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Abstract. We prove that if contact strongly pseudo-convex integrable CR-manifold admits a *-Ricci soliton
where the soliton vector Z is contact, then the Reeb vector field £ is an eigenvector of the Ricci operator
at each point if and only if ¢ is constant. Then we study contact strongly pseudo-convex integrable CR-
manifold such that g is a almost *-Ricci soliton with potential vector field Z collinear with £. To this end,

we prove that if a 3-dimensional contact metric manifold M with Q¢ = ¢Q which admits a gradient almost
+-Ricci soliton, then either M is flat or f is constant.

1. Introduction

On a Riemannian manifold (M, g) if there exists a vector field Z and a constant A satisfying

Lzg +2Ric = 2Ag, (1)
then it is said that g defines a Ricci soliton (see Hamilton [10, 12]), where Ric denotes the Ricci tensor and
L7 denotes the Lie-derivative in the direction of Z. Usually, Z and A are said to be potential vector field
and the soliton constant respectively. Obviously, a trivial Ricci soliton is an Einstein metric with Z zero or
Killing. Thus, a Ricci soliton may be considered as an apt generalization of an Einstein metric. We say that
the Ricci soliton is shrinking when A > 0, steady when A = 0, and expanding when A < 0. If the vector field

Z is the gradient of a smooth function f, then g is called a gradient Ricci soliton and the soliton equation (1)
becomes

Hess¢ + Ric = Ag, 2)
where Hessy denotes the Hessian of f. The function f is known as the potential function. In [20], Pigola
et al modified the equations (1) and (2) by allowing the constant A to be a smooth function, and these are
called almost Ricci soliton and gradient almost Ricci soliton on M. For more details about the Ricci flow

and Ricci soliton we recommend [5] and references therein. The studying of Ricci solitons on almost contact
Riemannian manifolds was introduced by Sharma in [21].
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Corresponding to Ricci tensor, Tachibana [22] introduced the concept of *-Ricci tensor. In [11] Hamada
apply these ideas to real hypersurfaces in complex spaceforms. The #-Ricci tensor Ric” is defined by

Ric* (X, Xa) = g tracelp o R(Xa, 9 Xo)l,

for all vector fields Xj, X, on M and where ¢ is a (1,1)-tensor field. If *-Ricci tensor is a constant multiple
of g, then M is said to be a *-Einstein manifold. Hamada gave a complete classification of *-Einstein
hypersurfaces, and further Ivey and Ryan [14] updated and refined the work of Hamada [11]. Generalizing
+-Einstein metric, Kaimakamis and Panagiotidou [15] introduced the so-called *-Ricci soliton where they
essentialy modified the definition of Ricci soliton by replacing the Ricci tensor Ric in Ricci soliton condition
with the *-Ricci tensor Ric”.

Definition 1.1. A Riemannian metric g on M is called a *-Ricci soliton if there exists a constant A and a vector field
Z such that

L79 +2Ric" = 2Ayg, 3
for all vector fields X1, X, on M.

If the soliton constant A in the defining condition of (3) is a smooth function, then we say that it is an almost
+-Ricci soliton. Moreover, if the vector field Z is a gradient of a smooth function f, then we say that it is
gradient almost *-Ricci soliton and in such a case (3) becomes

Hess¢ + Ric" = Ag. (4)

Note that a *-Ricci soliton is trivial if the vector field Z is Killing, and in this case the manifold becomes
+-Einstein. In this connection, we mention that within the framework of contact geometry *-Ricci solitons
were first considered by Ghosh and Patra in [9] and further the idea of this concept are studied by Zenkatesha
et al [25, 26], Huchchappa et al [13], Dai et al [6], Mandal and Makhal [18]. Motivated by the above cited
works we study the *-Ricci solitons and almost *-Ricci solitons on contact Riemannian manifolds.

This paper is organized as follows. In section 2, the basic information about contact Riemannian
manifolds are given. In section 3, we consider *-Ricci solitons on contact strongly pseudo-convex integrable
CR-manifold M and prove that if (M, g) represents a *-Ricci soliton where the soliton vector field Z is contact,
then the Reeb vector field £ is an eigenvector of the Ricci operator at each point if and only if ¢ is constant.
In section 4, first we study a contact strongly pseudo-convex integrable CR-manifold such that g is a almost
+-Ricci soliton with potential vector field Z collinear with . Finally, we prove that if a 3-dimensional contact
Riemannian manifold M on which Q¢ = ¢Q admits a gradient almost *-Ricci soliton, then either M is flat
or f is constant.

2. Preliminaries

A (2n + 1)-dimensional Riemannian manifold M is called contact manifold if it has a global 1-form 7
such that n A (dn)" is non-vanishing everywhere on M. For such a 1-form 7, there exists a unique vector
field &, called Reeb vector field, such that (&) = 1 and (dn)(X;, &) = 0. A Riemannian metric g on M is said
to be an associated metric if there exist a (1,1)-tensor field ¢ such that

P*X1 = -Xi +n(X1)E, n(X1) = g(X1,8), @)X, X2) = 9(X1, 9Xa). )
As a result of above equation we have
pE=0, nop=0, gleX1,9Xz)=g(X1,X2) - n(X1)n(Xa). (6)

The manifold M equipped with contact Riemannian structure (¢, &, 1, 9) is called a contact Riemannian
manifold. Let us consider a restriction of ¢ to the contact subbundle D (defined by 1 = 0), and denote
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this by J. Then J?X; = —X; and G(X31, X2) = —(dn)(X1, JX2) defines the almost Hermitian structure on D.
Thus (M, 1,]) is a strongly pseudo-convex CR-manifold (see[23, 24]). We call (M, n,]) a contact strongly
pseudo-convex integrable CR-manifold when the complex distribution {X; — iJX;; X; in D} is integrable.
Tanno [23] gave the aforementioned integrability condition by

(Vx,9)X2 = g(X1 + hX3, X2)& = n(X2)(X1 + hX1), ()

where V is the Riemannian connection of g, and # is the (1,1)-tensor field defined by 2h = L:¢. Setting a
(1,1)-tensor field € = R(, £)&. Then it is not hard to verify that i and ¢ are self-adjoint and satisfy

hé =€E =0, trace;h = traceshp =0, he +ph=0. 8)

We also have the following formulas for contact Riemannian manifold [1, 3].

Vx, & =—pX1 —phX1, Vegp =0, )
trace,{ = g(Q¢&, &) = 2n — traceghz, (10)
R(X1,X2)E = =(Vx, )Xo + (Vx, ) X1 = (Vx, ph) X1 + (Vx,ph) X1, (1)

where R is the curvature tensor and Q is the Ricci operator. A contact Riemannian manifold is K-contact
(¢ is Killing) if and only if & = 0. A contact Riemannian structure is called normal (Sasakian) when almost
complex structure | on M X R, defined by J(X;, u%) = (pX; —ué, n(Xl)%), u being a smooth function on M,
is integrable. A contact Riemannian manifold is Sasakian if and only if

R(X1, X2)& = n(X2)X1 — n(X1)Xa. (12)

A Sasakian manifold is K-contact, but the converse is true only when the dimension of M is 3. We remark that
any 3-dimensional contact Riemannian manifold satisfies (7) and hence is a contact strongly pseudo-convex
integrable CR-manifold. For more details we refer to [4, 7, 16].

On 3-dimensional contact Riemannian manifold with Q¢ = @Q, the following relations hold (see [2]):

R(X, X)Xs =(5 — trace, 09X, X5)Xi = g(X1, X)Xe) + 2 (Brace, = N0n(X)g(Xz, Xa)2
— N(X2)g(X1, X3)& + U(XZ)U(X3)X1 — N(X)n(X3)X2), (13)

[0):¢] ——(r trace,£)X; + (3traceg - N(Xy)€. (14)

Blair et al [2] obtained the following result:

Lemma 2.1. Let M be a 3-dimensional contact Riemannian manifold with Qg = Q. Then the function trace,l is
constant everywhere on M and &r = 0. Further, if trace,{ = 0 then M is flat.

3. *-Ricci solitons and contact strongly pseudo-convex integrable CR-manifolds

First we derive the expression of *-Ricci tensor on a contact strongly pseudo-convex integrable CR-
manifold.

Lemma 3.1. The *-Ricci tensor on a (2n + 1)-dimensional contact strongly pseudo-convex integrable CR-manifold
M is given by

Ric" (X1, X») =Ric(X1, Xo) — g(€X1, X2) — (2n — 2)g(X1 + h X1, Xp)
= N(X2)Ric(Xy, &) + (2n = 2)n(X1)n(X2), (15)

for all vector fields X1, Xo on M.
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Proof. Koufogiorgos [16] obtained the following formula for a contact strongly pseudo-convex integrable
CR-manifold:

R(X1, X2)pX3—@R(X1, X2)X3 = {g(pR(X1, X2)&, X3) + 1n(X1)g9(0 X5 + phXo, X3)
- (X2)g(pX1 + phXy, X3)} — g(X2 + hXa, X3) (X1 + phXy)
+9(X1 + Xy, X5)(pX2 + phXa) + g(eXa + phXy, X3)(Xa + hX3)
- g(pXa + phXy, X3)(X1 + hX1) — n(X3){pR(X1, X2)&
+ N(X)(@X2 + phXo) — n(X2) (X1 + phXq)}. (16)
From (16), making use of skew-symmetry of ¢, (5) and (6), we obtain
J(R(X1, X2)pX3, pXy4) = g(R(X1, X2)X3, Xy) — n(X4)g(R(X1, X2)X3, &) — 9(Xz + hX3, X3)
{g(X1 + hX1, Xy) — n(X)n(Xe)} + (X1 + hXy1, Xa){g(Xa2 + hX3, Xy)

= nN(X)N(Xa)} + g(p(Xq + hX1), X3)g(Xo + hXa, pXy) — g(p(Xa + hX3), X3)
g(Xq + Xy, X4) — n(Xs){g(R(X1, X2)E, Xa) + n(X1)(g(Xa + hX5, X4)

= nN(X2)n(Xs)) = n(X2)(g(X1 + hXy, Xy) — n(X1)n(Xe))}. (17)

Let {¢;}2"*! be a local orthonormal basis of M. Then setting X; = X, = ¢; in the preceding relation and
summing over i yields

g(R(ei, X2)p X3, pei) =Ric(Xz, X3) + g(R(X3, &)X, &) — (2n — 2)9(Xz + hX, X3)
- n(X3)Ric(X, &) + (2n — 2)n(X2)n(X3), (18)

where we applied the relation (6). The *-Ricci tensor on contact Riemannian manifold is defined by (see[1, 8])

- 1
Ric* (X1, X2) = g(R(ei, X1)pX2, pei) = —Ey(R(Xl,(sz)ei, pe;).
As a result of above relation, the relation (18) transforms into (15). This completes the proof. O

Now we recall the following definition;

Definition 3.2. A vector field Z on a contact manifold is said to be a contact vector field (or an infinitesimal contact
transformation) if there exists a smooth function o such that Lzn = on. If 0 = 0, then we say that Z is a strict contact
transformation.

It is known from Blair (see p. 34 in [1]) that a vector field Z is a contact vector field if and only if there is a
function f on M such that

Z = —%(pgradf + f¢&, (19)

where grad is the gradient operator of g and ¢ = £f. By virtue of this, we prove

Lemma 3.3. Let M be a (2n + 1)-dimensional contact strongly pseudo-convex integrable CR-manifold. If metric g
of M is a +-Ricci soliton with Z is a contact vector field, then

9((Qp + Q) X1, X3) =(2A — 0 — 2(2n — 2))g(pX1, X3) — }I{(XZO)TY(Xl) — (X40)n(X2)}
+ 9((€p + ) X1, X2). (20)

Proof. By hypothesis, the soliton vector Z is a contact vector field. We take covariant differentiation of (19)
and make use of (9) to deduce

VX1Z = —%{(Vxl (p)gradf + goVXlgradf} + (le)é - f(gOXl + (pth) (21)
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By virtue of this, we easily compute
(Lz29)(X1, X2) = 9(Vx,Z, X2) + 9(X1, Vx, Z)

= %{g((vxl(P)er gradf) + g((Vx,)X1, gradf) + g(Vx, gradf, pX5)
+ g(Vx,gradf, oXq)} + (X1 )n(Xz) + (Xo f)n(Xq) + 2fg(heXq, Xz).

By virtue of (7), the foregoing equation transforms into

1
(Lz9)(X1, X2) =09(X1 + hXq, X3) + E{g(Vxlgradf, PX3) + g(Vx,gradf, pXi)

- n(X2)g9(Xy + hXy, gradf) — n(X1)g(Xa + hX;, gradf)}
+ (X1 n(Xz) + (X2 f)n(X1) + 2fg(hpXy, Xz). (22)

As a result of (22), the soliton equation (3) becomes

1
0g(Xy + hXq,Xa) + E{g(Vx1 gradf, Xs) + g(Vx,gradf, X1) — n(X2)9(X1 + hXy, gradf)

- n(X1)g(X2 + hXy, grad f)} + (X1 f)n(Xz) + (Xof)n(X1) + 2fg(heX1, X2) — 2A9(X1, X2)
+ 2Ric(Xy, X2) — 29(6Xq, Xa) — 2(2n — 2)g(Xq + hXq, X2) — 2n(X2)Ric(X, &)
+2(2n — 2)1’[(X1)T](X2) =0. (23)

Take X, instead of X, in (23) to obtain

1
0g(Xq1 + hXy,9X5) + E{—g(VX1 gradf, Xo) + n(X2)g(Vx, gradf, &) + g(V,x,gradf, pX1)

= N(X1)g(@Xo + hpX,, grad f)} + ((9X2) /In(X1) — 2fg(hXa, Xz) — 2A9(Xa, 9X>)
+ Zg(X1, Q@Xz) — 2g(€X1,(pX2) - 2(27’[ - Z)g(Xl + th, gOXz) =0. (24)
From o = £f = g(gradf, &), one can easily find that

g9(Vx,gradf, &) = g(gradf, Xi + phXi) + Xq0. (25)

Anti-symmetrizing the equation (24), making use of Poincare lemma and (25), we deduce

1
209(X1, pX2) + 5{(X10)1(X2) — (X20)n(X0)} - 4A9(X1, @X2) + 29((Qg + 9Q)X2, X1)
— 29((Lp + POXa, X1) + 421 — 2)g(X1, 9Xa) = 0, (26)
which is equivalent to (20). This completes the proof. O

Theorem 3.4. If metric g of a contact strongly pseudo-convex integrable CR-manifold M is a *-Ricci soliton whose
potential vector field Z is a contact vector field, then the Reeb vector field & is an eigenvector of the Ricci operator at
each point if and only if o is constant.

2n+1

Proof. Contracting (21) over X; with respect to orthonormal frame {e;};"]

we obtain

and recalling second term of (8),

2n+1

divZ = —% Z {9((Ve,p)gradf,e) + g(pV,gradf,e)} + (£f). (27)

i=1
It is known from [19] that, the following relation holds for any contact Riemannian manifold;

2n+1

Y 9(Vap)Xa,€) = —2mn(Xs). (28)
i=1
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Let {eq, peq, &}, @ =1,2,3---n, be a p-basis of M. From which, we compute

2n+1 2n+1

Z 9(pV.gradf,e;) = - Z g(Ve,gradf, pe;)
i=1 i=1

== Z 9(Ve,gradf, pea) + Z{g(V@eagrad fred)
a=1 a=1

+ g(Vegradf, p&)} = 0. (29)
Thus, the utilization of (29), (28) and ¢ = £f in (27) provides div Z = (n + 1)o. Now, switching X; by & in
(20) yields

pQ =~ lgrado - (€02, (30)

where we used first term of (8). Let us suppose that the Reeb vector field ¢ is an eigenvector of the Ricci
operator, that is, Q¢ = (trace,£)&. Then the equation (30) reduces to grado = ({0)¢&. Differentiating this
along X; and utilization of first term of (9) provides

Vx,grado = X1(E0)E — (E0) (X1 + phXy).
Since g(Vyx,grado, X;) = g(X1, Vx,grado), the foregoing equation shows
X1(Eo)n(Xz) — Xo(Eo)n(Xq) + (So)dn(Xy, X3) = 0.

Replacing X; by ¢ X; and X, by ¢ X, and since dn is non-zero for any contact Riemannian structure it follows
that (£0) = 0. Hence grado = 0, i.e. 0 is constant. Conversely, if ¢ is constant, then it follows from (20) that
@Q¢& = 0. Action of ¢ on this together with first term of (5) provides Q& = (trace,{)&. This completes the
proof. O

4. Almost #-Ricci soliton and contact strongly pseudo-convex integrable CR-manifolds

We shall discuss about some special type of *-Ricci soliton where the potential vector field Z is point
wise collinear with the Reeb vector field £ of the contact strongly pseudo-convex integrable CR-manifold.

Theorem 4.1. Let M be a contact strongly pseudo-convex integrable CR-manifold such that & is an eigenvector of
the Ricci operator at each point and (div €)& = 0. If g represents an almost -Ricci soliton with non-zero potential
vector field Z collinear with the Reeb vector field &, then M is Sasakian and n-Einstein. In particular if M is complete,
then M is compact positive-Sasakian.

Proof. Since the potential vector field Z on M is collinear with the Reeb vector field &, we have Z = p¢,
where p is a non-zero smooth function on M (as Z is non-zero). Differentiating this along X; together with
the first term of (9) gives

lez = (le)é - p((pX1 + (pl’le)
By virtue of this, the soliton equation (3) can be written as

(X1p)n(X2) + (Xop)n(X1) = 2p9(phX1, X5) + 2Ric(X1, X5) — 29(€X1, X2)
—2(2n = 2)g(X1 + hX1, X3) + 2((2n — 2) — trace,O)n(X1)n(Xz) = 2A9(X1, Xz), (31)

where we used Q¢ = (trace,f)&. Plugging & in place of X5 in (31) gives

(Xip) + (EpIn(X1) = 2An(Xy). (32)
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At this point, putting X; = X, = £ in (31) and recalling first term of (10) we obtain
Ep) = A

The foregoing equation along with (32) gives that gradp = (£p)E. Next, taking covariant differentiation of
this along X; together with first term of (9) yields Vx,gradp = Xi1(Ep)E — (Ep)(@X1 + @hX1). By virtue of
g(Vx, gradp, Xo) = 9(Xi, Vx,gradp), the foregoing equation provides

X1 (Ep)n(Xz) — X2(Ep)n(Xy) + 2(Ep)dn(Xq, X2) = 0.

Choosing X, X, orthogonal to & and remember that dn # 0, the aforementioned equation provides £p = 0.
Hence gradp = 0 and consequently p is constant. By virtue of this, the equation (32) shows that A = 0.
Thus, the equation (31) reduces to

QX1 — X1 — (2n = 2)(X1 + hX1) + ((2n — 2) — trace, £)n(X1)E + p(he) Xy = 0. (33)

Taking trace of (33) we obtain r = 2trace,t + 2n(2n — 2), where we used A = 0 and trace;h = trace;hp = 0.
Further, covariant derivative of (33) along X, gives

(Vx,Q)X1 = (Vx, 0) X1 — (2n = 2)(Vx,h) X1 — (Xa(trace,£))n(X1)E
+ ((2n = 2) — trace, O){(Vx,M(X1)& + n(X1)Vx, &} + p(Vx,hp) Xy = 0.

Contracting this over X, provides
1 . ) )
E(Xlr) — (div £)X1 — (2n = 2)(div h) X1 — (&(trace, 0))n(Xy) + p(div(hp)) Xy = 0. (34)
On the other hand, from the first term of (8) it follows for a contact Riemannian manifold M that
(Vx,h)& = (hp — @)X

Contracting this over X; with respect to an orthonormal basis {¢;} and noting that trace,(h¢) = trace,(h*p) =
0, we obtain (div h)é = 0. Recall that for any contact Riemannian manifold (div(h@)X:) = g(Q&, X1) —2nn(Xy).
Since Q& = (trace,()&, we have

(div(he)) X1 = (trace,€ — 2n)n(Xy). (35)

At this point, putting X; = & in (34) and making use of r = 2(trace,{) + 2n(2n — 2), (div h)é = 0 and (35)
provides

(div £)¢ + p(trace, — 2n) = 0.

Suppose that (div £)¢ = 0, then from above relation we have o(trace,{ — 2n) = 0. From this we have
either trace,{ = 2n or trace,{ # 2n. Suppose that trace,{ # 2n, then the last equation shows that p = 0. This
contradicts our assumption that Z is non-zero. Thus, the only possibility is that trace,¢ = 2n. This together
with the first term of (10) shows that i = 0. Which shows that M is K-contact (£ is Killing). It is known that
K-contact strongly pseudo-convex integrable CR-manifold is Sasakian. Thus, M is Sasakian and by virtue
of (33) we have

QX; = (2n - 1)X; +n(X1)¢.

This shows that M is n-Einstein. Moreover, if M is complete, then from above equation we can conclude
that M is compact and positive-Sasakian. This completes the proof. [J

It is known that any 3-dimensional contact Riemannian manifold is a contact strongly pseudo-convex inte-
grable CR-manifold. Thus, it is interesting to study a gradient almost *-Ricci soliton in contact Riemannian
3-manifold and here, we prove the following outcome:
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Theorem 4.2. If a 3-dimensional contact Riemannian manifold M such that Qo = @Q admits a gradient almost
+-Ricci soliton, then either M is flat or potential function f is constant.

Proof. Using Q¢ = ¢Q, (10) and @& = 0 we have that
Q¢ = (trace,0)<. (36)
As a result of (36), (13) and (14), we have from (15) that

r

Ric' (X, X2) = (£ - trace,€) (9(X1, Xa) = n(X0)n(Xe)).

Making use of above expression, the gradient almost *-Ricci soliton (4) can be exhibited as

r

Vx,gradf = (/\ - % + tracegf) Xq+ (2

— tracegf) n(X1)E. (37)
By straightforward computations, using the well-known expression of the curvature tensor:
R(X1,X2) = Vx, Vx, = Vx, Vx, = Vix, x,1,

and the repeated use of equation (37) gives

R(X3, Xp)gradf :(Xzzr) (X1 —n(X1)&) - (ler) (X2 = n(X2)&) + (g - tracegt’) {29(X1, pX2)&
+ N(X1)(@X2 + phX) — n(Xo) (X1 + phXq)} + (X14)Xo — (X24) X (38)

Taking scalar product of foregoing equation with £ and employing (6) yields

9(R(X1, Xa)grady, &) =2 = trace, ) g (X1, pXa) + (XaA)(Xa) - (XaAIn(Xa)

Replacing X, by & in the above equation and utilization of (6), (13) we obtain

trace, ¢ trace, ¢
Xl( 5 f+)\)=5( 5 f+)\)17(X1)

Writing this as: d (tr%e”{ f+ /\) =¢ (% f+ /\) 1. Applying d to this condition and using the Poincare
lemma: d* = 0 gives d (5(%;% F+ /\)) Adn+ & (tra;e” g /\) dn = 0. Taking wedge product of this equation
with 1 and remember that n A 7 = 0 and dn A 1 is non-vanishing everywhere on contact Riemannian

manifold, we conclude that & (tr%egg f+ /\) = (. Consequently, 4 (w f+ /\) =0on M, and hence

trace, ¢
2

where k is a constant. Substituting & for X in (38) and then taking inner product of the resulting equation
with X, and employing (6), Lemma 2.1 we find

f+A=k (39)

9(R(X1, E)gradf, Xo) = (trace, = 2) g(@Xs + phXs, Xa) + (X)) — (ENg(X1, Xo)

As a result of (13), the above equation provides

(fraCegf - %)9(@(1 + phXy, Xo) + (X1n(X2) — (EA)9(X1, X2)

trace,f trace,{
> (XafIn(Xa) = 5 (EN9(X1, X2) = 0.

+
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By virtue of (39) the preceding equation reduces to (tracegé’ - g) @X1 + @hX; = 0. Anti-symmetrizing this
equation yields 2 (tracegf - 5) ¢@X1 = 0. From this we obtain r = 2trace,;¢, which shows that r is constant.
On ther hand, contracting (38) over X; we get Qgradf = 1gradr — 2gradA. This together with (14) gives

1 1
E(r — trace,{)gradf + §(3traceg€ —1)(&f)E +2gradA =0,
where we used r is constant. Utilization of (39) and r = 2trace,( in the above equation yields

(trace,0)(gradf — (££)E) = 0. (40)

Since trace,{ is constant, we have either trace,{ = 0 or trace,¢ # 0. At this point, suppose that trace,{ = 0,
then the Lemma 2.1 shows that M is flat. Next, suppose that trace,{ # 0, then from (40) we obtain
gradf = (&)&. Taking covariant differentiation of this along X; together with first term of (9) yields
Vx,gradf = Xi(Ef)E — (Ef ) (@Xq + phXy). By virtue of g(Vx, gradf, Xo) = g(Xi, Vx,gradf), the foregoing
equation provides

X1(EfIN(Xz) — Xa(EfIn(Xq) + 2(Ef)dn(Xy, X3) = 0.

Choosing X1, X, orthogonal to & and remember that dn # 0, the aforementioned equation provides &f = 0.
Hence gradf = 0 and consequently f is constant. This completes the proof. [

Remark 4.3. Our Theorem 4.2 generalizes the Theorem 1.2 of Majhi et al [17].
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