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Abstract. We prove that if contact strongly pseudo-convex integrableCR-manifold admits a ∗-Ricci soliton
where the soliton vector Z is contact, then the Reeb vector field ξ is an eigenvector of the Ricci operator
at each point if and only if σ is constant. Then we study contact strongly pseudo-convex integrable CR-
manifold such that 1 is a almost ∗-Ricci soliton with potential vector field Z collinear with ξ. To this end,
we prove that if a 3-dimensional contact metric manifold M with Qφ = φQ which admits a gradient almost
∗-Ricci soliton, then either M is flat or f is constant.

1. Introduction

On a Riemannian manifold (M, 1) if there exists a vector field Z and a constant λ satisfying

LZ1 + 2Ric = 2λ1, (1)

then it is said that 1 defines a Ricci soliton (see Hamilton [10, 12]), where Ric denotes the Ricci tensor and
LZ denotes the Lie-derivative in the direction of Z. Usually, Z and λ are said to be potential vector field
and the soliton constant respectively. Obviously, a trivial Ricci soliton is an Einstein metric with Z zero or
Killing. Thus, a Ricci soliton may be considered as an apt generalization of an Einstein metric. We say that
the Ricci soliton is shrinking when λ > 0, steady when λ = 0, and expanding when λ < 0. If the vector field
Z is the gradient of a smooth function f , then 1 is called a gradient Ricci soliton and the soliton equation (1)
becomes

Hess f + Ric = λ1, (2)

where Hess f denotes the Hessian of f . The function f is known as the potential function. In [20], Pigola
et al modified the equations (1) and (2) by allowing the constant λ to be a smooth function, and these are
called almost Ricci soliton and gradient almost Ricci soliton on M. For more details about the Ricci flow
and Ricci soliton we recommend [5] and references therein. The studying of Ricci solitons on almost contact
Riemannian manifolds was introduced by Sharma in [21].
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Corresponding to Ricci tensor, Tachibana [22] introduced the concept of ∗-Ricci tensor. In [11] Hamada
apply these ideas to real hypersurfaces in complex spaceforms. The ∗-Ricci tensor Ric∗ is defined by

Ric∗(X1,X2) =
1
2

trace{φ ◦ R(X1, φX2)},

for all vector fields X1,X2 on M and where φ is a (1,1)-tensor field. If ∗-Ricci tensor is a constant multiple
of 1, then M is said to be a ∗-Einstein manifold. Hamada gave a complete classification of ∗-Einstein
hypersurfaces, and further Ivey and Ryan [14] updated and refined the work of Hamada [11]. Generalizing
∗-Einstein metric, Kaimakamis and Panagiotidou [15] introduced the so-called ∗-Ricci soliton where they
essentialy modified the definition of Ricci soliton by replacing the Ricci tensor Ric in Ricci soliton condition
with the ∗-Ricci tensor Ric∗.

Definition 1.1. A Riemannian metric 1 on M is called a ∗-Ricci soliton if there exists a constant λ and a vector field
Z such that

LZ1 + 2Ric∗ = 2λ1, (3)

for all vector fields X1,X2 on M.

If the soliton constant λ in the defining condition of (3) is a smooth function, then we say that it is an almost
∗-Ricci soliton. Moreover, if the vector field Z is a gradient of a smooth function f , then we say that it is
gradient almost ∗-Ricci soliton and in such a case (3) becomes

Hess f + Ric∗ = λ1. (4)

Note that a ∗-Ricci soliton is trivial if the vector field Z is Killing, and in this case the manifold becomes
∗-Einstein. In this connection, we mention that within the framework of contact geometry ∗-Ricci solitons
were first considered by Ghosh and Patra in [9] and further the idea of this concept are studied by Zenkatesha
et al [25, 26], Huchchappa et al [13], Dai et al [6], Mandal and Makhal [18]. Motivated by the above cited
works we study the ∗-Ricci solitons and almost ∗-Ricci solitons on contact Riemannian manifolds.

This paper is organized as follows. In section 2, the basic information about contact Riemannian
manifolds are given. In section 3, we consider ∗-Ricci solitons on contact strongly pseudo-convex integrable
CR-manifold M and prove that if (M, 1) represents a ∗-Ricci soliton where the soliton vector field Z is contact,
then the Reeb vector field ξ is an eigenvector of the Ricci operator at each point if and only if σ is constant.
In section 4, first we study a contact strongly pseudo-convex integrable CR-manifold such that 1 is a almost
∗-Ricci soliton with potential vector field Z collinear with ξ. Finally, we prove that if a 3-dimensional contact
Riemannian manifold M on which Qφ = φQ admits a gradient almost ∗-Ricci soliton, then either M is flat
or f is constant.

2. Preliminaries

A (2n + 1)-dimensional Riemannian manifold M is called contact manifold if it has a global 1-form η
such that η ∧ (dη)n is non-vanishing everywhere on M. For such a 1-form η, there exists a unique vector
field ξ, called Reeb vector field, such that η(ξ) = 1 and (dη)(X1, ξ) = 0. A Riemannian metric 1 on M is said
to be an associated metric if there exist a (1,1)-tensor field φ such that

φ2X1 = −X1 + η(X1)ξ, η(X1) = 1(X1, ξ), (dη)(X1,X2) = 1(X1, φX2). (5)

As a result of above equation we have

φξ = 0, η ◦ φ = 0, 1(φX1, φX2) = 1(X1,X2) − η(X1)η(X2). (6)

The manifold M equipped with contact Riemannian structure (φ, ξ, η, 1) is called a contact Riemannian
manifold. Let us consider a restriction of φ to the contact subbundle D (defined by η = 0), and denote
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this by J. Then J2X1 = −X1 and G(X1,X2) = −(dη)(X1, JX2) defines the almost Hermitian structure on D.
Thus (M, η, J) is a strongly pseudo-convex CR-manifold (see[23, 24]). We call (M, η, J) a contact strongly
pseudo-convex integrable CR-manifold when the complex distribution {X1 − iJX1; X1 in D} is integrable.
Tanno [23] gave the aforementioned integrability condition by

(∇X1φ)X2 = 1(X1 + hX1,X2)ξ − η(X2)(X1 + hX1), (7)

where ∇ is the Riemannian connection of 1, and h is the (1,1)-tensor field defined by 2h = Lξφ. Setting a
(1,1)-tensor field ℓ = R(·, ξ)ξ. Then it is not hard to verify that h and ℓ are self-adjoint and satisfy

hξ = ℓξ = 0, trace1h = trace1hφ = 0, hφ + φh = 0. (8)

We also have the following formulas for contact Riemannian manifold [1, 3].

∇X1ξ = −φX1 − φhX1, ∇ξφ = 0, (9)

trace1ℓ = 1(Qξ, ξ) = 2n − trace1h2, (10)
R(X1,X2)ξ = −(∇X1φ)X2 + (∇X2φ)X1 − (∇X1φh)X1 + (∇X2φh)X1, (11)

where R is the curvature tensor and Q is the Ricci operator. A contact Riemannian manifold is K-contact
(ξ is Killing) if and only if h = 0. A contact Riemannian structure is called normal (Sasakian) when almost
complex structure J on M ×R, defined by J(X1,u d

dt ) = (φX1 − uξ, η(X1) d
dt ), u being a smooth function on M,

is integrable. A contact Riemannian manifold is Sasakian if and only if

R(X1,X2)ξ = η(X2)X1 − η(X1)X2. (12)

A Sasakian manifold is K-contact, but the converse is true only when the dimension of M is 3. We remark that
any 3-dimensional contact Riemannian manifold satisfies (7) and hence is a contact strongly pseudo-convex
integrable CR-manifold. For more details we refer to [4, 7, 16].

On 3-dimensional contact Riemannian manifold with Qφ = φQ, the following relations hold (see [2]):

R(X1,X2)X3 =(
r
2
− trace1ℓ)(1(X2,X3)X1 − 1(X1,X3)X2) +

1
2

(3trace1ℓ − r)(η(X1)1(X2,X3)ξ

− η(X2)1(X1,X3)ξ + η(X2)η(X3)X1 − η(X1)η(X3)X2), (13)

QX1 =
1
2

(r − trace1ℓ)X1 +
1
2

(3trace1ℓ − r)η(X1)ξ. (14)

Blair et al [2] obtained the following result:

Lemma 2.1. Let M be a 3-dimensional contact Riemannian manifold with Qφ = φQ. Then the function trace1ℓ is
constant everywhere on M and ξr = 0. Further, if trace1ℓ = 0 then M is flat.

3. ∗-Ricci solitons and contact strongly pseudo-convex integrable CR-manifolds

First we derive the expression of ∗-Ricci tensor on a contact strongly pseudo-convex integrable CR-
manifold.

Lemma 3.1. The ∗-Ricci tensor on a (2n + 1)-dimensional contact strongly pseudo-convex integrable CR-manifold
M is given by

Ric∗(X1,X2) =Ric(X1,X2) − 1(ℓX1,X2) − (2n − 2)1(X1 + hX1,X2)
− η(X2)Ric(X1, ξ) + (2n − 2)η(X1)η(X2), (15)

for all vector fields X1, X2 on M.
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Proof. Koufogiorgos [16] obtained the following formula for a contact strongly pseudo-convex integrable
CR-manifold:

R(X1,X2)φX3−φR(X1,X2)X3 = {1(φR(X1,X2)ξ,X3) + η(X1)1(φX2 + φhX2,X3)
− η(X2)1(φX1 + φhX1,X3)}ξ − 1(X2 + hX2,X3)(φX1 + φhX1)
+ 1(X1 + hX1,X3)(φX2 + φhX2) + 1(φX1 + φhX1,X3)(X2 + hX2)
− 1(φX2 + φhX2,X3)(X1 + hX1) − η(X3){φR(X1,X2)ξ
+ η(X1)(φX2 + φhX2) − η(X2)(φX1 + φhX1)}. (16)

From (16), making use of skew-symmetry of φ, (5) and (6), we obtain

1(R(X1,X2)φX3, φX4) = 1(R(X1,X2)X3,X4) − η(X4)1(R(X1,X2)X3, ξ) − 1(X2 + hX2,X3)
{1(X1 + hX1,X4) − η(X1)η(X4)} + 1(X1 + hX1,X3){1(X2 + hX2,X4)
− η(X2)η(X4)} + 1(φ(X1 + hX1),X3)1(X2 + hX2, φX4) − 1(φ(X2 + hX2),X3)
1(X1 + hX1, φX4) − η(X3){1(R(X1,X2)ξ,X4) + η(X1)(1(X2 + hX2,X4)
− η(X2)η(X4)) − η(X2)(1(X1 + hX1,X4) − η(X1)η(X4))}. (17)

Let {ei}
2n+1
i=1 be a local orthonormal basis of M. Then setting X1 = X4 = ei in the preceding relation and

summing over i yields

1(R(ei,X2)φX3, φei) =Ric(X2,X3) + 1(R(X3, ξ)X2, ξ) − (2n − 2)1(X2 + hX2,X3)
− η(X3)Ric(X2, ξ) + (2n − 2)η(X2)η(X3), (18)

where we applied the relation (6). The ∗-Ricci tensor on contact Riemannian manifold is defined by (see[1, 8])

Ric∗(X1,X2) = 1(R(ei,X1)φX2, φei) = −
1
2
1(R(X1, φX2)ei, φei).

As a result of above relation, the relation (18) transforms into (15). This completes the proof.

Now we recall the following definition;

Definition 3.2. A vector field Z on a contact manifold is said to be a contact vector field (or an infinitesimal contact
transformation) if there exists a smooth function σ such thatLZη = ση. If σ = 0, then we say that Z is a strict contact
transformation.

It is known from Blair (see p. 34 in [1]) that a vector field Z is a contact vector field if and only if there is a
function f on M such that

Z = −
1
2
φgrad f + fξ, (19)

where grad is the gradient operator of 1 and σ = ξ f . By virtue of this, we prove

Lemma 3.3. Let M be a (2n + 1)-dimensional contact strongly pseudo-convex integrable CR-manifold. If metric 1
of M is a ∗-Ricci soliton with Z is a contact vector field, then

1((Qφ + φQ)X1,X2) =(2λ − σ − 2(2n − 2))1(φX1,X2) −
1
4
{(X2σ)η(X1) − (X1σ)η(X2)}

+ 1((ℓφ + φℓ)X1,X2). (20)

Proof. By hypothesis, the soliton vector Z is a contact vector field. We take covariant differentiation of (19)
and make use of (9) to deduce

∇X1 Z = −
1
2
{(∇X1φ)grad f + φ∇X1 grad f } + (X1 f )ξ − f (φX1 + φhX1). (21)
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By virtue of this, we easily compute

(LZ1)(X1,X2) = 1(∇X1 Z,X2) + 1(X1,∇X2 Z)

=
1
2
{1((∇X1φ)X2,grad f ) + 1((∇X2φ)X1,grad f ) + 1(∇X1 grad f , φX2)

+ 1(∇X2 grad f , φX1)} + (X1 f )η(X2) + (X2 f )η(X1) + 2 f1(hφX1,X2).

By virtue of (7), the foregoing equation transforms into

(LZ1)(X1,X2) =σ1(X1 + hX1,X2) +
1
2
{1(∇X1 grad f , φX2) + 1(∇X2 grad f , φX1)

− η(X2)1(X1 + hX1,grad f ) − η(X1)1(X2 + hX2,grad f )}
+ (X1 f )η(X2) + (X2 f )η(X1) + 2 f1(hφX1,X2). (22)

As a result of (22), the soliton equation (3) becomes

σ1(X1 + hX1,X2) +
1
2
{1(∇X1 grad f , φX2) + 1(∇X2 grad f , φX1) − η(X2)1(X1 + hX1,grad f )

− η(X1)1(X2 + hX2,grad f )} + (X1 f )η(X2) + (X2 f )η(X1) + 2 f1(hφX1,X2) − 2λ1(X1,X2)
+ 2Ric(X1,X2) − 21(ℓX1,X2) − 2(2n − 2)1(X1 + hX1,X2) − 2η(X2)Ric(X1, ξ)
+ 2(2n − 2)η(X1)η(X2) = 0. (23)

Take φX2 instead of X2 in (23) to obtain

σ1(X1 + hX1, φX2) +
1
2
{−1(∇X1 grad f ,X2) + η(X2)1(∇X1 grad f , ξ) + 1(∇φX2 grad f , φX1)

− η(X1)1(φX2 + hφX2,grad f )} + ((φX2) f )η(X1) − 2 f1(hX1,X2) − 2λ1(X1, φX2)
+ 21(X1,QφX2) − 21(ℓX1, φX2) − 2(2n − 2)1(X1 + hX1, φX2) = 0. (24)

From σ = ξ f = 1(grad f , ξ), one can easily find that

1(∇X1 grad f , ξ) = 1(grad f , φX1 + φhX1) + X1σ. (25)

Anti-symmetrizing the equation (24), making use of Poincare lemma and (25), we deduce

2σ1(X1, φX2) +
1
2
{(X1σ)η(X2) − (X2σ)η(X1)} − 4λ1(X1, φX2) + 21((Qφ + φQ)X2,X1)

− 21((ℓφ + φℓ)X2,X1) + 4(2n − 2)1(X1, φX2) = 0, (26)

which is equivalent to (20). This completes the proof.

Theorem 3.4. If metric 1 of a contact strongly pseudo-convex integrable CR-manifold M is a ∗-Ricci soliton whose
potential vector field Z is a contact vector field, then the Reeb vector field ξ is an eigenvector of the Ricci operator at
each point if and only if σ is constant.

Proof. Contracting (21) over X1 with respect to orthonormal frame {ei}
2n+1
i=1 and recalling second term of (8),

we obtain

div Z = −
1
2

2n+1∑
i=1

{1((∇eiφ)grad f , ei) + 1(φ∇ei grad f , ei)} + (ξ f ). (27)

It is known from [19] that, the following relation holds for any contact Riemannian manifold;

2n+1∑
i=1

1((∇eiφ)X1, ei) = −2nη(X1). (28)
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Let {eα, φeα, ξ}, α = 1, 2, 3 · · · n, be a φ-basis of M. From which, we compute

2n+1∑
i=1

1(φ∇ei grad f , ei) = −
2n+1∑
i=1

1(∇ei grad f , φei)

= −

n∑
α=1

1(∇eαgrad f , φeα) +
n∑
α=1

{1(∇φeαgrad f , eα)

+ 1(∇ξgrad f , φξ)} = 0. (29)

Thus, the utilization of (29), (28) and σ = ξ f in (27) provides div Z = (n + 1)σ. Now, switching X1 by ξ in
(20) yields

φQξ = −
1
4
{gradσ − (ξσ)ξ}, (30)

where we used first term of (8). Let us suppose that the Reeb vector field ξ is an eigenvector of the Ricci
operator, that is, Qξ = (trace1ℓ)ξ. Then the equation (30) reduces to gradσ = (ξσ)ξ. Differentiating this
along X1 and utilization of first term of (9) provides

∇X1 gradσ = X1(ξσ)ξ − (ξσ)(φX1 + φhX1).

Since 1(∇X1 gradσ,X2) = 1(X1,∇X2 gradσ), the foregoing equation shows

X1(ξσ)η(X2) − X2(ξσ)η(X1) + (ξσ)dη(X1,X2) = 0.

Replacing X1 byφX1 and X2 byφX2 and since dη is non-zero for any contact Riemannian structure it follows
that (ξσ) = 0. Hence gradσ = 0, i.e. σ is constant. Conversely, if σ is constant, then it follows from (20) that
φQξ = 0. Action of φ on this together with first term of (5) provides Qξ = (trace1ℓ)ξ. This completes the
proof.

4. Almost ∗-Ricci soliton and contact strongly pseudo-convex integrable CR-manifolds

We shall discuss about some special type of ∗-Ricci soliton where the potential vector field Z is point
wise collinear with the Reeb vector field ξ of the contact strongly pseudo-convex integrable CR-manifold.

Theorem 4.1. Let M be a contact strongly pseudo-convex integrable CR-manifold such that ξ is an eigenvector of
the Ricci operator at each point and (div ℓ)ξ = 0. If 1 represents an almost ∗-Ricci soliton with non-zero potential
vector field Z collinear with the Reeb vector field ξ, then M is Sasakian and η-Einstein. In particular if M is complete,
then M is compact positive-Sasakian.

Proof. Since the potential vector field Z on M is collinear with the Reeb vector field ξ, we have Z = ρξ,
where ρ is a non-zero smooth function on M (as Z is non-zero). Differentiating this along X1 together with
the first term of (9) gives

∇X1 Z = (X1ρ)ξ − ρ(φX1 + φhX1).

By virtue of this, the soliton equation (3) can be written as

(X1ρ)η(X2) + (X2ρ)η(X1) − 2ρ1(φhX1,X2) + 2Ric(X1,X2) − 21(ℓX1,X2)
− 2(2n − 2)1(X1 + hX1,X2) + 2((2n − 2) − trace1ℓ)η(X1)η(X2) = 2λ1(X1,X2), (31)

where we used Qξ = (trace1ℓ)ξ. Plugging ξ in place of X2 in (31) gives

(X1ρ) + (ξρ)η(X1) = 2λη(X1). (32)
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At this point, putting X1 = X2 = ξ in (31) and recalling first term of (10) we obtain

(ξρ) = λ.

The foregoing equation along with (32) gives that gradρ = (ξρ)ξ. Next, taking covariant differentiation of
this along X1 together with first term of (9) yields ∇X1 gradρ = X1(ξρ)ξ − (ξρ)(φX1 + φhX1). By virtue of
1(∇X1 gradρ,X2) = 1(X1,∇X2 gradρ), the foregoing equation provides

X1(ξρ)η(X2) − X2(ξρ)η(X1) + 2(ξρ)dη(X1,X2) = 0.

Choosing X1,X2 orthogonal to ξ and remember that dη , 0, the aforementioned equation provides ξρ = 0.
Hence gradρ = 0 and consequently ρ is constant. By virtue of this, the equation (32) shows that λ = 0.
Thus, the equation (31) reduces to

QX1 − ℓX1 − (2n − 2)(X1 + hX1) + ((2n − 2) − trace1ℓ)η(X1)ξ + ρ(hφ)X1 = 0. (33)

Taking trace of (33) we obtain r = 2trace1ℓ + 2n(2n − 2), where we used λ = 0 and trace1h = trace1hφ = 0.
Further, covariant derivative of (33) along X2 gives

(∇X2 Q)X1 − (∇X2ℓ)X1 − (2n − 2)(∇X2 h)X1 − (X2(trace1ℓ))η(X1)ξ
+ ((2n − 2) − trace1ℓ){(∇X2η)(X1)ξ + η(X1)∇X2ξ} + ρ(∇X2 hφ)X1 = 0.

Contracting this over X2 provides

1
2

(X1r) − (div ℓ)X1 − (2n − 2)(div h)X1 − (ξ(trace1ℓ))η(X1) + ρ(div(hφ))X1 = 0. (34)

On the other hand, from the first term of (8) it follows for a contact Riemannian manifold M that

(∇X1 h)ξ = (hφ − h2φ)X1.

Contracting this over X1 with respect to an orthonormal basis {ei} and noting that trace1(hφ) = trace1(h2φ) =
0, we obtain (div h)ξ = 0. Recall that for any contact Riemannian manifold (div(hφ)X1) = 1(Qξ,X1)−2nη(X1).
Since Qξ = (trace1ℓ)ξ, we have

(div(hφ))X1 = (trace1ℓ − 2n)η(X1). (35)

At this point, putting X1 = ξ in (34) and making use of r = 2(trace1ℓ) + 2n(2n − 2), (div h)ξ = 0 and (35)
provides

(div ℓ)ξ + ρ(trace1ℓ − 2n) = 0.

Suppose that (div ℓ)ξ = 0, then from above relation we have σ(trace1ℓ − 2n) = 0. From this we have
either trace1ℓ = 2n or trace1ℓ , 2n. Suppose that trace1ℓ , 2n, then the last equation shows that ρ = 0. This
contradicts our assumption that Z is non-zero. Thus, the only possibility is that trace1ℓ = 2n. This together
with the first term of (10) shows that h = 0. Which shows that M is K-contact (ξ is Killing). It is known that
K-contact strongly pseudo-convex integrable CR-manifold is Sasakian. Thus, M is Sasakian and by virtue
of (33) we have

QX1 = (2n − 1)X1 + η(X1)ξ.

This shows that M is η-Einstein. Moreover, if M is complete, then from above equation we can conclude
that M is compact and positive-Sasakian. This completes the proof.

It is known that any 3-dimensional contact Riemannian manifold is a contact strongly pseudo-convex inte-
grable CR-manifold. Thus, it is interesting to study a gradient almost ∗-Ricci soliton in contact Riemannian
3-manifold and here, we prove the following outcome:
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Theorem 4.2. If a 3-dimensional contact Riemannian manifold M such that Qφ = φQ admits a gradient almost
∗-Ricci soliton, then either M is flat or potential function f is constant.

Proof. Using Qφ = φQ, (10) and φξ = 0 we have that

Qξ = (trace1ℓ)ξ. (36)

As a result of (36), (13) and (14), we have from (15) that

Ric∗(X1,X2) =
( r

2
− trace1ℓ

)
{1(X1,X2) − η(X1)η(X2)}.

Making use of above expression, the gradient almost ∗-Ricci soliton (4) can be exhibited as

∇X1 grad f =
(
λ −

r
2
+ trace1ℓ

)
X1 +

( r
2
− trace1ℓ

)
η(X1)ξ. (37)

By straightforward computations, using the well-known expression of the curvature tensor:

R(X1,X2) = ∇X1∇X2 − ∇X2∇X1 − ∇[X1,X2],

and the repeated use of equation (37) gives

R(X1,X2)grad f =
(X2r)

2
(X1 − η(X1)ξ) −

(X1r)
2

(X2 − η(X2)ξ) +
( r

2
− trace1ℓ

)
{21(X1, φX2)ξ

+ η(X1)(φX2 + φhX2) − η(X2)(φX1 + φhX1)} + (X1λ)X2 − (X2λ)X1. (38)

Taking scalar product of foregoing equation with ξ and employing (6) yields

1(R(X1,X2)grad f , ξ) = 2
( r

2
− trace1ℓ

)
1(X1, φX2) + (X1λ)η(X2) − (X2λ)η(X1).

Replacing X2 by ξ in the above equation and utilization of (6), (13) we obtain

X1

(
trace1ℓ

2
f + λ

)
= ξ

(
trace1ℓ

2
f + λ

)
η(X1).

Writing this as: d
( trace1ℓ

2 f + λ
)
= ξ

( trace1ℓ
2 f + λ

)
η. Applying d to this condition and using the Poincare

lemma: d2 = 0 gives d
(
ξ( trace1ℓ

2 f + λ)
)
∧ dη + ξ

( trace1ℓ
2 f + λ

)
dη = 0. Taking wedge product of this equation

with η and remember that η ∧ η = 0 and dη ∧ η is non-vanishing everywhere on contact Riemannian
manifold, we conclude that ξ

( trace1ℓ
2 f + λ

)
= 0. Consequently, d

( trace1ℓ
2 f + λ

)
= 0 on M, and hence

trace1ℓ
2

f + λ = k, (39)

where k is a constant. Substituting ξ for X2 in (38) and then taking inner product of the resulting equation
with X2 and employing (6), Lemma 2.1 we find

1(R(X1, ξ)grad f ,X2) =
(
trace1ℓ −

r
2

)
1(φX1 + φhX1,X2) + (X1λ)η(X2) − (ξλ)1(X1,X2).

As a result of (13), the above equation provides(
trace1ℓ −

r
2

)
1(φX1 + φhX1,X2) + (X1λ)η(X2) − (ξλ)1(X1,X2)

+
trace1ℓ

2
(X1 f )η(X2) −

trace1ℓ
2

(ξ f )1(X1,X2) = 0.
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By virtue of (39) the preceding equation reduces to
(
trace1ℓ − r

2

)
φX1 + φhX1 = 0. Anti-symmetrizing this

equation yields 2
(
trace1ℓ − r

2

)
φX1 = 0. From this we obtain r = 2trace1ℓ, which shows that r is constant.

On ther hand, contracting (38) over X1 we get Qgrad f = 1
2 gradr − 2gradλ. This together with (14) gives

1
2

(r − trace1ℓ)grad f +
1
2

(3trace1ℓ − r)(ξ f )ξ + 2gradλ = 0,

where we used r is constant. Utilization of (39) and r = 2trace1ℓ in the above equation yields

(trace1ℓ)(grad f − (ξ f )ξ) = 0. (40)

Since trace1ℓ is constant, we have either trace1ℓ = 0 or trace1ℓ , 0. At this point, suppose that trace1ℓ = 0,
then the Lemma 2.1 shows that M is flat. Next, suppose that trace1ℓ , 0, then from (40) we obtain
grad f = (ξ)ξ. Taking covariant differentiation of this along X1 together with first term of (9) yields
∇X1 grad f = X1(ξ f )ξ − (ξ f )(φX1 + φhX1). By virtue of 1(∇X1 grad f ,X2) = 1(X1,∇X2 grad f ), the foregoing
equation provides

X1(ξ f )η(X2) − X2(ξ f )η(X1) + 2(ξ f )dη(X1,X2) = 0.

Choosing X1,X2 orthogonal to ξ and remember that dη , 0, the aforementioned equation provides ξ f = 0.
Hence grad f = 0 and consequently f is constant. This completes the proof.

Remark 4.3. Our Theorem 4.2 generalizes the Theorem 1.2 of Majhi et al [17].
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