 2F% + f)My + fv(My)N. (18)
Also putting M, = M3 = ¢; in (17), we obtain
F=F+6f+4f, (19)

where 7 and 7 are scalar curvature tensor with respect to connection Vand ¥ respectively. Putting Mz=N
in (17) and using (12), we have

S(M,, N) = 0. (20)
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In the realm of f-Kenmotsu manifolds (M?'*1, g), a non-flat manifold of this type is referred to as a hyper-
generalized quasi-Einstein manifold [21] if its Ricci tensor is not identically zero and satisfies the condition

S= c1g + Cz(Tl ® Tl) + C3(T1 QRTr+Tr® Tl) + C4(T1 QT3 +T3® T1),

where c1, ¢, c3 and ¢4 are functions on M called associated functions and T;, T», T3 are non-zero 1-forms. If
c3 = ¢4 = 0, then M is called a quasi — Einstein manifold [4]. If c; = ¢3 = ¢4 = 0, then M is an Einstein —manifold
[3].

A vector field defined on an f-Kenmotsu manifold is deemed to be torse — forming [23], if it satisfies
VMm = hMl + ¢(M1)’U

where ¢ is a 1-form, & is a smooth function and V is a Levi-Civita connection of g. Specifically, if ¢ = 0, v is
referred to as a concircular vector field [8] and if & = 0, v is referred to as a recurrent vector field [20].

3. Conformal Ricci solitons on f-Kenmotsu manifolds with Schouten-van Kampen Connection

This section examines conformal Ricci solitons on an f-Kenmotsu manifold equipped with Schouten-
van Kampen connection. First we state the following proposition which we use further to characterize the
conformal Ricci solitons on an f-Kenmotsu manifold. Consider N to be a parallel unit vector field relative
to the Levi-Civita connection V. Using (15), we get

VN = FO(MON - My). (21)
So we have:

Proposition 3.1. Let (M*"*1,g,¢, N, v) is a f-Kenmotsu manifold equipped with a Schouten-van Kampen connec-
tion. If N is a parallel unit vector field in relation to the Levi-Civita connection V then, N is a torse-forming vector
field with respect to a Schouten-van Kampen connection of the form

Vi N = fFO(M)N = My).

Theorem 3.2. Let (M*"*1,g,¢,N,v) be a f-Kenmotsu manifold bearing almost conformal Ricci soliton with
Schouten-van Kampen connection. If N is parallel vector field with Levi-Civita connection then the metric g is
quasi-Einstein with respect to Levi-Civita connection as well as Schouten-van Kampen connection. Moreover in this

case the soliton is expanding if & + 1= > 0, shrinking if § + 5= < 0 and steady if § + 1= = 0.

Proof. If (g, A, N) is conformal Ricci soliton on M. Then using equation (1) we have

gV N, My) + g(My, Va, N) + 28(My, M) + (p + —21)g(M;, M) = 0. (22)

2n+1

Further, if N is parallel vector field with respect to Levi-Civita connection then making use of proposition
(3.1) in (22) we get

31, My) = (f = £ = = + gy, M) = friv) M) 23)

2n+1

By virtue of equation (17) and (23) it is easy to see that M is quasi-Einstein with respect to Levi-Civita
connection as well as Schouten-van Kampen connection. Next, using M, = N in (23) we obtained

= _ B E _ 1
Sy, N) = (= 5 = 5= w(My). (24)
Finally, equation (20) and (24) yields
_P 1
A T @)

which proves our assertion. [J
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Next we prove,

Theorem 3.3. Let (M?*"*!, g) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and let v
be a torse-forming potential vector field with regard to Levi-Civita connection on M. Then (M*'*, g) is a conformal

Ricci soliton (v, A, g) if and only if S satisfies

= 1
S M) = -G

b OMBEVM)] - S0P + oMYV

)+ (o) ~ Hlg(Mi, Mz) = 3 Flo(Mi)v(My) 26)

Proof. Let M denote an f-Kenmotsu manifold equipped with a Schouten-van Kampen connection. Then
taking the Lie derivative of torse forming potential vector field v with respect to Schouten-van Kampen
connection and making use of equation (15) gives

(Lo) (M1, My) = g(Var, v, Ma) + g(My, Var,0) — 2fv(0)g(My, My) + fg(My, 0)v(Ma) + fg(Ma, v)v(My). (27)

Therefore, using the definition of conformal Ricci soliton, we have

2
n+1

20 - (p + 5 ) +2fv(v)]g(My, M>) 9(Van v, M) + g(Mi, Viag,0) + fg(M, v)v(My) (28)

fgMy, v)v(My) — 28(My, My).

+

If v be a torse forming potential vector field in relation to a Levi-Civita connection on M. then we have
lev = hMl + ¢(M1)U

where &1 is a smooth function. In accordance with equation (28), it is possible to express the given statement

1
2n+1

%f[g(Ml, o)V(My) + g(Ma, v)v(My)].

S(er MZ)

(0= (5 50) + foto) = hlgMy, My) = 3 [9(Ms, ) (My) + g(My, 0)p(M)]

which complete the proof. [

If v is a concircular vector field relative to the Schouten-van Kampen connection, then the following corollary
holds:

Corollary 3.4. Let (M?"*1, g) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and let
v be a concircular potential vector field with regard to a Schouten-van Kampen connection on M. Consider that v
is the g dual of v. Then (M?"*1, g) is a conformal Ricci soliton (v, A, g) if and only if M is quasi-Einstein manifold
with associated functions A — [ + 51=1+ fl[vll* — h, —f.

Theorem 3.5. Let (M?*"*1, g) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and let
v be a torse-forming potential vector field with regard to a Schouten-van Kampen connection on M. Consider that
w is the g dual of v where w is 1-form. Then (M***1, g) is a conformal Ricci soliton (v, A, g) if and only if M is a

hyper-generalised quasi-Einstein manifold with associated functions A — [’% + ﬁ] + fv(v) —h, 0, Jz(, —%.
Proof. Now, we have

1
2n+1

— 3TV, 0)(M) + g (Mo, DM

SV, My)

=+ 5y + fr(@) = HlgVi, My) = 3190, 0)(M) + gV, ) (M)



V. Sah et al. / Filomat 38:2 (2024), 531-541 536

Considering that w is a 1-form is the g-dual of v, then from above metioned equation, we get

1
2n+1

— %[w(Mz)#}(Ml) + O)(Ml)#}(MZ)]

S(M;, My)

(= (& )+ futo) = HlgMy, My) — 3 Fla(My)v(My) + w(MvM)]

which complete the proof. [J

From (17), the equation (29) is also possible as

_ _(F 1
SMi,My) = [A (2+2n+1

— 3 F1g0My, (M) + My, 0)(ME)] = 3 1g(Mz, D)p(MY) + g, oY (V).

) + fu(o) = h = 2f* + f)lg(Mi, Ma) — f'v(M1)v(Ma)

Therefore we can state the following corollary:

Corollary 3.6. Let (M?*"*1, g) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and let v
be a torse-forming potential vector field with regard to a Levi-Civita connection on M. Then (M*'*1, g) is a conformal
Ricci soliton (v, A, g) if and only if

1
2n+1

— S gy, BM) + g (M, 0)M)] ~ 2 gV, 0)pMy) + gV, ) M)

S0, M) = (= + )+ o)~ h=@F + F)lgMy, My) - Fr(Mav(M)

Moreover, the following theorem holds true:

Theorem 3.7. Let (M*'*1, g) be an f-Kenmotsu manifold that admits a Schouten-van Kampen connection, and
let v be a torse-forming potential vector field and N a parallel unit vector field with regard to a Schouten-van
Kampen connection on M. Consider that w is the g dual of v where w is 1-form. Then (M*'*!, g) is a conformal
Ricci soliton (v, A, g) if and only if M is a hyper-generalised quasi-Einstein manifold with associated functions

=15+ gl o) ~h=Qf+ ), ~f 5, 4

4. Submanifolds

Let (M, ) be an (2n+1)-dimensional f~Kenmotsu manifold equipped with Schouten-van Kampen con-

nection V and Levi-Civita connection V. Assume that M be an n-dimensional submanifold of (M, ). On
the submanifold M, the associated connection is denoted by V and the associated Levi-Civita connection is
denoted by V.

The Gauss and Weingarten formulations in terms of V and V can be expressed as:
Va,Mz = Vg, Mo + 1(Ms, Ma),
Var, My = Vg, My + 7i(M;, My)

where My, M, € TM, and

and
Vum, P = =SpMj + VP,

lep = —gle + VLMlp,
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where My, M, € TM, Sp is the sbape operator of M, P is a unit normal vector field and 7 is the second
fundamental form in (M, §) and S is a (1, 1)-tensor field and 7] is second fundamental form on M [6]. Let us
denote the tangential parts of N by NT and normal parts of N by N'*. Then, based on the formula [6], we
get

(M, Ma) = (M, M) — g(My, Mo)N* (29)
and

SpM; = SpM; — v(P)M;. (30)
Also from [6] we have that the associated connection V on the submanifold of an f-Kenmotsu manifold

possessed with Schouten-van Kampen connection is also a Schouten-van Kampen connection.

Suppose now that (M, ) is a f-Kenmotsu manifold possessed with Schouten-van Kampen connection
and v is a torse-forming vector field with respect to Schouten-van Kampen connection on M. Let (M, g)
denotes the submanifold of (M, 7). Let us denote the tangential parts of v by v” and normal parts of v by
v*. Then using (15), we have

@Mlv = ﬁMl W' +vt) = ﬁMlvT + %/hvl
Vi o + flgMy, o")N —v(@")My} + Vvt + Flg(My, vH)N — v(ot)M;)
hMy + P(My)o” + (Mot

Utilising the Gauss and Weingarten formulas, as well as the equality between the tangential and normal
portions, we find

Vol = (h = fv(@")My — fg(M1, v")N + Spr My + P(My)o" (31)
and
P(My)ot = n(My,0") + Vi 0" + flg(My, 09N = v(o*)My ).
then, based on the (31) equation, we obtain
(L‘UTg)(erMZ) = 9(VM17)Tr MZ) + g(erszvT)
= 2(h— fr(@")gM1, My) = flg(M, 0" W(My) + g(Ma, 0" )v(M)]
+ g(My, 0" )P(Ma) + g(Ma, 0" )P(My) + 25(n(Mi, M), 0").
Therefore, equation (1) provides us
1
2n+1

+ g0V, M) = LoV, o M) + g, 0L

SMy,Mz) = [A- (g + ) = (1 = fv(@")]g(M1, My) = g(n(M1, My), v") ~ g[g(Mb v r(My)

Thus, the following theorem can be stated:

Theorem 4.1. Let M be an n-dimensional submanifold isometrically submerged into a f-Kenmotsu manifold (M, g)
equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field with regard to a
Schouten-van Kampen connection on M. Then M is a conformal Ricci soliton if and only if the Ricci tensor field S of
M satisfies the condition:

1
2n+1

S(My, M) = [A- (g + ) = (= fr(@")]g(M1, M) = G(n(M1, My),v") — g[g(Mva)V(Mz) (32)

+ g0V, 0 M) = Slg(M, o M) + g, 0L

for every My, M € TM.
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In the circumstance in which M is v*-umbilical, it can be deduced that S,. is equivalent to JI, where |
represents a function on M and I denotes the identity map [7]. Subsequently, utilising the aforementioned
equation (32), it can be concluded that

1
2n+1

~ 2190y, 0 Y(M) + gz, oML

S(Mi,M;) = [A- (g + )= (h = fv(@")) = Jlg(Mi, Mp) + g[g(MLUT)V(Mz) + g(Ma, o7 )v(My)]

Thus, the following theorem can be stated:

Theorem 4.2. Let M be an n-dimensional v*-umbilical submanifold isometrically submerged into a f-Kenmotsu
manifold (M, §) equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field
with regard to a Schouten-van Kampen connection on M. Consider that w is the ¢ dual of v where w is 1-form. Then
(M", g) is a conformal Ricci soliton (v, A, g) if and only if M is a hyper-generalised quasi-Einstein manifold with

associated functions A — (5 + 525) = (h — fv(v")) -], 0, —é, -1

Due to the fact that the induced connection V on the submanifold of a f-Kenmotsu manifold endowed with
a Schouten-van Kampen connection is also a Schouten-van Kampen connection. Then, from (29), (32), we
get

G - _(P
SMi,Mp) = [A (2+2n+1

- §(fi(M1, M), 0") - %f[!](thT)V(Mz) + g(Mp, v" )v(M)] - %[!](le o )Y(My) + g(My, ") Y(My)],

)+ fr(") = h+ Qf* + f)lgM1, My) + f'v(V)v(Ma) (33)

where 8 denotes the Ricci tensor of the induced Schouten-van Kampen connection.
Then the following corollary holds:

Corollary 4.3. Let M be an n-dimensional submanifold isometrically submerged into a f-Kenmotsu manifold (M, §)
equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector field with regard to
a Schouten-van Kampen connection on M. Then (M", g) is a conformal Ricci soliton (v”, A, g) if and only if the
induced Ricci tensor 8 with respect to Schouten-van Kampen connection of M satisfies:

S, M) = =G+ o) + freD) = h+ @F + F)lgMy, Ma) + Fr(Miv(My)
1

2

1
2n+1
- %f[g(le 0" )v(M) + g(Ma, 0" W(My)] = S[g(Ma, 0" )p(M1) + g(My, 0" ) (M2)] = G(7i(M1, Mp), 07),
for every My, M € TM.

If M is v*-umbilical, then by (30), we get
SorMh = (] = v(o")My,
which provides us

(J = v(@")g(M1, Ma) = g(S;rM1, Ma) = §(ii(Mi, My), v7).

Therefore from (33), we establish

1
2n+1

— 3 FLaM 0T W) + gV, oYM = 1M, M) + (M, Y,

)+ fr@h) —h+ @2f2 + f1) = ] + v(0")]g(Mi, M2) + f'v(Mi)v(Ma)

Som ) = A-CEs

Thus, the following theorem can be stated:
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Theorem 4.4. Let M be an n-dimensional v*--umbilical submanifold isometrically submerged into a f-Kenmotsu
manifold (M, §) equipped with a Schouten-van Kampen connection and let v be a torse-forming potential vector
field with regard to a Schouten-van Kampen connection on M. Consider that w is the g dual of vT where w is
1-form and N is a parallel unit vector with regard to a Levi-Civita connection V. Then (M", g) is a conformal
Ricci soliton (vT, A, g) if and only if M is a hyper-generalised quasi-Einstein manifold with associated functions

A=+ 5k —h= (= @) - T+ @2+ ), f, -4 -1

5. Example

We considered an 3-dimension manifold M?>**'= {(u,v,w)} € R3, where (1, v, w) are the standard co-
ordinates in R® [19].

We select vector fields that are linearly independent of one another:

J 2 9 J

2
e =W — 6 =W 3 = —
v’ ow

Let g denote the Riemannian metric defined by the expression: g(e, e1) = g(e2, €2) = g(es, e3) = 1 and g(e;, ¢;)
=0, fori#j.

Let v be 1-form defined by v(Ms) = g(Ms,e3) for any Ms € M, let ¢ be the (1, 1) tensor field defined
by:

pe1) = —ez2, @le2) = —ey, @(e3) =0.
Using the linearity of g and ¢, we have
v(es) =1, @*Ms =-Ms+v(Ma)es, g(pMs, pMy) = g(Ms, My) — v(Mz)v(My),

For Levi-Civita connection V we have the following:

2 2
7 = 0/ 7 = ——€, 7 = ——€f.
[e1, €] [e2, €3] 2% [e1, €3] 0

Now using the Koszul formula for metric g, we obtain the following:

_ 2 _ _ 2

Vees=——e;, Veer =0, Veer=—e3,
w w

_ _ 2

Ve,e3 = —=e, Ve = s Ve,e1 =0,

V33€3 = 0, Ve3€2 = O, V33€1 =0

From above we finds that manifold satisfies Vay, N' = f(M; — v(M7)N) for N = e3, where f = —%. Hence the
manifold is f-Kenmotsu manifold. Also >+ f’ # 0. Hence M is a regular f-Kenmotsu manifold.

The components of Riemannian curvature(R) in terms of the Levi-Civita connection V are as follows:

_ _ 6 _ 6
Re1,e2)es =0, Rep, e3)e3 = — At R(e1, e3)es = il

4 _ 6 _
Rle1, e2)er = — 2t Roez, e3)e2 = — 2% Roer,e3)e2 = 0,

_ 4 6
R(er, e2)e1 = 3% R(ez, e3)e1 = 0, R(e1, e3)e1 = 2%



V. Sah et al. / Filomat 38:2 (2024), 531-541 540

In view of equation (17), we have

From above we see that %eiej =0,(0<i,j<3)for N =e;andf =-2. Hence the manifold is f-Kenmotsu

w
manifold with respect to Schouten-van Kampen connection.

From the above expression of the curvature tensor we obtain the Ricci tensor as follows:

- 10 - 10 < 12
Sye)=-—3, Seye)=-—73, Slses)=-—7
Therefore, the scalar curvature 7 = Z?:l S(ej, e) = —2}—22 and 7 = 21'3:1 f?(e,;e,-) = 0 with respect to Levi-Civita
connection and Schouten-van Kampen connection respectively.
Let us define a vector field by v = N. Then we obtain:

Coeren =2 -2f, Eeren=—2-2f (Eallese =0.

3p+2
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Contracting (1) and using the value of 7 we have A="—. The value of A satisfies the relation (25). So, g

%. Also the Conformal

Ricci soliton is expanding if A > O i.e., % >0, shrinking if A <0Oi.e.,, % <0andsteadyif A =0ie., # =

0.

defines a conformal Ricci solitons on 3-dimension f-Kenmotsu manifold for A =
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