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Uniformly continuous extension in L-uniform convergence tower
spaces

Gunther Jägera
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Abstract. Using an extension theorem for continuous mappings between quantale-valued convergence
tower spaces that we obtained in a previous paper, we prove an extension theorem for uniformly continuous
mappings between quantale-valued uniform convergence spaces. To this end, we define and study suitable
uniform diagonal axioms and uniform regularity for quantale-valued uniform convergence tower spaces.

1. Introduction

Extending a continuous mapping f : A −→ Y from a dense subset A ⊆ X to the whole of X, such that
the extension F : X −→ Y is again continuous, is in general not possible. To see this, we may consider the
following simple example with X = Y = [0, 1] with the standard topologies and A = [0, 1/2) ∪ (1/2, 1] and
the mapping f : A −→ [0, 1] defined by f (x) = 0 for x ∈ [0, 1/2) and f (x) = 1 for x ∈ (1/2, 1]. So we need to
impose further conditions on the mapping f in order to avoid the “gap” at x0 = 1/2. One way out in the
category of convergence spaces was given by Cook [4]. For the setting of our simple example, we would
demand that images under f of sequences in A that converge to x0 in X have a common convergence point
y0 ∈ Y. This rules out our simple example, however this condition guarantees that an extension F(x) = f (x)
for x ∈ A and F(x0) = y0 is continuous.

Cook’s Theorem on continuous extension relies on a diagonal axiom for the convergence space X
and regularity – as a “dual” diagonal axiom – for the convergence space Y. In [14] this approach was
generalized to L-convergence tower spaces, where L is a quantale. This class of spaces encompasses
important examples, like L-metric spaces (also called L-categories) and, for certain choices of the quantale,
also classical convergence spaces, approach convergence spaces and probabilistic convergence spaces.

We note that in the setting of our simple example, a continuous mapping F from X = [0, 1] to Y = [0, 1] is
uniformly continuous and hence, also the restriction to A can be assumed uniformly continuous. The setting
of the general problem in the category of L-uniform convergence tower spaces, where uniform continuity of
mappings can be defined, therefore seems natural. L-uniform tower spaces and L-metric spaces are natural
examples for L-uniform convergence tower spaces and for special choices of the quantale, also classical
uniform convergence spaces, approach uniform convergence spaces and probabilistic uniform convergence
spaces are covered. In this paper, we obtain an extension theorem for a uniformly continuous mapping
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between L-uniform convergence tower spaces, defined on a dense subset. Following a classical approach
for uniform convergence spaces given by Gähler [8], our approach will be, firstly, to apply the extension
theorem previously obtained and show that a continuous extension exists. Secondly, we show that this
extension is even uniformly continuous. In order to achieve our goal, we define and study uniform diagonal
axioms and uniform regularity for L-uniform convergence tower spaces.

The paper is organized as follows. In the second section, we collect basic notions and concepts that
are needed later on and fix the notation. Section 3 studies quantale-valued uniform convergence tower
spaces and its relation to quantale-valued convergence tower spaces as well as the subclasses of quantale-
valued uniform tower spaces and quantale-valued metric spaces. The fourth section is devoted to the study
of several uniform diagonal axioms for quantale-valued uniform convergence tower spaces that are in a
natural way related to diagonal axioms for quantale-valued convergence tower spaces. We show that in
particular quantale-valued uniform tower spaces and quantale-valued metric spaces satisfy these uniform
diagonal axioms. Section 5 treats regularity for quantale-valued uniform convergence tower spaces and
again quantale-valued uniform tower spaces and quantale-valued metric spaces are always uniformly
regular. The following section 6 ties the uniform diagonal axioms and uniform regularity together in the
desired extension theorem.

2. Preliminaries

In this paper, we will consider commutative and integral quantales L = (L,≤, ∗), that is (L,≤) is a complete
lattice with distinct top and bottom elements ⊤,⊥, and (L, ∗) is a commutative semigroup with the top
element of L as the unit, i.e. α ∗⊤ = α for all α ∈ L, and ∗ is distributive over arbitrary joins, i.e. (

∨
i∈J αi) ∗ β =∨

i∈J(αi ∗ β) for all αi, β ∈ L, i ∈ J, see e.g. [9].
Typical examples for such quantales are L = ([0, 1],≤, ∗) with a left-continuous t-norm on [0, 1] or Lawvere’s

quantale L = ([0,∞],≥,+), the extended half line, ordered opposite to the natural order and addition as
quantale operation [6]. Another important example is given by the quantale of distance distribution functions
L = (∆+,≤, ∗), where ∆+ is the set of all distance distribution functions φ : [0,∞] −→ [0, 1] which are left-
continuous in the sense that φ(x) = supy<x φ(y) for all x ∈ [0,∞] and ∗ is a sup-continuous triangle function,
see [6, 23]. It is shown in [6] that (∆+,≤, ∗) is a commutative and integral quantale.

The totally below relation ◁ in a complete lattice (L,≤) is defined by α◁ β if for all subsets D ⊆ L such that
β ≤
∨

D there is δ ∈ D such that α ≤ δ, and a complete lattice is completely distributive if and only if we
have α =

∨
{β : β ◁ α} for any α ∈ L, see e.g. [9].

For a set X, we denote its power set by P(X) and the set of all filters F,G, ... on X by F(X). We consider
only proper filters, i.e. we do not allow the empty set to belong to a filter. On F(X) we use the subsethood
order. In particular, for each x ∈ X, the point filter is defined by [x] = {A ⊆ X : x ∈ A} ∈ F(X). If
F ∈ F(X), G ∈ F(Y) and f : X −→ Y is a mapping, then we define the image of F under f , f (F) ∈ F(Y), by
f (F) = {G ⊆ Y : f (F) ⊆ G for some F ∈ F}. The inverse image of G under f is defined by f←(G) = {F ⊆ X :
f←(G) ⊆ F for some G ∈ G} with the inverse image of a set G ⊆ Y, f←(G) = {x ∈ X : f (x) ∈ G}. f←(G) is
not always a filter on X, only in case f←(G) , ∅ for all G ∈ G. In this case, we also say that f←(G) exists.
A special case occurs, if A ⊆ X, for the embedding ιA : A −→ X, ιA(x) = x for all x ∈ A. We denote, for
F ∈ F(A), ιA(F) = [F] and for G ∈ F(X), in case of existence, ι←A (G) = GA and we call GA the trace of G on A.
The trace GA exists if, and only if, G ∩ A , ∅ for all G ∈ G.

For a set J, a filter G ∈ F(J) and a mapping σ : J −→ F(X) we define the diagonal filter [17] κσ(G) =⋃
G∈G
∧

j∈G σ( j). It is not difficult to see that κσ(G) ∈ F(X) and that F ∈ κσ(G) if, and only if, Fσ = { j ∈ J : F ∈
σ( j)} ∈ G.

For filters F ∈ F(X) and G ∈ F(Y) we denote their Cartesian product F × G = {H ⊆ X × Y : F × G ⊆
H for some F ∈ F,G ∈ G} ∈ F(X × Y).

For filters Φ,Ψ ∈ F(X × X) we define Φ−1 = {H ⊆ X × X : F−1
⊆ H for some F ∈ Φ} ∈ F(X × X), where

F−1 = {(x, y) ∈ X × X : (y, x) ∈ F} and Φ ◦Ψ = {H ⊆ X × X : F ◦ G ⊆ H for some F ∈ Φ,G ∈ Ψ} ∈ F(X × X),
whenever F ◦ G , ∅ for all F ∈ Φ,G ∈ Ψ, where F ◦ G = {(x, y) ∈ X × X : (x, s) ∈ F, (s, y) ∈ G for some s ∈ X}.
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3. L-uniform convergence tower spaces, L-limit tower spaces and L-metric spaces

For a set X we call a family Λ = (Λα)α∈L, with Λα ⊆ F(X × X), which satisfies the axioms, for all α, β ∈ L,

(LUC1) [(x, x)] ∈ Λα for all x ∈ X;

(LUC2) Ψ ∈ Λα whenever Φ ≤ Ψ and Φ ∈ Λα;

(LUC3) Φ ∧Ψ ∈ Λα whenever Φ,Ψ ∈ Λα;

(LUC4) Λβ ⊆ Λα whenever α ≤ β;

(LUC5) Φ−1
∈ Λα whenever Φ ∈ Λα;

(LUC6) Φ ◦Ψ ∈ Λα∗β whenever Φ ∈ Λα,Ψ ∈ Λβ and Φ ◦Ψ exists;

(LUC7) Λ⊥ = F(X × X)

an L-uniform convergence tower on X and we call the pair (X,Λ) an L-uniform convergence tower space [13]. A
mapping f : (X,Λ) −→ (X′,Λ′) between L-uniform convergence tower spaces is called uniformly continuous
if ( f × f )(Φ) ∈ Λ′α whenever Φ ∈ Λα. The category of L-uniform convergence tower spaces with uniformly
continuous mappings as morphisms is denoted by L-UCTS.

For L = ({0, 1},≤,∧) we obtain uniform convergence spaces [21], for L = ([0, 1],≤, ∗) with a left-continuous
t-norm we obtain probabilistic uniform convergence spaces in the definition of Nusser [20], for L = (∆+,≤, ∗)
we obtain the probabilistic uniform convergence spaces in [1] and for L = ([0,∞],≥,+) we obtain the
approach uniform convergence spaces of Lee and Windels [19].

It can be shown in the standard way that the category L-UCTS is topological. In particular, initial
constructions are done as follows. For a source ( fk : X −→ (Xk,Λk))k∈K we define the initial L-uniform
convergence tower Λ = init(Λk) on X by Φ ∈ Λα if ( fk × fk)(Φ) ∈ Λk

α for all k ∈ K.
Important examples of initial constructions are product spaces and subspaces. For product spaces, we

put X =
∏

k∈K Xk and consider the source (prk : X −→ (Xk,Λk))k∈K with the projection mappings prk. The
initial L-uniform convergence tower space is called the product space (

∏
k∈K Xk, πΛ) and we have Φ ∈ πΛα if

(prk × prk)(Φ) ∈ Λk
α for all k ∈ K. For the product of two L-uniform convergence tower spaces (X,ΛX), (Y,ΛY)

we also write (X × Y,ΛX ×ΛY). For a subset A ⊆ X, (X,Λ) an L-uniform convergence tower space, we call
the inital construction for the source ιA : A −→ (X,Λ) a subspace and denote it by (A,Λ|A). We have, for
Φ ∈ F(A × A), that Φ ∈ Λα|A if [Φ] ∈ Λα.

An L-uniform convergence tower space (X,Λ) is called left-continuous if for all subsets M ⊆ L we have
Φ ∈ Λ∨M whenever Φ ∈ Λα for all α ∈M.

For an L-uniform convergence tower space (X,Λ), F ∈ F(X), x ∈ X and α ∈ L we define

x ∈ qΛα (F) ⇐⇒ [x] × F ∈ Λα.

It is not difficult to show that (X, qΛ = (qΛα )α∈L) is an L-limit tower space, i.e. satisfies the axioms (see [12]), for
all α, β ∈ L, F,G ∈ F(X),

(LC1) x ∈ qΛα ([x]) for all x ∈ X;

(LC2) qΛα (F) ⊆ qΛα (G) whenever F ≤ G;

(LC3) qΛα (F ∧G) = qΛα (F) ∩ qΛα (G);

(LC4) qΛβ (F) ⊆ qΛα (F) whenever α ≤ β;
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(LC5) qΛ
⊥

(F) = X.

Moreover, a uniformly continuous mapping f : (X,Λ) −→ (X′,Λ′) is continuous as a mapping f : (X, qΛ) −→

(X′, qΛ′ ) in the sense that x ∈ qΛα (F) implies f (x) ∈ qΛ′α ( f (F)). A limit tower space (X, q) is called left-continuous
if x ∈ qα(F) for all α ∈ M ⊆ L implies x ∈ q∨M(F). If the L-uniform convergence tower space (X,Λ) is

left-continuous, then (X, qΛ) is left-continuous, too.
For L = ([0, 1],≤, ∗) with a left-continuous t-norm, we obtain the probabilistic limit spaces of [20, 22]. For

Lawvere’s quantale, an L-limit tower space is a limit tower space in the definition of [2] and for L = (∆+,≤, ∗)
we obtain the probabilistic convergence spaces in [11].

For L-limit tower spaces, initial constructions are done as follows, see [15]. For a source ( fk : X −→
(Xk, qk))k∈K, we define the initial L-convergence tower on X by x ∈ init(qk)α(F) if fk(x) ∈ qk

α( fk(F)) for all k ∈ K.
Later, the following result will be important for us.

Proposition 3.1. Let ( fk : X −→ (Xk,Λk))k∈K be a source and let (X, init(Λk)) be the initial construction. Furthermore

let (X, init(qΛk )) be the initial construction for the source ( fk : X −→ (Xk, qΛ
k ))k∈K. Then we have qinit(Λk) = init(qΛk ).

Proof. We have x ∈ init(qΛk )α(F) if, and only if, fk(x) ∈ qΛk

α ( fk(F)) for all k ∈ K. This is equivalent to
( fk × fk)([x] × F) = [ fk(x)] × fk(F) ∈ Λk

α for all k ∈ K, i.e. to [x] × F ∈ init(Λk)α, which is equivalent to

x ∈ qinit(Λk)
α (F).

A system of filtersU = (Uα)α∈L withUα ∈ F(X × X) for all α ∈ L, with the properties, for all α, β ∈ L,

(LU1) Uα ≤ [∆] with [∆] =
∧

x∈X[(x, x)];

(LU2) Uα ≤ (Uα)−1;

(LU3) Uα∗β ≤ Uα ◦ Uβ;

(LU4) Uα ≤ Uβ whenever α ≤ β;

(LU5) U⊥ =
∧

F(X × X)

is called an L-uniform tower on X and the pair (X,U) is called an L-uniform tower space [13]. (X,U) is called
left-continuous ifU∨M ≤

∨
α∈MUα whenever ∅ ,M ⊆ L

For L = ({0, 1},≤,∧) we obtain classical uniformities [3], for L = ([0, 1],≤, ∗) with a left-continuous t-
norm, we obtain probabilistic uniformities in the definition of Florescu [7] and for Lawvere’s quantale,
L = ([0,∞],≥,+), a left-continuous L-uniform tower is an approach uniformity [19]. For L = (∆+,≤, ∗), an
L-uniform tower is a probabilistic uniformity in [1].

For an L-uniform tower space (X,U) we define Φ ∈ ΛUα if, and only if, Φ ≥ Uα. It is then not difficult to

see that (X,ΛU) is an L-uniform convergence tower space.
An L-metric space [6] is a pair (X, d) of a set X and a mapping d : X × X −→ L which satisfies the axioms

(LM1) d(x, x) = ⊤ for all x ∈ X;

(LM2) d(x, y) = d(y, x) for all x, y ∈ X;

(LM3) d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X.

If we leave away the symmetry axiom (LM2), then we shall speak of an L-quasimetric space. In case
L = ({0, 1},≤,∧), an L-quasimetric space is a preordered set. If L = ([0,∞],≥,+) is Lawvere’s quantale, an
L-metric space is a pseudometric space. If L = (∆+,≤, ∗), an L-metric space is a probabilistic pseudometric
space, see [6].
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If the lattice (L,≤) is completely distributive, what we tacitly assume if we consider L-metric spaces in
this paper, for an L-metric space (X, d) we define an L-convergence tower qd and an L-uniform convergence
tower Λd as follows ([12],[13]). For α ∈ L, F ∈ F(X) and Φ ∈ F(X × X) we have

x ∈ qd
α(F) ⇐⇒

∨
F∈F

∧
y∈F

d(x, y) ≥ α;

Φ ∈ Λd
α ⇐⇒

∨
M∈Φ

∧
(x,y)∈M

d(x, y) ≥ α.

We showed in [12, 13] that L-metric spaces can be characterized by their L-(uniform) convergence towers.
We also showed in [13] that we can define an L-uniform towerUd byUd

α =
∧
Φ∈Λd

α
Φ for α ∈ L.

Proposition 3.2. Let L be completely distributive. Then we have ΛUd = Λd.

Proof. If Ψ ∈ Λd
α, then clearly Ψ ≥ Ud

α, i.e. Ψ ∈ ΛUd

α . For the converse, let Ψ ∈ ΛUd

α and let ϵ ◁ α. For each
Φ ∈ Λd

α, there is MΦ ∈ Φ such that for all (x, y) ∈MΦ we have d(x, y) ≥ ϵ. Then M =
⋃
Φ∈Λd

α
MΦ ∈ U

d
α ≤ Ψ and

hence,
∨

N∈Ψ
∧

(x,y)∈N d(x, y) ≥
∧

(x,y)∈M d(x, y) ≥ ϵ. The complete distributivity yields
∨

N∈Ψ
∧

(x,y)∈N d(x, y) ≥
α, i.e.Ψ ∈ Λd

α.

We have shown in [13] that qd = qΛd . If we define, for an L-uniform tower space (X,U), qU = qΛU , i.e. we
define x ∈ qUα (F) if [x] × F ≥ Uα, then we see that for an L-metric space the L-convergence towers resulting
from (X, d), (X,Λd) and (X,Ud) coincide.

4. Diagonal axioms for L-uniform convergence tower spaces

In the sequel, we fix a mapping γ : L × L −→ L. We say that an L-uniform convergence tower space
(X,Λ) satisfies the uniform Fischer diagonal axiom (LUF-γ) if for all sets J and mappings ψ : J −→ X × X, for
all selection functions σ : J −→ F(X ×X) and G ∈ F(J) with ψ(G) ∈ Λα and ψ( j) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ J, we
have κσ(G) ∈ Λγ(α,β).

A similar axiom for L-convergence tower spaces was studied in [14]. We say that an L-convergence
tower space (X, q) satisfies the Fischer diagonal axiom (LF-γ) if for all sets J and all mappings φ : J −→ X, and
for all selection functions σ : J −→ F(X) and G ∈ F(J) with x ∈ qα(φ(G)) and φ( j) ∈ qβ(σ( j)) for all j ∈ J, we
have x ∈ qγ(α,β)(κσ(G)). For classical convergence spaces this axiom is attributed to Fischer [5].

Lemma 4.1. We have (z, y) ∈ qΛβ × qΛβ ([z] × F) if, and only if, y ∈ qΛβ (F).

Proposition 4.2. Let (X,Λ) be an L-uniform convergence tower space and let γ : L×L −→ L be a mapping. If (X,Λ)

satisfies (LUF-γ), then (X, qΛ) satisfies (LF-γ).

Proof. Let J be a set, φ : J −→ X and σ : J −→ F(X), G ∈ F(J) and x ∈ X such that x ∈ qΛα (φ(G)) and
φ( j) ∈ qΛβ (σ( j)) for all j ∈ J.

We define J̃ = X × J, ψ = idX × φ, Gx = [x] × G and σ̃ : J̃ −→ F(X × X) by σ̃(z, j) = [z] × σ( j). Then
ψ(Gx) = [x]×φ(G) ∈ Λα, because x ∈ qΛα (φ(G)), and ψ(z, j) = (z, φ( j)) ∈ qΛβ × qΛβ (̃σ(z, j)) because φ( j) ∈ qΛβ (σ( j))
for all j ∈ J. The axiom (LUF-γ) implies κσ̃(Gx) ∈ Λγ(α,β). Now we have F ∈ κσ̃(Gx) if, and only if, {(z, j) ∈
X × J : F ∈ [z] × σ( j)} = Fσ̃ ∈ [x] ×G if, and only if, x ∈ prX(F) and prJ(F)σ = { j ∈ J : prJ(F) ∈ σ( j)} ∈ G. This
is equivalent to x ∈ prX(F) and prJ(F) ∈ κσ(G), that is, to F ∈ [x]×κσ(G). Hence we have [x]×κσ(G) ∈ Λγ(α,β),
which means x ∈ qΛγ(α,β)(κσ(G)) and the axiom (LF-γ) is shown.
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The axiom (LUF-γ) is preserved by initial constructions. First we need a lemma and we omit its
straightforward proof.

Lemma 4.3. Let ( fk : X −→ (Xk,Λk))k∈K be a source and let (u, v) ∈ qinit(Λk)
β × qinit(Λk)

β (Φ). Then ( fk(u), fk(v)) ∈

qΛk

β × qΛk

β (( fk × fk)(Φ)) for all k ∈ K.

Proposition 4.4. Let (Xk,Λk) be L-uniform convergence tower spaces that satisfy the axiom (LUF-γ) for all k ∈ K,
let ( fk : X −→ (Xk,Λk))k∈K be a source and let (X,Λ) be the initial construction. Then (X,Λ) satisfies (LUF-γ).

Proof. Let J be a set, ψ : J −→ X × X be a mapping, G ∈ F(J) and σ : J −→ F(X × X) such that ψ(G) ∈ Λα and
ψ( j) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ J. We define ψk = ( fk × fk) ◦ψ and σk = ( fk × fk) ◦ σ. By definition of the initial

construction, then ψk(G) ∈ Λk
α for all k ∈ K and by Lemma 4.3 we conclude ψk( j) ∈ qΛk

β × qΛk

β (σk( j)) for all
j ∈ J. We conclude with (LUF-γ) that κσk(G) ∈ Λk

γ(α,β) for all k ∈ K.

We note that Fσk = (( fk× fk)←(F))σ and hence, ( fk× fk)(κσ(G)) = κσk(G) ∈ Λk
γ(α,β) for all k ∈ K, which entails

κσ(G) ∈ Λγ(α,β).

Proposition 4.5. Let (X,U) be an L-uniform tower space. Then (X,ΛU) satisfied (LUF-γ) for γ(α, β) = α ∗ β ∗ β.

Proof. Let J be a set, ψ : J −→ X ×X be a mapping, G ∈ F(J) and σ : J −→ F(X ×X) such that ψ(G) ∈ ΛUα and

ψ( j) ∈ qΛUβ × qΛUβ (σ( j)) for all j ∈ J. Then ψ(G) ≥ Uα and for all j ∈ J we have [pr1(ψ( j))] × pr1(σ( j)) ≥ Uβ and
[pr2(ψ( j))] × pr2(σ( j)) ≥ Uβ.

Let G ∈ G. For j ∈ G and M j ∈ σ( j) we have

M j ⊆ (pr1(M j) × {pr1(ψ( j))}) ◦ ψ(G) ◦ ({pr2(ψ( j))} × pr2(M j)}).

This follows as for (s, t) ∈ M j we have s ∈ pr1(M j), (pr1(ψ( j)), pr2(ψ( j))) = ψ( j) ∈ ψ(G) and t ∈ pr2(M j) and
hence (s, pr1(ψ( j))) ∈ pr1(M j)×{pr1(ψ( j))}, (pr1(ψ( j)), pr2(ψ( j))) ∈ ψ(G) and (pr2(ψ( j)), t) ∈ {pr2(ψ( j))}×pr2(M j).

Let now H ∈
(∧

j∈J(pr1(σ( j)) × [pr1(ψ( j))])
)
◦ ψ(G) ◦

(∧
j∈J([pr2(ψ( j))] × pr2(σ( j)))

)
. Then there are sets

P1 ∈
∧

j∈J(pr1(σ( j)) × [pr1(ψ( j))]), G ∈ G and P2 ∈
∧

j∈J([pr2(ψ( j))] × pr2(σ( j))) such that P1 ◦ ψ(G) ◦ P2 ⊆ H.
For j ∈ G we have P1 ∈ pr1(σ( j)) × [pr1(ψ( j))] and P2 ∈ [pr2(ψ( j))] × pr2(σ( j)), i.e. there is M j ∈ σ( j) such that
pr1(M j) × {pr1(ψ( j))} ⊆ P1 and {pr2(ψ( j))} × pr2(M j) ⊆ P2. We conclude, for j ∈ G, that M j ⊆ H and hence,
H ∈ σ( j). So we have G ⊆ Hσ, which implies Hσ

∈ G, i.e. H ∈ κσ(G).
=Therefore, we conclude

Uα∗β∗β ≤ Uβ ◦ Uα ◦ Uβ

≤

∧
j∈J

(pr1(σ( j)) × [pr1(ψ( j))])

 ◦ ψ(G) ◦

∧
j∈J

([pr2(ψ( j))] × pr2(σ( j)))


≤ κσ(G),

and we have κσ(G) ∈ ΛUα∗β∗β and the proof is complete.

We conclude that also for an L-metric space, (X,Λd) satisfies (LUF-γ) for γ(α, β) = α ∗ β ∗ β. Proposition
4.2 entails that (X, qd) satisfies (LF-γ) for γ(α, β) = α ∗ β ∗ β. However, in [14] we have shown the stronger
result that (X, qd) satisfies (LF-γ) for the mapping γ defined by γ(α, β) = α ∗ β.

A special case of the axiom (LUF-γ) arises if we restrict to J = X × X and ψ = idX×X. We say that (X,Λ)
satisfies the uniform Kowalsky diagonal axiom (LUK-γ) if for allΨ ∈ F(X×X), σ : X×X −→ F(X×X) such that
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Ψ ∈ Λα and (u, v) ∈ qΛβ × qΛβ (σ(u, v)) for all (u, v) ∈ X × X we have κσ(Ψ) ∈ Λγ(α,β). Clearly, (LUF-γ) implies
(LUK-γ).

A similar axiom for L-convergence tower spaces was introduced in [14] and goes back, for classical
convergence spaces, to Kowalsky [18]. We say that (X, q) satisfies the axiom (LK-γ) if for all G ∈ F(X) and
σ : X −→ F(X) such that x ∈ qα(G) and y ∈ qβ(σ(y)) for all y ∈ X we have x ∈ qγ(α,β)(κσ(G)).

Proposition 4.6. If the L-uniform convergence tower space (X,Λ) satisfies (LUK-γ), then (X, qΛ) satisfies (LK-γ).

Proof. This proof is similar to the proof of Proposition 4.2 and it is therefore not presented.

Proposition 4.7. Let (Xk,Λk) be L-uniform convergence tower spaces that satisfy the axiom (LUK-γ) for all k ∈ K
and let ( fk : X −→ (Xk,Λk))k∈K be a source with all fk injective and let (X,Λ) be the initial construction. Then (X,Λ)
satisfies (LUK-γ).

Proof. Let Ψ ∈ F(X × X), σ : X × X −→ F(X × X) such that Ψ ∈ Λα and (u, v) ∈ qΛβ × qΛβ (σ(u, v)) for all

(u, v) ∈ X × X. Then ( fk × fk)(Ψ) ∈ Λk
α and ( fk(u), fk(v)) ∈ qΛk

β × qΛk

β (( fk × fk) ◦ σ(u, v)) for all k ∈ K. We define,
for k ∈ K, the selection function σk : Xk × Xk −→ F(Xk × Xk) by σk(uk, vk) = ( fk × fk) ◦ σ(u, v) if fk(u) = uk
and fk(v) = vk, and σk(uk, vk) = [(uk, vk)] otherwise. Note that σk is well-defined by the injectivity of the fk.
Then, for all k ∈ K, (uk, vk) ∈ qΛk

β × qΛk

β (σk(uk, vk)) and hence, by (LUK-γ), we have κσk(( fk × fk)(Ψ)) ∈ Λk
γ(α,β)

for all k ∈ K. Noting that F ∈ κσk(( fk × fk)(Ψ)) if, and only if, (( fk × fk)←(F))σ = ( fk × fk)←(Fσk
) ∈ Ψ, i.e.

if F ∈ ( fk × fk)(κσ(Ψ)) we have ( fk × fk)(κσ(Ψ)) ∈ Λk
γ(α,β) for all k ∈ K, and therefore κσ(Ψ) ∈ Λγ(α,β), as

desired.

We consider now an L-uniform tower space (X,U) and define, for (x, y) ∈ X × X and β ∈ L,

U
(x,y)
β =

∧
(x,y)∈qΛUβ ×qΛUβ (Φ)

Φ.

Lemma 4.8. Let (X,U) be an L-uniform tower space. Then (x, y) ∈ qΛUβ × qΛUβ (U(x,y)
β ).

Proof. We have forΦ ∈ F(X×X) that (x, y) ∈ qΛUβ ×qΛUβ (Φ) is equivalent to x ∈ qΛUβ (pr1(Φ)) and y ∈ qΛUβ (pr2(Φ)).
Hence [x] × pr1(Φ) ≥ Uβ and therefore

[x] × pr1(U(x,y)
β ) =

∧
(x,y)∈qΛUβ ×qΛUβ (Φ)

([x] × pr1(Φ)) ≥ Uβ.

In the same way we see that also [y]×pr2(U(x,y)
β ) ≥ Uβ. This means x ∈ qΛUβ (pr1(U(x,y)

β )) and y ∈ qΛUβ (pr2(U(x,y)
β ))

which entails (x, y) ∈ qΛUβ × qΛUβ (pr1(U(x,y)
β ) × pr2(U(x,y)

β )) ⊆ qΛUβ × qΛUβ (U(x,y)
β ).

We define σβ : X × X −→ F(X × X) by σβ(x, y) = U(x,y)
β .

Proposition 4.9. =Let (X,U) be an L-uniform tower space. Then (X,ΛU) satisfies (LUK-γ) if, and only if,
κσβ(Uα) ≥ Uγ(α,β).
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Proof. Let (X,ΛU) satisfy (LUK-γ). As Uα ∈ Λ
U
α and (u, v) ∈ qΛUβ × qΛUβ (U(u,v)

β ) for all (u, v) ∈ X × X we

conclude κσβ(Uα) ∈ ΛU
γ(α,β), i.e. κσβ(Uα) ≥ Uγ(α,β).

Let now κσβ(Uα) ≥ Uγ(α,β). IfΨ ∈ ΛUα and σ : X×X −→ F(X×X) such that (u, v) ∈ qΛUβ ×qΛUβ (σ(u, v)) for all

(u, v) ∈ X×X, thenΨ ≥ Uα and σ(u, v) ≥ U(u,v)
β for all (u, v) ∈ X×X. We conclude κσ(Ψ) ≥ κσβ(Uα) ≥ Uγ(α,β),

i.e. κσ(Ψ) ∈ ΛU
γ(α,β).

Proposition 4.10. Let (X,U) be an L-uniform tower space. Then (X,ΛU) satisfies (LUK-γ) if, and only if, it satisfies
(LUF-γ).

Proof. It is sufficient to show that (LUK-γ) implies (LUF-γ). Let ψ : J −→ X ×X, σ : J −→ F(X ×X), G ∈ F(J)

such that ψ(G) ∈ ΛUα and ψ( j) ∈ qΛUβ × qΛUβ (σ( j)) for all j ∈ J. Then ψ(G) ≥ Uα and σ( j) ≥ Uψ( j)
β for all

j ∈ J. We define σ̃ : X × X −→ F(X × X) by σ̃(u, v) =
∧
ψ( j)=(u,v) σ( j) if (u, v) ∈ ψ(J) and σ̃(u, v) = [(u, v)]

otherwise. Then σ̃(u, v) ≥ U(u,v)
β for all (u, v) ∈ X × X and hence, κσ̃(ψ(G)) ≥ κσβ(Uα) ≥ Uγ(α,β). We finally

show that κσ(G) ≥ κσ̃(ψ(G)). Let H ∈ κσ̃(ψ(G)), then ψ←(Hσ̃) ∈ G. For j ∈ ψ←(Hσ̃) we have ψ( j) ∈ Hσ̃,
i.e. H ∈ σ̃ ◦ ψ( j) ≤ σ( j). Hence Hσ

⊇ ψ←(Hσ̃) and therefore Hσ
∈ G, which implies H ∈ κσ(G). Therefore

κσ(G) ≥ Uγ(α,β), i.e. κσ(G) ∈ ΛU
γ(α,β) and the proof is complete.

Finally, we shall consider a diagonal axiom that goes back to the work of W. Gähler [8]. ForΦ ∈ F(X×X)
we define

Uα(Φ) = κσα(Φ).

Lemma 4.11. Let (X,Λ) be an L-uniform convergence tower space and let Φ ∈ F(X × X), α ∈ L and (x, y) ∈ X × X.
ThenUα(Φ) ≤ Φ andUα([(x, y)]) = U(x,y)

α .

Proof. The first assertion follows fromU(x,y)
α ≤ [(x, y)], which implies Hσα ⊆ H.

For the second assertion, we have H ∈ Uα([(x, y)]) if, and only if, Hσα ∈ [(x, y)], if, and only if, H ∈
σα(x, y) = U(x,y)

α .

We say that the L-uniform convergence tower space (X,Λ) satisfies the uniform Gähler diagonal axiom
(LUG-γ) if for all α, β ∈ L and all Φ ∈ F(X × X) we haveUβ(Φ) ∈ Λγ(α,β) whenever Φ ∈ Λα.

Proposition 4.12. An L-uniform convergence tower space (X,Λ) satisfies (LUG-γ) if, and only if, it satisfies (LUF-γ).

Proof. Let first (LUG-γ) be satisfied and let J be a set, ψ : J −→ X × X, σ : J −→ F(X × X) and G ∈ F(J) such
that ψ(G) ∈ Λα and ψ( j) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ J. Then σ( j) ≥ σβ(ψ( j)) for all j ∈ J and, by (LUG-γ),
Uβ(ψ(G)) ∈ Λγ(α,β). We show thatUβ(ψ(G)) ≤ κσ(G), from which with (LUCT2) the axiom (LUF-γ) follows.
We have H ∈ Uβ(ψ(G)) if, and only if Hσβ ∈ ψ(G) if, and only if, ψ←(Hσβ ) ∈ G. If j ∈ ψ←(Hσβ ), thenψ( j) ∈ Hσβ ,
i.e. H ∈ σβ(ψ( j)) ≤ σ( j) and we conclude j ∈ Hσ. Therefore, ψ←(Hσβ ) ⊆ Hσ and we conclude H ∈ κσ(G).

Let now (LUF-γ) be true and let Φ ∈ Λα. We define Jβ = {(Ψ, (x, y)) : (x, y) ∈ qΛβ × qΛβ (Ψ)} and ψ : Jβ −→

X × X by ψ((Ψ, (x, y))) = (x, y), and σ : X × X −→ F(X × X) by σ((Ψ, (x, y))) = Ψ. As (x, y) ∈ qΛβ × qΛβ ([(x, y)])
we see that ψ is a surjection and hence K = ψ←(Φ) ∈ F(Jβ) and ψ(K) = Φ ∈ Λα. Furthermore, we have
ψ((Ψ, (x, y))) = (x, y) ∈ qΛβ × qΛβ (σ(Ψ, (x, y))). The axiom (LUF-γ) yields κσ(K) ∈ Λγ(α,β) and we will show that
κσ(K) ≤ Uβ(Φ). Let H ∈ κσ(K). Then Hσ

∈ ψ←(Φ), i.e. there is M ∈ Φ such that ψ←(M) ⊆ Hσ. We note
that (Ψ, (x, y)) ∈ ψ←(M) is equivalent to (x, y) ∈ M and implies H ∈ σ((Ψ, (x, y))) = Ψ. Therefore, noting
that (Ψ, (x, y)) ∈ Jβ means (x, y) ∈ qΛβ × qΛβ (Ψ), we see that (x, y) ∈ M implies H ∈ U(x,y)

β = σβ(x, y) and hence
M ⊆ Hσβ , i.e. Hσβ ∈ Φ. This entails H ∈ κσβ(Φ) = Uβ(Φ) and the proof is complete.
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Hence, for an L-uniform tower space, in particular for an L-metric space, all three diagonal axioms
(LUF-γ), (LUK-γ) and (LUG-γ) are equivalent and they satisfy these axioms for γ : L × L −→ L defined by
γ(α, β) = α ∗ β ∗ β.

5. Regularity

We call an L-uniform convergence tower space (X,Λ) uniformly γ-regular if it satisfies the axiom (LUR-γ):
for all sets J, mappings ψ : J −→ X × X, selection mappings σ : J −→ F(X × X) and filters G ∈ F(J) such that
κσ(G) ∈ Λα and ψ( j) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ J, we have ψ(G) ∈ Λγ(α,β).

This axiom is in a sense “dual” to the axiom (LUF-γ). For L-convergence tower spaces, regularity was
introduced in [14]. We call an L-convergence tower space (X, q) γ-regular if it satisfies the axiom (LR-γ): for
all sets J, mappings ψ : J −→ X, selection functions σ : J −→ F(X), filters G ∈ F(J) such that x ∈ qα(κσ(G))
and ψ( j) ∈ qβ(σ( j)) for all j ∈ J we have x ∈ qγ(α,β)(ψ(G)).

The following two results can be proved in a similar way as Propositions 4.2 and 4.4.

Proposition 5.1. Let (X,Λ) be an L-uniform convergence tower space and let γ : L×L −→ L be a mapping. If (X,Λ)

is uniformly γ-regular, then (X, qΛ) is γ-regular.

Proposition 5.2. Let (Xk,Λk) be L-uniform convergence tower spaces that are uniformly γ-regular for all k ∈ K and
let ( fk : X −→ (Xk,Λk))k∈K be a source and let (X,Λ) be the initial construction. Then (X,Λ) is uniformly γ-regular.

An L-uniform tower space is always γ-regular for a certain function γ.

Proposition 5.3. Let (X,U) be an L-uniform tower space. Then (X,ΛU) is uniformly γ-regular for γ(α, β) = α∗β∗β.

Proof. Let J be a set, ψ : J −→ X × X be a mapping, σ : J −→ F(X × X) be a selection mapping and

G ∈ F(J) such that κσ(G) ∈ ΛUα and ψ( j) ∈ qΛUβ × qΛUβ (σ( j)) for all j ∈ J. Then κσ(G) ≥ Uα and, for all j ∈ J,
[pr1(ψ( j))] × pr1(σ( j)) ≥ U j and [pr2(ψ( j))] × pr2(σ( j)) ≥ U j. We conclude

Uα∗β∗β ≤

∧
j∈J

(pr1(σ( j)) × [pr1(ψ( j))])

 ◦ κσ(G) ◦

∧
j∈J

([pr2(ψ( j))] × pr2(σ( j)))

 =: K

and we show that K ≤ ψ(G). Let K ∈ K. Then there are P1 ∈
∧

j∈J(pr1(σ( j)) × [pr1(ψ( j))]),H ∈ κσ(G),P2 ∈∧
j∈J([pr2(ψ( j))] × pr2(σ( j))) such that P1 ◦H ◦ P2 ⊆ K. Then Hσ

∈ G and thus there is G ∈ G such that for all
j ∈ G we have H ∈ σ( j). Let (s, t) ∈ ψ(G). Then ψ( j) = (s, t) for some j ∈ G and there is M j ∈ σ( j) such that
{s} × pr1(M j) ⊆ P1 and pr2(M j)× {t} ⊆ P2. We put M̃ j =M j ∩H and have for (u, v) ∈ M̃ j, (s,u) ∈ P1, (u, v) ∈ H,
(v, t) ∈ P2, i.e. we have (s, t) ∈ P1 ◦H ◦ P2 ⊆ K. Hence we have shown ψ(G) ⊆ K, i.e. K ∈ ψ(G). Therefore, we
have, as desired,Uα∗β∗β ≤ ψ(G) which means we have ψ(G) ∈ ΛUα∗β∗β.

In particular, an L-metric space is γ-regular for γ(α, β) = α ∗ β ∗ β. Again, in [14] we showed that this is
even true for the function γ(α, β) = α ∗ β .

We can characterize uniform γ-regularity using certain closures. To this end, we define for M ⊆ X × X,

the β-closure of M, as the closure of M with respect to qΛβ × qΛβ , by (x, y) ∈ M
β

if there is Ψ ∈ F(X × X) such

that M ∈ Ψ and (x, y) ∈ qΛβ × qΛβ (Ψ). For a filter Φ ∈ F(X × X), the set {M
β

: M ∈ Φ} is then a filter basis and

we denote the generated filter by Φ
β
∈ F(X × X).

Proposition 5.4. An L-uniform convergence tower space (X,Λ) is γ-regular if, and only if, Φ
β
∈ Λγ(α,β) whenever

Φ ∈ Λα.
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Proof. Let first (X,Λ) be γ-regular and let Φ ∈ Λα. We define Jβ = {((x, y),Ψ) : (x, y) ∈ qΛβ × qΛβ (Ψ)},
ψ : Jβ −→ X×X byψ((x, y),Ψ) = (x, y) andσ : Jβ −→ F(X×X) byσ(((x, y),Ψ)) = Ψ. Then for j = ((x, y),Ψ) ∈ Jβ
we have ψ( j) = (x, y) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ Jβ. For M ∈ Φ we define SM = {((x, y),Ψ) ∈ Jβ : M ∈ Ψ}.
It is not difficult to see that the sets SM with M ∈ Φ form a filter basis on Jβ and we denote the generated

filter by SΦ. From ψ(SM) = {(x, y) : (x, y) ∈ qΛβ × qΛβ (Ψ),M ∈ Ψ} = M
β

we see that ψ(SΦ) = Φ
β
. We show

that Φ ≤ κσ(SΦ). If M ∈ Φ, then SM ∈ SΦ. For j = ((x, y),Ψ) ∈ SM we have M ∈ Ψ = σ( j), i.e. j ∈Mσ. Hence,
we have SM ⊆ Mσ and therefore M ∈ κσ(SΦ). Φ ≤ κσ(SΦ) implies that κσ(SΦ) ∈ Λα and by (LUR-γ) then

Φ
β
= ψ(SΦ) ∈ Λγ(α,β).

Let now Φ
β
∈ Λγ(α,β) whenever Φ ∈ Λα. Let J be a set, ψ : J −→ X × X, σ : J −→ F(X × X) and G ∈ F(J)

such that κσ(G) ∈ Λα and ψ( j) ∈ qΛβ × qΛβ (σ( j)) for all j ∈ J. Then κσ(G)
β
∈ Λγ(α,β). To complete the proof, we

show that ψ(G) ≥ κσ(G)
β
. To this end, let H ∈ κσ(G)

β
. Then there is K ∈ κσ(G) such that K

β
⊆ H. As Kσ

∈ G,
there is G ∈ G such that G ⊆ Kσ, i.e. for j ∈ G we have K ∈ σ( j). Also, for j ∈ G we have ψ( j) ∈ qΛβ × qΛβ (σ( j)),

which shows that ψ( j) ∈ K
β
⊆ H. Hence, ψ(G) ⊆ H and this shows H ∈ ψ(G).

Proposition 5.5. Let (X,U) be an L-uniform tower space. Then (X,ΛU) is γ-regular if, and only if,Uγ(α,β) ≤ Uα
β

for all α, β ∈ L.

Proof. If (X,ΛU) is γ-regular, then, becauseUα ∈ Λ
U
α we concludeUα

β
∈ ΛU

γ(α,β), i.e.Uγ(α,β) ≤ Uα
β
. For the

converse, let Φ ∈ ΛUα . Then Φ ≥ Uα which implies Φ
β
≥ Uα

β
≥ Uγ(α,β), i.e. Φ

β
∈ ΛU

γ(α,β).

We note that for γ(α, β) = α ∗ β ∗ β, (X,ΛU) is γ-regular. Hence, we always haveUα
β
≥ Uα∗β∗β.

6. An extension theorem for uniformly continuous mappings

In [14], an extension theorem for continuous mappings between L-convergence tower spaces was given.
The following notation and results are needed. Let (X, qX), (Y, qY) be L-convergence tower spaces, let A ⊆ X
and let f : A −→ Y be a mapping. For x ∈ X and α ∈ L we denote

Hα
A(x) = {F ∈ F(X) : FA ∈ F(A), x ∈ qX

α (F)}

FαA(x) =

{
{y ∈ Y : y ∈ qY

α ( f (FA))∀F ∈ Hα
A(x)} if Hα

A(x) , ∅
Y if Hα

A(x) = ∅

We have Hβ
A(x) ⊆ Hα

A(x) whenever α ≤ β. With the notation A
α
= {x ∈ X : ∃F ∈ F(X),A ∈ F, x ∈ qα(F)} we

have x ∈ A
α

if and only if Hα
A(x) , ∅. We call A ⊆ X dense in (X, qX) if A

⊤

= X. For a dense subset A ⊆ X
all Hα

A(x) are non-empty. Furthermore, we call an L-convergence tower space (X, q) a T2-space if x, y ∈ q⊤(F)
implies x = y.

Theorem 6.1. ([14]) Let γ : L × L −→ L satisfy
∨
β◁⊤ γ(γ(α, β), β) ≥ α for all α, β ∈ L.

Let (X, qX), (Y, qY) be L-convergence tower spaces and let (X, qX) satisfy (LK-γ) and (Y, qY) be a left-continuous
T2-space and satisfy (LR-γ). Let further A ⊆ X be dense in (X, qX) and let f : (A, qX|A) −→ (Y, qY) be continuous.
The following are equivalent:

(i) There is a unique continuous mapping 1 : (X, qX) −→ (Y, qY) such that 1 ◦ ιA = f .
(ii) for each x ∈ X,

⋂
α∈L FαA(x) , ∅.
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We now prove a related extension theorem for uniformly continuous mappings between L-uniform
convergence tower spaces. For the classical result we refer to Gähler [8]. In the restricted framework of
approach uniform convergence spaces a similar result was obtained in [10].

We have to restrict the lattice context to frames, i.e. to quantales with idempotent quantale operation,
α ∗α = α for all α ∈ L. It is not difficult to see that this implies that α ∗ β = α∧ β for all α, β ∈ L. Furthermore,
we require a stronger separation axiom. We say that an L-convergence tower space (X, q) is a strong T2-space
if x = y whenever x ∈ q⊤(F) and y ∈ qα(F) for some α > ⊥. Clearly, a strong T2-space is a T2-space. An

L-uniform convergence tower space (X,Λ) is a strong T2-space if (X, qΛ) is a strong T2-space.

Example 6.2. Let L = {0, 0.5, 1} with the usual order and consider the minimum as quantale operation. Let
further (X, p) be a limit space. We define q0(F) = X for all F ∈ F(X), q0.5 = p and q1 by x ∈ q1(F) if and only if
F = [x]. Then (X, q) is a left-continuous L-convergence tower space, which is a strong T2-space if (X, p) is a
T1-space, i.e. if y ∈ p([x]) implies x = y.

We note that being a strong T2-space is a very strong requirement. For an L-metric space (X, d) the
space (X, qd) is a strong T2-space only if (X, d) is discrete. In fact, if we assume that (X, d) is not discrete and
d(x, y) = α < {⊥,⊤} for x , y, then y ∈ qd

α([x]) by the definition of qd. As also x ∈ qd
⊤

([x]) we conclude x = y, a
contradiction.

An L-uniform convergence tower space (X,Λ) is called complete if for all α ∈ L, F × F ∈ Λα implies that
there is x ∈ X such that [x] × F ∈ Λα, see [16].

Theorem 6.3. Let L be a frame and let γ : L × L −→ L satisfy
∨
β◁⊤ γ(γ(α, β), β) ≥ α for all α, β ∈ L.

Let (X,ΛX), (Y,ΛY) be L-uniform convergence tower spaces and let (X,ΛX) satisfy the axiom (LUG-γ) and
let (Y,ΛY) be a complete, left-continuous, strong T2-space and satisfy (LUR-γ). Let further A ⊆ X be dense in
(X, qΛX ) and let f : (A,ΛX|A) −→ (Y,ΛY) be uniformly continuous. Then there is a uniformly continuous mapping
1 : (X,ΛX) −→ (Y,ΛY) such that 1 ◦ ιA = f .

Proof. We have seen in Proposition 4.12 that (X,ΛX) satisfies (LUF-γ) and hence also (LUK-γ). By Proposition

4.6 then (X, qΛ) satisfies (LK-γ). Also, using Proposition 5.1, we know that (X, qΛ) is a γ-regular, left-

continuous T2-space. As f : (A,ΛX|A) −→ (Y,ΛY) is uniformly continuous, we have that f : (A, qΛX
|A) −→

(Y, qΛY ) is continuous. We want to show that for all x ∈ X,
⋂
α∈L FαA(x) , ∅. Let F ∈ H⊤A(x). Then FA ∈ F(A)

and [x] × F ∈ ΛX
⊤

and hence, by (LUC5) and (LUC6), F × F = (F × [x]) ◦ ([x] × F) ∈ ΛX
⊤

. From ιA(FA) ≥ F
we conclude (ιA × ιA)(FA × FA) ≥ F × F and hence, FA × FA ∈ Λ

X
⊤
|A. From the uniform continuity of

f we obtain φ(FA) × φ(FA) ∈ ΛY
⊤

and the completeness of (Y,ΛY) ensures the existence of y0 ∈ Y such
that [y0] × φ(FA) ∈ ΛY

⊤
. We claim that y0 ∈ FαA(x) for all α ∈ L. To this end, let G ∈ Hα

A(x). Then

GA ∈ F(A) and x ∈ qΛX

α (G). As also x ∈ qΛX

⊤
(F) ⊆ qΛX

α (F), we conclude x ∈ qΛX

α (F ∧ G). As before, we obtain
(F∧G)× (F∧G) ∈ ΛX

α∗α = Λ
X
α and also (F∧G)A× (F∧G)A ∈ Λ

X
α |A. Uniform conituity of f and completeness

of (Y,ΛY) ensure that there exists y1 ∈ qΛY

α ( f ((F ∧ G)A)) ⊆ qΛY

α ( f (FA)) ∩ qΛY

α ( f (GA)). The strong T2-property
implies y1 = y0 and as G ∈ Hα

A(x) was arbitrary, we finally obtain y0 ∈ FαA(x).

Theorem 6.1 yields the existence of a continuous extension 1 : (X, qΛX ) −→ (Y, qΛY ) of f and we need to
show that 1 : (X,ΛX) −→ (Y,ΛY) is uniformly continuous. Let Φ ∈ ΛX

α . For β ◁⊤ thenUβ(Φ) ∈ ΛX
γ(α,β).

We now show thatUβ(Φ)A×A exists. As A
⊤

= X, for (x, y) ∈ X×X there are F,G ∈ F(X) such that A ∈ F,G

and x ∈ qΛX

⊤
(F) ⊆ qΛX

β (F) and y ∈ qΛX

⊤
(G) ⊆ qΛX

β (G). For Θ := F ×G then A × A ∈ Θ and (x, y) ∈ qΛX

β × qΛX

β (Θ).

Hence U(x,y)
β ≤ Θ and the trace (U(x,y)

β )A×A exists. For H ∈ Uβ(Φ) there is M ∈ Φ such that H ∈ U(x,y)
β

whenever (x, y) ∈M. Therefore, H ∩ (A × A) , ∅ andUβ(Φ)A×A exists.
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We conclude that (ιA × ιA)(Uβ(Φ)) ≥ Uβ(Φ) ∈ ΛX
γ(α,β) and therefore Uβ(Φ)A×A ∈ Λ

X
γ(α,β)|A×A. The uni-

form continuity of f then ensures that ( f × f )(Uβ(Φ)A×A) ∈ ΛY
γ(α,β) and the regularity of (Y,ΛY) yields

( f × f )(Uβ(Φ)A×A)
β
∈ ΛY

γ(γ(α,β),β).

We next show that (1× 1)(Φ) ≥ ( f × f )(Uβ(Φ)A×A)
β
. Let K ∈ ( f × f )(Uβ(Φ)A×A)

β
. Then there is H ∈ Uβ(Φ)

such that ( f × f )(H ∩ (A × A))
β
⊆ K. There is M ∈ Φ such that H ∈ U(x,y)

β for all (x, y) ∈ M. We show that

(1 × 1)(M) ⊆ ( f × f )(H ∩ (A × A))
β
. To this end, let (s, t) ∈ (1 × 1)(M). Then there are (x, y) ∈ M with 1(x) = s

and 1(y) = t. As A
⊤

= X we can choose again Θ ∈ F(X × X) such that A × A ∈ Θ and (x, y) ∈ qΛX

β × qΛX

β (Θ).

The continuity of 1 ensures (s, t) = (1(x), 1(y)) ∈ qΛY

β × qΛY

β ((1 × 1)(Θ)). Moreover, from H ∈ U(x,y)
β ≤ Θ we

conclude H ∩ (A × A) ∈ Θ and hence, ( f × f )(H ∩ (A × A)) = (1 × 1)(H ∩ (A × A)) ∈ (1 × 1)(Θ). We conclude

(s, t) ∈ ( f × f )(Uβ(Φ)A×A)
β
. This shows (1 × 1)(M) ⊆ K, i.e. K ∈ (1 × 1)(Φ).

We deduce finally that (1×1)(Φ) ∈ ΛY
γ(γ(α,β),β) for all β◁⊤. The left-continuity of (Y,ΛY) yields (1×1)(Φ) ∈

ΛY∨
β◁⊤ γ(γ(α,β),β) ⊆ Λ

Y
α and the uniform continuity of 1 is established.
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