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On Stirling and Bell numbers of order 1/2
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Abstract. The Stirling numbers of order 1/2 (of the second kind) introduced by Katugampola are discussed
and it is shown that they are given by a scaled subfamily of the generalized Stirling numbers introduced
by Hsu and Shiue. This allows to deduce in a straightforward fashion many properties of the Stirling and
Bell numbers of order 1/2, for example, recurrence relations, generating functions, Dobiński formula, and
Spivey formula. The even Bell polynomials of order 1/2 are shown to be closely related to generalized
Laguerre polynomials of order −1/2. Generalized Stirling numbers of order 1/2 of the first kind are defined
and studied. An analog of the Weyl algebra is introduced and proposed as a natural algebraic setting where
the Stirling numbers of order 1/2 of both kinds appear as ordering coefficients. This algebra contains the
Weyl algebra as a subalgebra.

1. Introduction

The Stirling numbers of the second kind S(n, k) (A008277 in [32]) count the number of set partitions
of a set of n elements into k nonempty disjoint subsets and are among the most important combinatorial
numbers, see, e.g., [9, 10, 22, 33]. If we denote by X and D the operators acting on functions of a real variable
by (X f )(x) = x f (x) and (D f )(x) = d f

dx (x), then one has the commutation relation of the Weyl algebra,

DX − XD = I, (1)

where I denotes the identity. The powers of the Euler operator (or, Mellin derivative) XD can be written in
the normal ordered form

(XD)n =

n∑
k=1

S(n, k)XkDk. (2)

In this context, normal ordering means to bring a word in X and D into a form where all letters D stand to
the right of all letters X using the commutation relation (1) (for more details concerning normal ordering,
see [5, 24, 31]). The expansion (2) was already known to Scherk in 1823 [30] (but he did not recognize
the coefficients as Stirling numbers). He also considered powers (XpD)n, for p ∈ N, and studied the
resulting normal ordering coefficients we would now call generalized Stirling numbers Sp,1(n, k) (such that
S1,1(n, k) = S(n, k)), see the discussion in [5, Appendix A]. In [5], the combinatorial interpretation of Sp,1(n, k)
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in terms of trees is discussed and one can find many references to the literature where this connection
was proved several times, see also the references given in [24]. More generally, Carlitz [7] and McCoy
[28] considered normal ordering (XpDq)n, for p, q ∈ N, hence the generalized Stirling numbers Sp,q(n, k).
These generalized Stirling numbers have also been rediscovered several times, see, e.g., [24]. Recently,
degenerate Stirling numbers as well as degenerate r-Stirling numbers were also discussed as normal
ordering coefficients [14, 15, 18, 19]. Further considerations concerning normal ordering and generalized
Stirling numbers can be found in [16, 17, 20, 25].

Katugampola [13, Definition 5.2] introduced the generalized Stirling numbers of order s ∈ { 12 ,
1
3 ,

1
4 , . . .}

to be normal ordering coefficients of s
1−n

2 (xs d
dx )n when n is odd, and of s−

n
2 (x1−s d

dx )n when n is even. For
example, when s = 1

2 , one finds [13]

2(
√

xD)2 =D + 2xD2,

2(
√

xD)3 =3
√

xD2 + 2
√

x3D3,

22(
√

xD)4 =3D2 + 12xD3 + 4x2D4,

giving, e.g., S(4, 1) = 0, S(4, 2) = 3, S(4, 3) = 12, S(4, 4) = 4, where we denote the generalized Stirling numbers
of order 1

2 by S(n, k). Tables for the values of the generalized Stirling numbers for small n, k can be found for
several values of s in [13]. Also, a connection to several sequences (A223168, A223523, A223524, A098503) in
[32] was mentioned for s = 1

2 as well as a connection to generalized Laguerre polynomials, but no systematic
investigation was made. In the present work, we consider the case s = 1

2 more closely.
In Section 2, we define the Stirling numbers S(n, k) and Bell numbers Bn of order 1

2 . In Section 3, we recall
the definition and some properties of the generalized Stirling numbers S(n, k;α, β, r) due to Hsu and Shiue
[11]. Using an operational interpretation of S(n, k;α, β, r) due to Kargın and Corcino [12], we identify S(n, k)
with the scaled subfamily S(n, k; 1

2 , 1, 0), allowing to deduce in a straightforward fashion many properties
of S(n, k) and Bn and to introduce and study the Stirling numbers of order 1

2 of the first kind, s(n, k). As an
algebraic structure for considerations of normal ordering in this setting, an analog of the Weyl algebra is
proposed in Section 4 and some ordering results analogous to those in the Weyl algebra are derived.

2. Stirling and Bell numbers of order 1
2

As mentioned in the Introduction, Katugampola defined [13, Definition 5.1] the Stirling numbers of order
1
2 , in the following denoted by S(n, k), to be the coefficients of 2

n−1
2 (X

1
2 d

dx )n when n is odd, and of 2
n
2 (X

1
2 d

dx )n

when n is even. Thus, we can write

2
n
2

(
X

1
2 D

)n
= X−

n
2

n∑
k=0

S(n, k) XkDk, for n even.

Note that S(n, k) = 0 for 0 ≤ k < n/2 if n is even. Thus, the summands corresponding to “small” k vanish.
In a similar fashion, for n odd, we have

2
n−1

2

(
X

1
2 D

)n
= X−

n
2

n∑
k=0

S(n, k) XkDk, for n odd.

For n odd, we have S(n, k) = 0 for 0 ≤ k < (n + 1)/2. Denoting by ⌊x⌋ the greatest integer less than or equal
to x, we can combine these two observations as follows,(

X
1
2 D

)n
=

n∑
k=⌊ n+1

2 ⌋

2−⌊
n
2 ⌋S(n, k) Xk− n

2 Dk. (3)

By comparing this with (2), we see that S(n, k) should be considered as a kind of generalized Stirling number
of the second kind. Note that there is a slight difference between our definition and the one of Katugampola
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[13]: In his coefficients cn,k (see Table 7 in [13]) the second index is chosen such that cn,1 denotes the first
nonvanishing expansion coefficient – which corresponds to S(n, ⌊ n+1

2 ⌋). Thus, there is a shift of ⌊ n+1
2 ⌋ − 1 in

the second index, i.e.,

cn,k = S(n, k + ⌊
n − 1

2
⌋). (4)

Let us also introduce the associated Bell polynomials of order 1
2 by

Bn(x) =
n∑

k=1

S(n, k)xk. (5)

For x = 1, one obtains the corresponding Bell numbers of order 1
2 , Bn ≡ Bn(1) =

∑n
k=1 S(n, k). One may also

introduce the Fubini numbers (or ordered Bell numbers) of order 1
2 by Fn =

∑n
k=0 S(n, k)k!, in analogy to the

conventional case (see, e.g., [9] or A000670 in [32]). The first few values of S(n, k), Bn and Fn are displayed
in Table 1.

Remark 2.1. The first few Bell numbers of order 1
2 (1, 3, 5, 19, 39, 173, 407, see Table 1) coincide with the beginning

of sequence A242818 in [32]. This is no coincidence, as will be shown in the next section. The sequence of Fubini
numbers of order 1

2 starts with 1, 5, 18, 174, 1050, 15.210, 128.520 (see Table 1) and is not mentioned in [32].

n\k 1 2 3 4 5 6 7 Bell number Fubini number
1 1 1 1
2 1 2 3 5
3 3 2 5 18
4 3 12 4 19 174
5 15 20 4 39 1.050
6 15 90 60 8 173 15.210
7 105 210 84 8 407 128.520

Table 1: The first few Stirling, Bell and Fubini numbers of order 1
2 .

One could now show several proporties of the generalized Stirling numbers S(n, k) directly from their
definition. For example, introducing the notation

εℓ =

0, if ℓ is even,
1, if ℓ is odd,

(6)

we have the following result.

Proposition 2.2. The Stirling numbers of order 1
2 satisfy, for n ∈N and 0 ≤ k ≤ n, the recurrence relation

S(n + 1, k) = (1 + εn)S(n, k − 1) + (1 + εn)
(
k −

n
2

)
S(n, k), (7)

with initial value S(1, 1) = 1 and with S(n, k) = 0 for 0 ≤ k < ⌊ n+1
2 ⌋.

Using (7), one finds S(n + 1,n + 1) = (1 + εn)S(n,n), hence

S(n + 1,n + 1) = (1 + εn)(1 + εn−1)S(n − 1,n − 1) = 2S(n − 1,n − 1).

Since S(1, 1) = 1, this shows that

S(n,n) = 2⌊
n
2 ⌋, (8)
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see Table 1. We will refrain from giving a direct proof of Proposition 2.2 since we will show in the next
section that the S(n, k) are given by the generalized Stirling numbers of Hsu and Shiue [11] – from which
all these properties can be derived easily (see, e.g., Corollary 3.3). From Proposition 2.2, one derives the
following result.

Proposition 2.3. The Bell polynomials of order 1
2 satisfy, for n ∈N, the recurrence relation

Bn+1(x) = (1 + εn)
(
x −

n
2

)
Bn(x) + (1 + εn)x

dBn

dx
(x), (9)

with initial value B1(x) = x.

Proof. Multiplying (7) with xk and summing over k, one obtains

Bn+1(x) = (1 + εn)
∑
k≥1

S(n, k − 1)xk + (1 + εn)
∑
k≥1

(
k −

n
2

)
S(n, k)xk.

The first sum on the right-hand side equals xBn(x), while the second sum on the right-hand side equals
x d

dxBn(x) − n
2Bn(x), showing the assertion.

Before closing this section, let us make the connection to the Laguerre polynomials mentioned in the
Introduction explicit. Osipov [29] considered powers of the operator Bα = X−αDX1+αD (where α is not a
negative integer). In particular, he showed that [29, Equation (6)]

Lαn(x) =
(−1)n

n!
exBn
αe
−x,

where Lαn(x) =
∑n

k=0
(n+α

n−k
) (−x)k

k! is a generalized Laguerre polynomial. Choosing α = − 1
2 , one has B

−
1
2
=

X
1
2 DX

1
2 D, hence (B

−
1
2
)n = (X

1
2 D)2n. Using (3), this yields

L−
1
2

n (x) =
(−1)n

n!
ex(X

1
2 D)2ne−x =

2−n

n!

n∑
ℓ=0

S(2n,n + ℓ) (−x)ℓ. (10)

Thus,

S(2n,n + ℓ) = 2n
(
n − 1

2

n − ℓ

)
n!
ℓ!
.

In particular, S(2n,n) = 2nn!
(n− 1

2
n

)
= (2n − 1)!!, where (2n − 1)!! = 1 · 3 · 5 · · · (2n − 1) denotes the sequence of

the double factorial of odd numbers (A001147 in [32]) starting with 1, 3, 15, 105, see Table 1. Recalling (5),
one infers from (10) the following result.

Proposition 2.4. The Bell polynomials of order 1
2 satisfy, for n ∈N,

B2n(x) = (2x)nn!L−
1
2

n (−x). (11)

3. The connection to the generalized Stirling numbers of Hsu and Shiue

In this section, we derive and exploit the connection between the Stirling numbers of order 1
2 and the

generalized Stirling numbers introduced by Hsu and Shiue [11]. For the convenience of the reader, we
recall their definition and those properties we will use later on. Denoting the generalized factorial by
(z|α)n = z(z − α) · · · (z − (n − 1)α), the generalized Stirling numbers S(n, k;α, β, r) are defined as connection
coefficients,

(z|α)n =

n∑
k=0

S(n, k;α, β, r)(z − r|β)k.



M. Schork / Filomat 38:2 (2024), 609–619 613

Here the parameters α, β, r are real or complex parameters (note that the original restriction (α, β, r) , (0, 0, 0)
for the definition of the S(n, k;α, β, r) is unnecessary [21, Section 6]). They are given, for β , 0, explicitly by

S(n, k;α, β, r) =
1
βkk!

k∑
j=0

(−1)k− j
(
k
j

)
(β j + r|α)n, (12)

and they satisfy the recurrence relation

S(n + 1, k;α, β, r) = S(n, k − 1;α, β, r) + (kβ − nα + r)S(n, k;α, β, r) (13)

with initial value S(n, 0;α, β, r) = (r|α)n. The associated generalized Bell numbers are defined by

Bα,β,r(n) =
n∑

k=0

S(n, k;α, β, r), (14)

and one has the generalized Dobiński formula [11, Equation (23)]

Bα,β,r(n) =
(1

e

) 1
β ∑

k≥0

(1/β)k

k!
(kβ + r|α)n. (15)

By specializing the parameters α, β, r, many different kinds of combinatorial numbers can be recovered, see
[11] or the Appendix of [4]. The numbers S(n, k;α, β, r) have been studied intensely in literature, see, e.g.,
[4, 21] for recent combinatorial discussions. For us, one particularly important operational property was
shown by Kargın and Corcino [12, Equation (2.5)],

(βx1−α/βD)n
[
xr/β f (x)

]
= x(r−nα)/β

n∑
k=0

S(n, k;α, β, r)βkxk f (k)(x), (16)

where D = d
dx and f (k) = Dk f . Specializing (α, β, r) = ( 1

2 , 1, 0), one obtains from (16) the normal ordering
result

(X
1
2 D)n = X−

n
2

n∑
k=0

S(n, k;
1
2
, 1, 0) XkDk. (17)

Comparing this with (3), we have the following result.

Proposition 3.1. The Stirling numbers of order 1
2 are given, for 1 ≤ k ≤ n, by

S(n, k) = 2⌊
n
2 ⌋S(n, k;

1
2
, 1, 0). (18)

Remark 3.2. By combining (18) with (4), one finds for Katugampola’s coefficients cn,k that

cn,k = 2⌊
n
2 ⌋S(n, k + ⌊

n − 1
2
⌋;

1
2
, 1, 0).

Using (18), many properties can be transferred from the generalized Stirling numbers S(n, k; 1
2 , 1, 0) to S(n, k)

(or, cn,k). Let us give some examples.

Corollary 3.3. The Stirling numbers of order 1
2 satisfy the recurrence relation (7).
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Proof. Using (18), we find S(n + 1, k) = 2⌊
n+1

2 ⌋S(n + 1, k; 1
2 , 1, 0). Applying (13), this gives

S(n + 1, k) = 2⌊
n+1

2 ⌋S(n, k − 1;
1
2
, 1, 0) + 2⌊

n+1
2 ⌋

(
k −

n
2

)
S(n, k;

1
2
, 1, 0).

Using again (18), this yields

S(n + 1, k) = 2(⌊ n+1
2 ⌋−⌊

n
2 ⌋)S(n, k − 1) + 2(⌊ n+1

2 ⌋−⌊
n
2 ⌋)

(
k −

n
2

)
S(n, k).

Since 2(⌊ n+1
2 ⌋−⌊

n
2 ⌋) = (1 + εn), this shows (7).

Using (18) and applying (12) with (α, β, r) = ( 1
2 , 1, 0), one finds the explicit expression

S(n, k) =
1

2⌊
n+1

2 ⌋k!

k∑
j=0

(−1)k− j
(
k
j

)
(2 j)n, (19)

where xn = x(x − 1) · · · (x − n + 1) denotes the falling factorial.
In the conventional case, the Stirling numbers of the first kind s(n, k) (A008275 in [32]) can be defined

in various ways, and the Stirling numbers of the first and second kind satisfy orthogonality relations. In
view of this property, we will define numbers s(n, k) which can be considered as Stirling numbers of order
1
2 of the first kind. The generalized Stirling numbers S(n, k;α, β, r) and S(n, k; β, α,−r) satisfy orthogonality
relations, so with respect to (18) we define, for k,n ∈Nwith 1 ≤ k ≤ n

s(n, k) = 2−⌊
k
2 ⌋S(n, k; 1,

1
2
, 0). (20)

Proposition 3.4. The numbers S(n, k) and s(n, k) satisfy the orthogonality relations∑
ℓ

S(n, ℓ)s(ℓ,m) =
∑
ℓ

s(n, ℓ)S(ℓ,m) = δn,m. (21)

Proof. Let us consider the first sum. Inserting (18) and (20), one obtains

2⌊
n
2 ⌋2−⌊

m
2 ⌋

∑
ℓ

S(n, ℓ;
1
2
, 1, 0)S(ℓ,m; 1,

1
2
, 0) = 2⌊

n
2 ⌋−⌊

m
2 ⌋δn,m = δn,m,

where we used an orthogonality relation of the generalized Stirling numbers. The second relation is shown
in the same fashion.

Let us consider (21) for n = m. Only the summand ℓ = n remains, giving s(n,n) = (S(n,n))−1 = 2−⌊
n
2 ⌋, where

we used (8) (see also Table 1). Using the same arguments as used in the proof of Corollary 3.3, one can
deduce the recurrence relation

s(n + 1, k) =
1

1 + εk−1
s(n, k − 1) +

(
k
2
− n

)
s(n, k). (22)

This immediately implies, for n ≥ 2, the explicit values s(n, 1) =
(
−

1
2

)n−1
(2n− 3)!!. More generally, inserting

(20) into (12) and simplifying the expression, one obtains the following analog of (19),

s(n, k) =
2⌊

k+1
2 ⌋

k!

k∑
j=0

(−1)k− j
(
k
j

) (
j
2

)n

. (23)
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From (18), one obtains that the Bell numbers of order 1
2 are given by

Bn = 2⌊
n
2 ⌋B 1

2 ,1,0
(n). (24)

Using (24) and applying (15) with (α, β, r) = ( 1
2 , 1, 0), one obtains the Dobiński-like fomula

Bn =
1

2⌊
n+1

2 ⌋e

∑
k≥0

(2k)n

k!
. (25)

Xu [35, Corollary 8] showed the following Spivey-like formula for the generalized Bell numbers,

Bα,β,r(n +m) =
n∑

k=0

m∑
j=0

(
n
k

)
S(m, j;α, β, r)( jβ −mα|α)n−kBα,β,r(k)

(given here in the equivalent form presented in [12]). Thus, using (24), one finds

Bn+m = 2⌊
n+m

2 ⌋

n∑
k=0

m∑
j=0

(
n
k

)
S(m, j;

1
2
, 1, 0)

(
j −m

1
2
|
1
2

)
n−k

B 1
2 ,1,0

(k).

Using (18) and (24) on the right-hand side as well as
(
j −m 1

2 |
1
2

)
n−k
=

(
1
2

)n−k
(2 j − m)n−k, this shows the

Spivey-like fomula

Bn+m = 2(⌊ n+m
2 ⌋−⌊

m
2 ⌋−n)

n∑
k=0

m∑
j=0

(
n
k

)
S(m, j)(2 j −m)n−k 2⌊

k+1
2 ⌋ Bk. (26)

Before closing this section, let us recall that Hsu and Shiue [11, Equation (15)] derived the exponential
generating function for the generalized Bell numbers,∑

n≥0

Bα,β,r(n)
xn

n!
= (1 + αx)r/α exp

[(
(1 + αx)β/α − 1

)
/β

]
.

Denoting by [xn] f (x) the coefficient of xn in the expansion of f (x), we have B 1
2 ,1,0

(n) = n![xn]ex+x2/4. Combining
this with (24), gives

Bn = 2⌊
n
2 ⌋n! [xn]ex+x2/4. (27)

The right-hand side is the definition of sequence A242818 in [32], thereby explaining the observation of
Remark 2.1. From (27), we conclude that

S(n, k) =
2⌊

n
2 ⌋n!
k!

[xn]
(
x +

x2

4

)k

. (28)

In a similar fashion, using (20), one finds

s(n, k) =
2⌊

k+1
2 ⌋n!
k!

[xn]
(√

1 + x − 1
)k
. (29)

4. An analog of the Weyl algebra

Recall that one can define the Weyl algebraW as the complex unital algebra generated by letters U and
V satisfying the commutation relation UV − VU = I, where I denotes the identity, see (1). In this setting,
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one can show the normal ordering result (VU)n =
∑

k S(n, k)VkUk, recovering for the concrete representation
V 7→ X and U 7→ D Scherk’s result (2). Varvak [34] considered normal ordering words in letters U and V
satisfying the commutation relation

UV − VU = hVm, (30)

where m ∈ N0 and h ∈ C a parameter. For such variables (generating the generalized Weyl algebra Wm;h
withW0;1 =W), generalized Stirling numbers Sm;h(n, k) were introduced as normal ordering coefficients
of (VU)n [26, 27], see also [8]. Let us try to consider (X

1
2 D)n in this framework. One has DX

1
2 f (x) =

(DX
1
2 ) f (x)+X

1
2 D f (x), or DX

1
2 −X

1
2 D = 1

2 (X
1
2 )−1. Thus, the variables U and V (with concrete representation

V 7→ X
1
2 and U 7→ D) should satisfy

UV − VU =
1
2

V−1. (31)

This has a structure very close to (30), but here the inverse of the letter V appears on the right-hand side!
Thus, we formally have to adjoin this inverse as a new variable W and consider the complex algebra
generated by letters U,V,W. What remains to be determined is the commutation relation between U and
W. Since VW = I (where I denotes the identity) we can write

U = UVW = (UV)W = (VU +
1
2

W)W = VUW +
1
2

W2,

where we used UV = VU+ 1
2 W. Multiplying from the left with W and using WV = I, we obtain UW−WU =

−
1
2 W3. Thus, we are led to define the following object.

Definition 4.1. The algebraW
1
2 is the complex unital algebra (with identity I) generated by letters U,V,W satisfying

the commutation relations

UV − VU =
1
2

W, VW =WV = I, UW −WU = −
1
2

W3. (32)

Clearly, (U,V,W) 7→ (D,X
1
2 ,X−

1
2 ) gives the concrete representation of W

1
2 considered above. Similar as

the Weyl algebraW is the abstract object behind D,X satisfying (1), the algebraW
1
2 is the abstract object

behind D,X
1
2 . One can now consider questions of normal ordering in W

1
2 , where a word is in normal

ordered form if all letters V,W stand to the left of all letters U (V and W commute, so we don’t need to
specify their relative order). From the commutation relations (32) one obtains, by induction, the following
result.

Lemma 4.2. For n ∈N, one has inW
1
2 the following normal ordering formulas,

UVn = VnU +
n
2

WVn−1, UWn =WnU −
n
2

Wn+2. (33)

By linearity, this implies for any polynomial p (with derivative p′) that

Up(V) = p(V)U +
1
2

Wp′(V), Up(W) = p(W)U −
1
2

W3p′(W).

Remark 4.3. Note that UV2 = V2U + I. Thus, the subalgebra ofW
1
2 generated by {I,U,V2

} is isomorphic to the
Weyl algebraW.

This allows to transfer ordering results fromW toW
1
2 , e.g., inW

1
2 one has

(V2U)n =

n∑
k=0

S(n, k)V2kUk, V2nUn =

n∑
k=1

s(n, k)(V2U)k, (34)
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where we used that in the Weyl algebraW generated by {I, Ũ, Ṽ}with ŨṼ = ṼŨ + I one has

(ṼŨ)n =

n∑
k=0

S(n, k)ṼkŨk, ṼnŨn =

n∑
k=1

s(n, k)(ṼŨ)k. (35)

As another example for normal ordering in W
1
2 , one should consider (VU)n. If we translate (3) to these

variables (D⇝ U,X⇝ V2,X−
1
2 ⇝W), we expect inW

1
2 the following identity to be true,

(VU)n =

n∑
k=⌊ n+1

2 ⌋

2−⌊
n
2 ⌋S(n, k)WnV2kUk. (36)

Proposition 4.4. In the algebra W
1
2 the normal ordering result (36) holds true for all n ∈ N. Furthermore, the

following analog of the second identity in (35) holds true inW
1
2 ,

VnUn =

n∑
k=1

2⌊
k
2 ⌋s(n, k)WnVk(VU)k. (37)

Proof. We show (36) by induction. Let us multiply the identity (36) on both sides by 2⌊
n
2 ⌋. For n + 1, we can

then write the left-hand side as

2⌊
n+1

2 ⌋ (VU)n+1 = 2(⌊ n+1
2 ⌋−⌊

n
2 ⌋)(VU)2⌊

n
2 ⌋ (VU)n = (1 + εn)VUWn

n∑
k=⌊ n+1

2 ⌋

S(n, k)V2kUk,

where we used 2(⌊ n+1
2 ⌋−⌊

n
2 ⌋) = (1 + εn) and the induction hypothesis for n. Using the second identity of (33),

this equals

Wn
n∑

k=⌊ n+1
2 ⌋

(1 + εn)S(n, k)VUV2kUk
−Wn+2

n∑
k=⌊ n+1

2 ⌋

(1 + εn)
n
2
S(n, k)V2k+1Uk.

Inserting into the first sum I =WV and applying the first identity of (33), this gives, upon using WV = I in
the second sum,

Wn+1
n∑

k=⌊ n+1
2 ⌋

(1 + εn)S(n, k)V2
(
V2kU + kWV2k−1

)
Uk
−Wn+1

n∑
k=⌊ n+1

2 ⌋

(1 + εn)
n
2
S(n, k)V2kUk.

Note that the first of these sums equals (using WV = I)

Wn+1
n∑

k=⌊ n+1
2 ⌋

(1 + εn)S(n, k)V2(k+1)Uk+1 +Wn+1
n∑

k=⌊ n+1
2 ⌋

(1 + εn)kS(n, k)V2kUk.

Thus, relabelling the index in the first sum, we obtain in total

Wn+1
n+1∑

k=⌊ n+2
2 ⌋

{
(1 + εn)S(n, k − 1) + (1 + εn)

(
k −

n
2

)
S(n, k)

}
V2kUk.

Applying (7), this equals 2⌊
n+1

2 ⌋ times the right-hand side of (36) for n + 1, as requested. To show (37), we
could also perform an induction using (22). Instead, we can check it by inserting (36),

VnUn =

n∑
k=1

2⌊
k
2 ⌋s(n, k)WnVk(VU)k =

n∑
k=1

k∑
ℓ=⌊ k+1

2 ⌋

s(n, k)S(k, ℓ)WnV2ℓUℓ =
n∑
ℓ=1

δn,ℓWnV2ℓUℓ,

where we changed in the last step the order of summation and used (21). The sum on the right-hand side
equals WnV2nUn = VnUn due to WV = I.
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Using (18) (resp., (20)), one can write (36) (resp., (37)) in the equivalent form

(VU)n =

n∑
k=⌊ n+1

2 ⌋

S(n, k;
1
2
, 1, 0)WnV2kUk, VnUn =

n∑
k=1

S(n, k; 1,
1
2
, 0)WnVk(VU)k.

Remark 4.5. The authors of [8] considered normal ordering words in U and V satisfying (30). In particular, they
mentioned (see table in Section 4) that normal ordering (VU)n where UV −VU = V−1 is related to A122848 in [32].
Denoting this sequence by t(n, k), we find by comparison that S(n, k) = 2k−n2⌊

n
2 ⌋t(n, k), for 1 ≤ k ≤ n ≤ 7.

Recall from the Introduction that the generalized Stirling numbers Sr,s(n, k) are defined as normal
ordering coefficients of (ṼrŨs)n in the Weyl algebra W. In particular, S2,1(n, k) = L(n, k), the (unsigned)
Lah numbers (A271703 in [32]), see [24]. In analogy, one can define Sr,s(n, k) as normal ordering coefficients
of (VrUs)n inW

1
2 . Due to the isomorphism mentioned in Remark 4.3 one has for r even that Sr,s(n, k) is given

by S r
2 ,s(n, k). In particular, S2,1(n, k) = S1,1(n, k) = S(n, k), see (34). On the other hand, S4,1(n, k) = S2,1(n, k) =

L(n, k), i.e., normal ordering (V4U)n inW
1
2 involves the Lah numbers. To determine UVn or UWn inW

1
2

is easy, see (33). In contrast, when higher powers of U are involved, calculations become complicated. For
example, let us consider UnV. For n = 1 one has UV = VU + 1

2 W. Using the commutation relations (33),
one finds

U2V =VU2 +WU −
1
4

W3,

U3V =VU3 +
3
2

WU2
−

3
4

W3U +
3
8

W5,

U4V =VU4 + 2WU3
−

3
2

W3U2 +
12
8

W5U −
15
16

W7.

By induction, one obtains the following result.

Proposition 4.6. For n ∈N with n ≥ 2, one has inW
1
2 the following normal ordering result,

UnV = VUn +
n
2

WUn−1 +

n−1∑
k=2

(−1)k+1 c(n, k)
2k

W2k−1Un−k + (−1)n+1 (2n − 3)!!
2n W2n−1,

where c(n, 1) = n, c(n,n) = (2n − 3)!!, and c(n + 1, k) = c(n, k) + (2k − 3)c(n, k − 1) for k = 2, . . . ,n.

The algebra Wm;h associated with commutation relation (30) has been generalized to the generalized
Weyl algebrasWp with commutation relation UV − VU = p(V) where p ∈ C[V], see [1–3, 23]. An in-depth
study ofWp was started in [1–3] and subsequent papers, see, e.g., [6]. Let us considerWp as above and,
similarly, Wq with generators Ū and V̄ satisfying ŪV̄ − V̄Ū = q(V̄) where q ∈ C[V̄]. Benkart, Lopes and
Ondrus showed the following result ([2, Lemma 3.1] and [2, Corollary 3.2]).

Lemma 4.7 ([2]). Suppose that p|q and q = pr. Then the mapWq →Wp given by Ū 7→ U and V̄ 7→ Vr(V) is an
embedding ofWq intoWp. In particular, there is an embedding ofWp into the Weyl algebraW for every nonzero
p ∈ C[V].

Thus, for any nonzero p ∈ C[V], we can combine the embedding ofWp intoW and the embedding of
W intoW

1
2 observed in Remark 4.3 to obtain an embedding ofWp intoW

1
2 ,

Wp ↪→W ↪→W
1
2 .
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[4] B. Bényi, S. Nkonkobe and M. Shattuck, Unfair distributions counted by the generalized Stirling numbers, Integers 22 (2022), Art. A79.
[5] P. Blasiak and P. Flajolet, Combinatorial models of creation-annihilation, Sém. Lothar. Combin. 65 (2011), Art. B65c.
[6] E. Briand, S. A. Lopes and M. Rosas, Normally ordered forms of powers of differential operators and their combinatorics, J. Pure Appl.

Algebra 224 (2020), Art. 106312.
[7] L. Carlitz, On arrays of numbers, Amer. J. Math. 54 (1932), 739–752.
[8] R. O. Celeste, R. B. Corcino and K. J. M. Gonzales, Two approaches to normal order coefficients, J. Integer Seq. 20 (2017), Art. 17.3.5.
[9] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.

[10] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete mathematics: a foundation for computer science, (2nd edition), Addison-Wesley
Publishing Group, Amsterdam, 1994.

[11] L. C. Hsu and P. J.-S. Shiue, A unified approach to generalized Stirling numbers, Adv. Appl. Math. 20 (1998), 366–384.
[12] L. Kargın and R. B. Corcino, Generalization of Mellin derivative and its applications, Integral Transforms Spec. Funct. 27 (2016),

620–631.
[13] U. N. Katugampola, Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput. 257 (2015), 566–580.
[14] T. Kim and D. S. Kim, Some identities involving degenerate Stirling numbers arising from normal ordering, AIMS Math. 7 (2022),

17357–17368.
[15] T. Kim and D. S. Kim, Some Identities on Degenerate r-Stirling Numbers via Boson Operators, Russ. J. Math. Phys. 29 (2022), 508–517.
[16] T. Kim and D. S. Kim, Degenerate r-Whitney numbers and degenerate r-Dowling polynomials via boson operators, Adv. Appl. Math. 140

(2022), Art. 102394.
[17] T. Kim and D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math. 148 (2023),

Art. 102535.
[18] T. Kim, D. S. Kim and H. K. Kim, Degenerate r-Bell Polynomials Arising from Degenerate Normal Ordering, J. Math. 2022 (2022), Art.

2626249.
[19] T. Kim, D. S. Kim and H. K. Kim, Normal ordering of degenerate integral powers of number operator and its applications, Appl. Math.

Sci. Eng. 30 (2022), 440–447.
[20] T. Kim, D. S. Kim and H. K. Kim, Normal ordering associated with λ-Stirling numbers in λ-shift algebra, Demonstr. Math. 56 (2023),

Art. 20220250.
[21] M. Maltenfort, New definitions of the generalized Stirling numbers, Aequationes Math. 94 (2020), 169–200.
[22] T. Mansour, Combinatorics of set partitions, CRC Press, Boca Raton, 2012.
[23] T. Mansour and M. Schork, The commutation relation xy = qyx + h f (y) and Newton’s binomial formula, Ramanujan J. 25 (2011),

405–445.
[24] T. Mansour and M. Schork, Commutation relations, normal ordering, and Stirling numbers, CRC Press, Boca Raton, 2016.
[25] T. Mansour and M. Schork, On Ore-Stirling numbers defined by normal ordering in the Ore algebra, Filomat 37 (2023), 6115–6131.
[26] T. Mansour, M. Schork and M. Shattuck, On a new family of generalized Stirling and Bell numbers, Electron. J. Combin. 18 (2011),

Art. 77.
[27] T. Mansour, M. Schork and M. Shattuck, The generalized Stirling and Bell numbers revisited, J. Integer Seq. 15 (2012), Art. 12.8.3.
[28] N. H. McCoy, Expansions of certain differential operators, Tôhoku Math. J. 39 (1934), 181–186.
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