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On the structure of graded 3-Lie-Rinehart algebras

Valiollah Khalili?

?Department of mathematics, Faculty of sciences, Arak University, Arak 385156-8-8349, Po.Box: 879, Iran.

Abstract. We study the structure of a graded 3-Lie-Rinehart algebra £ over an associative and commutative
graded algebra A. For G an abelian group, we show that if (£, A) is a tight G-graded 3-Lie-Rinehart algebra,
then £ and A decompose as L = @ie ;Liand A = @je ’ Aj, where any £; is a non-zero graded ideal of £
satisfying [L;, L;,, L;,] = 0 for any i1, 15,13 € I different from each other, and any A; is a non-zero graded
ideal of A satisfying A;A; = 0 for any , j € ] such that j # I, and both decompositions satisfy that for any i € I
there exists a unique j € | such that A;£; # 0. Furthermore, any (£;, A;) is a graded 3-Lie-Rinehart algebra.
Also, under certain conditions, it is shown that the above decompositions of £ and A are by means of the
family of their, respectively, graded simple ideals.

1. Introduction

The notion of Lie-Rinehart algebra plays an important role in many branches of mathematics. They
are algebraic analogs of Lie algebroids. The idea of this notion first introduced by Herz [14] as pseudo-Lie
algebras, then studied by Palais [28] under the name “d-Lie ring”. Lie-Rinehart structures have been the
subject of extensive studies, such as in relation to differential geometry [30], differential Galois theory [19],
symplectic geometry [25, 26], Poisson structures [29], various kinds of quantizations [15, 16], Lie groupoids
and Lie algebroids [27, 31, 33]. For a very extensive survey of those topics, the reader can be found in
[10,12,17,18, 21, 32].

The study of gradings on Lie algebras begins in the 1933 by Jordan’s work [20], with the purpose of
formalizing Quantum Mechanics. Since then, many papers describing different physic models by means of
graded Lie type structures have appeared, being remarkable the interest on these objects in the last years.
It is worth mentioning that the so-called techniques of connection of roots had long been introduced by
Calderon, Antonio ], on split Lie algebras with symmetric root systems in [5]. For instance, in reference
[6] the author studied the structure of arbitrary graded Lie algebras, being extended to the framework of
graded Lie superalgebras in [9] by the technique of connections of elements in the support of the grading.
Recently, in [7, 8, 22], the structure of arbitrary graded commutative algebras, graded Lie triple systems
and graded 3-Leibniz algebras have been determined by the connections of the support of the grading.

A 3-Lie-Rinehart algebra is a triple (L, A, p), where L is a 3-Lie algebra, A is a commutative, associative
algebra, £ is an A-module, (4, p) is a L—module in such a way that both structures are related in an
appropriate way. Our goal in this work is to study the inner structure of arbitrary graded 3-Lie-Rinehart
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algebras by the developing technique of connections of elements in the supports of the grading of £ and
A. The finding of the present paper is an improvement and extension of the work on graded Lie-Rinehart
algebras in [2].

The article is organized as follows; In Section 2, we recall the definition of 3-Lie-Rinehart algebras
and introduced a class of graded 3-Lie-Rinehart algebra by means of the abelian group G. In Section 3,
as a second step, we extend the techniques of connections in the support of the grading for graded Lie
algebras in [6] to the framework of graded 3-Lie-Rinehart algebra (£, A). In Section 4, we get, as a third
step, a decomposition of A as direct sum of adequate ideals. We also characterized the relation between the
decomposition of L which is obtained in section 3 and the given decomposition of A. Section 5 is devoted
to show that, under mild conditions, the given decompositions of L and A are by means of the family of
their, corresponding, graded simple ideals.

Throughout this paper, algebras and vector spaces are over a field [F of characterestic zero, and A denotes
an associative and commutative algebra over F. We also consider an abelian group G with unit element 1.

2. Preliminaries

In this section, we recall definitions and some results on 3-Lie-Rinehart algebras and also introduced a
class of graded 3-Lie-Rinehart algebra by means of the abelian group G.

Definition 2.1. [13] A 3-Liealgebra consists of a vector space L together with a trilinear map[., ., .] : LXLXL — L
such that the following conditions are satisfied:

(i) skew symmetry: [x1,%x2,x3] = =[x2, %1, x3] = =[x1, X3, x2];
(ii) fundamental identity:
[[x1,x2, %3], y1, y21 = [[x1, y1, vl x2, x31 + [[x2, Y1, y2l, x3, x1] 1)
+  [lxs, y1, y2l, 31, %2,
for all elements x1,%2,x3,y1,Yy2 € L.

Definition 2.2. [24] Let (L,[.,.,.]) be a 3-Lie algebra, V be a vector space and p : L X L — gl(V) be a linear
mapping. Then (V, p) is called a representation of L or V is an L-module if the following two conditions hold:

(l) [P(xl/ x2)/ P(x3/ x4)] = p([xll X2, x3]/ x4) - p([xlr X2, x4]r x3)/
(ii) p([x1,x2,x3], x4) = p(x1,x2)p(x3, x4) + p(x2, x3)p(x1, X4) + p(x3, X1)p(X2, X4),
for all elements x1,%2,%3,%x4 € L.

Next, define
ad: LX L — gl(L); adlx,y)z=1[xvy,z], Yx,y,z€ L.

Tanks to fundamental identity, (£, ad) is a representation of the 3-Lie algebra £, and it is called the adjoint
representation of L. One can see that ad(L, £) is a Lie algebra which is called inner derivation algebra of
L. We also have by fundamental identity,

[ad(x1, x2), ad(y1, y2)] = ad([x1, y1, x2], y2) + ad(x2, [x1, y1, ¥2]).

Definition 2.3. [4] Let (L, [.,.,.]) be a 3-Lie algebra, L be an A-module and (A, p) be an L-module. If p(L, L) C
Der(A) and,

[x,y,az] =alx,y,z] + p(x,y)az, Vx,y,z€ L, VYae€A, 2

plax,y) = p(x,ay) =ap(x,y), Vx,y€ L, Va€A, ®3)
then (L, A,[.,.,.], p) is called a 3-Lie-Rinehart algebra.
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Remark 2.4. (1) Ifp =0then (L, A,I.,.,.]) is a 3-Lie A-algebra.
(2) Let (G,[.,.]) be a Lie algebra, G be an A—module and (A, p) be a G-module. If p(G) C Der(A) and
[x,ay] = alx, y] + p(x)ay, plax) =ap(x), Vx,yeG, VaeA,
then (G, [.,.], A, p) a Lie-Rinehart algebra (for detail see [4]).

Example 2.5. In the following we recall that a procedure to induce 3-Lie-Rinehart algebras from a Lie-Rinehart
algebra. We begin by constructing 3-Lie algebras starting with a Lie algebra analogues of trace [1]. Let (L, [.,.]) be a
Lie algebra we recall a linear map v : L — Fisa |, ., ]-tracee (or trace) if t([x, y]) = 0 for all x,y € L. Now, for any
X1, X2, %3 € L, we define the 3-ary bracket by

[x1, %2, 23] = T(x1)[x2, 23] — T(x2)[x1, x3] + T(x3)[x1, x2]. (4)

Then (L, [.,.,.]r) isa 3-Lie algebra (see [1] for detail). Next, we begin by constructing 3-Lie-Rinehart algebras starting
with a Lie-Rinehart algebras. Let (L, A,[.,.], p) be a Lie-Rinehart algebra and t be a trace. If the condition

t(ax)y = 1(x)ay,

is satisfied for any x,y € L,a € A, then (L, A,[.,., ]+, p:) is a 3-Lie-Rinehart algebra, where [., ., .]; is defined as
Eq.(4) and p, is defined by

pr: LXL— gl(L); p(x,y) = t(x)p(y) — t(y)p(x), Yx,ye L
(see Theorem 2.1 in [3] for superalgebras).
Definition 2.6. Let (L, A,[.,.,.], p) be a 3-Lie-Rinehart algebra.
(1) If S is a 3-Lie subalgebra of L satisfying AS C S then
(S, A, [, ., Jlsxsxs, plsxs)
(which is a 3-Lie-Rinehart algebra) is called a subalgebra of the 3-Lie-Rinehart algebra (L, A, [., ., .1, p).
(2) If Iis a 3-Lie ideal of L satisfying p(I, )(A)(L) c I and
LA, L., lrxixt plixt)
(which is a 3-Lie-Rinehart algebra) is called an ideal of the 3-Lie-Rinehart algebra (L, A, [., ., .], p).

(3) Wealso say that (L, A,[.,.,.], p)issimpleif [L, L, L] # 0, AA # 0, AL # 0and its only ideals are {0}, L and
kerp:={xe L:p(x, L) =0}

For a 3-Lie-Rinehart algebra (£, A, [., ., .], p), we denote
Ann(A):={a€A:aA =0}, and AnngA):={acA:ax=0,¥xe L},
the annihilator of A and the annihilator of A in £, respectively. We also denote
Zy(L):={xe L:[x,L, L] =0, and p(x, L) =0},

the center of 3-Lie-Rinehart algebra (£, 4, [., ., .], p). Note that Z,(£) = ker p N Z(£), and by Theorem 2.3 in
[4], Anng(A) is an ideal of A and Z,(£) is an ideal of 3-Lie-Rinehart algebra (£, A, [., ., .], p).
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Definition 2.7. Let L be a 3-Lie algebra. It is said that L is graded by means of an abelian group G if it decomposes
as the direct sum of linear subspaces
L=Ps

geG

where the homogeneous components satisfy [Ly, Ly, L] C Ly for any g,h, k € G (denoting by juxtaposition the
product and unit element 1 in G).

Note that split 3-Lie algebras [11] and graded Lie triple systems [8] are examples of graded 3-Lie algebras.

Definition 2.8. We say that a 3-Lie-Rinehart algebra (L, A, [.,.,.], p) is a graded algebra, by means of the abelian
group G, if L is a G-graded 3-Lie algebra as in Definion 2.7 and the algebra A is a G-graded (commutative and
associative) algebra in the sense that A decomposes as A = €D, _ Ay, with AgAy C Agy, satisfying

Ath C th (5)

p(-[:g/ -Lg’)(Ah) c Agg’h/ (6)
forany g,9',h € G.

Split 3-Lie-Rinehart algebra is an example of graded 3-Lie-Rinehart algebra. So this paper extends the
results obtained in [23].

Asitis usual in the theory of graded algebras, the regularity conditions will be understood in the graded
sense compatible with the 3-Lie-Rinehart algebra structure. That is, a 3-Lie-Rinehart graded subalgebra
(or graded ideal) of (£, A) is a graded linear subspace S (or I) as in Definition 2.6. More precisely, S (or I)
splitsas S = @gEG Sy, Sy =SN Ly, similarly for I. Also we will say that (£, A) is a graded-simple(for short
gr-simple) 3-Lie-Rinehart algebra if [£, £, L] # 0 and its only graded ideals are {0}, L and ker p.

We denote the G-support of the grading in £ and in A to the sets

rl={geG\ {1} : L, #0} and A'={heG\ {1} : A, #0},

respectively. If (L, A) is a graded 3-Lie-Rinehart algebra then we can rewrite

L=Lio(@ L) and a=n0Ean.

gext heAl

3. Connections in X! and decompositions

In this section, we begin by developing the techniques of connections in £!. Let (£, A) be a graded
3-Lie-Rinehart algebra, with the decomposition

L=Lio(@DL) and A=Ae(DAY,

gext AeAT

and with the G-supports X! and A!, respectively.
We define
rl={gt:gex!}, and AT'={A1: AeAl)

Let us denote
r=x'uxr?l, and A=A'UAL

Definition 3.1. Let g,h be two elements in L'. We say that g is L'-connected to h if there exists a family
191,92, 93, ..., gons1} € LU A U (1}, satisfying the following conditions;
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(1) 9=,
(2) 1919295, 9192939495/ -+ 919295--g2n-1} C L,
(3) 19295---gan+1 € {h, b7}
The family {g1, g2, g3, -+, Jon+1} is called a £'-connection from g to h.

The next result shows that the Z!-connection relation is an equivalence relation. Its proof is analogous
to the one for graded Lie triple system in [2], Proposition 3.1.

Proposition 3.2. The relation ~y1 in ! defined by
g ~y1 h ifand only if g is Z'-connected to h,
is an equivalence relation.

By the Proposition 3.2, we can consider the equivalence relation in Z! by the connection relation ~y1 .
So we denote by
Y ~pe={lgl:g ezt

where [g] denotes the set of elements of ! which are connected to g.
Clearly, if h € [g], then h™! € [g].

Remark 3.3. Forg’,9” € CUAU{1},ifh € [g]l and gg'g” € X' then h ~z1 gg’g” . Indeed, the family {g, ', 9"} is
a X-connection from g to gg'g” . Now, taking into account g ~s1 h and Proposition 3.2, we get h ~x1 gg'g" .

Our next goal is to associate an adequate ideal Ij; of £ to any [g]. For a fixed g € !, we define

Lijg = ( 2 Alrth) +( Z (L1, L, Ly ]) c L. (1)

he[glNAl hke[g]

Next, we define
(V[g] = @Lh (2)
helg]

Finally, we denote by Ij;) the direct sum of the two subspaces above, that is,
Iig) := Ly ® Vig- 3)
Proposition 3.4. For any [g] € X1/ ~x1, the following assertions hold.
(1) gy Iigy, Ii1] © ig)-
(2) Al C Iy
Proof. (1) By Eq. (3) we have

Ui I Iigl = [L11g1 @ Vigy Litg1 @ Vigl Lifg1 @ Vigl]
C L Luigr Luigl + [Laigr Litgl Vial + [ Ly Vign Lial 4)
+ [ Lo Vig Vigl + [Vigr Litg) Luial + [Vigy Logr, Vigl]
+ [ Vi, Vigr Luigl + [Vigt, Vigt, Vigl-

Since L[5 C L1 and by the skew symmetry of trilinear map, we clearly have

(L1191, Lagr Vigl + [Lagt, Vigr Luigl] + [Vigl Lig, Ll € Vigr- 6)
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Consider now the summand [Ly 15}, V51, V[g] in (4). By Ly5 € L1, we have
[Litgr Vigy Vigll < 1Ly, Vigy, Vigl- 6)

Suppose there exist g/, g € [g] such that [£1, L, L] # 0. Then g’ € X and g'g” € ' U{1}. If g = ¢},
clear that [ £y, Ly, Ly] = [L1, Ly, Ly] C Ly Otherwise, if g7 # g7, and {91, 92,93, -, Gon+1} is a L!-
connection from g to h. Then {g1, g2, 93, ..., Jon+1, 1, k} is @ Y l-connection from g to hk in case §19293...92n41 = h
and {g1, 92, 93, .-, Jon+1, 1, k~1} in case J19293---Jon+1 = h~1. Hence, hk € [g]. Taking into account Eq. (6), we get
(L1151, Vi, Vigl € Vig)- By the skew symmetry of trilinear map, we get

(L1191 Vigt, Vigl + [Vigy Liigr, Vigl + [Vig, Vigy Liig]l € Vig)- @)

Consider now the summand [V, V|, V|5]in (4). Suppose there existh, k, | € [g] such that [L, Ly, L] #
0. Then hk € X% U {1} and hkl € X1 U {1}. If either h = k™! or hkl = 1, then

(L, L, Ll =LV or [Ly, L, L] C Ly

Otherwise, if hk € X°and hkl € £, and {1, 92, 93, ---, J2n+1} is @ Z!-connection from g to . Then {g1, g2, g3, ---, Gau+1, k, 1}
is a X!-connection from g to hkl in case g19293..-920+1 = hand {g1, g2, g3, -, Gous+1, k1, 7L} in case g19295.-gons1 =
h~'. Hence, hkl € [g] and so we get

[Vigr Ly Vigl € Vig- (8)
Finally, consider the first summand [£1 15, L1491, L1,15] in (4). By Eq. 1, we have

(L1 Lajg) Laal

N

2 [Ap Ly, A Ly, A L] +

hkle[glNA!

Z [Ah,l Ly, A L [Le Ly, Ly ]] )
hkelgInA!
v "elg]

+ Y [An L L, Lo, Lyl A L]

hle[gINAl
¥ Krelgl

+ Z [AIF] -Lh; [-Lk/, .[,ku, ‘E(k'k”)’l]

helglnAl
K1 elg]

’ [Ll', Ll"/ L(”n)*l ]]
+ Y [ Ly Loy ) A L A L]

h/,h’/E[g]
kelglnAl

+ Z [[‘Eh’/ Lh"/ L(h/hu)—l ], Ak—l Lk
h’,h”,l’,l”E[g]
ke[glnAl

7 ['El’/ Ll”/ L(l'l”)_l ]]
+ Z, [[Lh’f L, Loynry1 1 [ Lo, L, Ligogry1]

e iR elg]
le[g]nA!

/141*1 Ll]
+ Z [[-Eh’/ -Eh"/ L(h’h”)_l ]I [-Lk’/ -Ek"/ L(k/k//)‘l ]/

h! /h/! /k! /k!/,l!,l!! € [g]

[-El’/ Ll"/ ~£(l/1//)’1 ]]
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For the first summand in (9), if there exist i, k,I € [g] N Al such that
[Ap1 Ly, A1 Li, A Li] # 0,
by Egs. (2) and (5) we have
[Ap1 Ly, Agr Li, A L]

N

(L1, Lig, A L]
ALy, Liger, L+ p( L1, L)ALy
c AnLic Ly

For the second summand in (9), if there exist i,k € [g] N AL, I’,1” € [g] such that

| Aves Ly A L [ L L, L] # 0,

by Egs. (2), (5) and skew symmetry we have

N

[Ah—l Ly, A L, [Lo Ly, Ly ]] [th-1, [Ly L, Lippya], Ap Lk]
= A [.Ehh—l, (L Ly, ‘E(l/l“)‘l]/ -Ek]
p<~£hlrl ALy L, Ly ])Akfl L
AL € Ly g

The proof for the rest of summands (exept the last summand) in (9) are similar. For the last summand in
(9), if there exist ', h” k', k”,I’,I" € [g] such that

+

N

[[-Lh’/ Lh”/ -E(h'h")” ]r [Lk’/ -Ek” ’ L(k/ku)*l ]/ ["Ll’r Ll”/ L(lil/l)*] ]] #0.

By applying identities in Defenition 2.1, we get

(1L, Li, Loy, L1, L] € [[Lw, L1, L1, Lio, Loy ]
+ [[-Eh”/ Ly, L], Loy, .Eh/] (10)
+ [[-E(h’h")*l L, L, L, Lh”]
c Ly, L, Lopwy11+ [ L, Lovwry1, Liv]
+ [Luwyr, Ly, L]
< L

Thus, all summands in (9) contained in £ |;). Therefore,

(L1100, Latg Luggl € Lijg- (11)
From Egs. (5), (7), (8) and (11), we conclude that [Ijy, I1y), Ij5] € Ijg)-
(2) Observe that
Al = (Al ® (@ AA))(ILIg] EBq/[y])
AeA!
= (me@a)( X as)
AeAL he[glnA!
+ ( Z (L, Lk, -C(hk)—l]) ® @ -Eh)~
hkelg] helgl

We discuss it in six cases:
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Case 1. For the item A1(Ljeigina1 An1Ln), since L is an A-module, for i € [g] N A we have
Al(Athh) = (AlAh—l )Lh C Ah—1.£h C Ll/[g].

Therefore,

Ay( Z Ay L) C Iy

he[glnA!
Case 2. Consider the item A1< LnkeigilLnr L, .E(hk)-l]). By Eq. (2), for any I, k € [g], we have
AilLy, L, Loy € [ Ly, L, Av L1+ p(Ln, Li) (A1) Ly
C [Ln L Lo 1+ ALny
thanks to A1 L1 € L1 and p(Ly, L) (A1) C Awe. Now, if A # 0 (otherwise is trivial), then hk € [g]N AL
Thus [Lh, .Ek, L(hk)‘ll + Ahk-[:(hk)‘l (- Ll,[g]- Therefore,

Aq( Z [Ly, L, L] C Iy

hkelg]

Case 3. Let us consider the item Al(@he[g] Ly). Since L is an A-module, for i € [g] we have A1.L;, C
L, € Vi,). Therefore,

A1(@ L) € Ig)-

helgl

Case 4. For the item (D)1 A1) (Liegginar A1 Ln), suppose A € A, 1 € [g] N Al, by associativity of A we
have
AN(Ap Ly) = (ArAp) Ly € Ay Ly

If Akt € X! and £, # 0, then the family {h, Ah™!,1} is a Z!-connection from & to A. That is A € [g], so
AyLyc L C (V[g]- Therefore
(EBAA)( Z Ap1.Ly) C Iig).
AeA! he[g]NAt
Case 5. Consider the item (6}/\6Al AA)( Zh,ke[g] L, Ly, .L(hk)—l]). By Eq. (2), for A € AL he [g] we have

ALy, L, L1 € 1Ly, L ALy 1+ p(Ln, Li)(Ax) Lo
C  [Lu Li, Ligw 1+ Argiy Ly -

As in previous case, if £y # 0 and L1 # 0 we get A, A(hk)~! € £1, and by Remark 3.3 we have A € [g]. So
[Lh/ Ly, -L/\(hk)*l] + A)\(hk).L(hk)—l C (V[g]. Therefore,

(@ AA)( Z (L, Lk, L(hkﬂ]) C Iig-

AeA? hkelg]

Case 6. Finally, consider the item (D), _, AA)(@he[g] £3). For A € A and h € [g] we have A Ly, C L.
Using Remark 3.3 as in previous case, we can prove Ah € [g]. Hence, Ay.L; C V,. Therfore,

P AEP Lw < fig.

AeAl helg]
Now, summarizing a discussion of above six cases, we get the result. [J

Proposition 3.5. Let [g], [h], [k] € £!/ ~y1 be different from each other, then

Uig i, Lyl = 0, and  [lig), Iigy, Iyy] = 0.
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Proof. We have
Ul i Il = [Loig1 © Vigt Lo © Vi, L © Vil

Ly Lo, Lipal + (Lo, Lo, Vil + [Laggr, Vi, Lol
+ [ Loy Vim, Vial + [ Vigy Ly, Lial + [Vigy Lo, Vial
+ Vi, Vi, Lol + [Vigr, Vi, Vial- (12)

Let us consider the last item [V(), Vi1, Vi lin Eq. (12). Suppose that there exist g1 € [g], h1 € [h]and k; € [k]
such that [£,, Ly, Li,] # 0. By definition of grading, gihuk; € X!. Since g1 € [g] and g1hk; € X!, we get
g ~s1 gihik;. Similarly, one can get h ~y1 g1h1ki. Now, Proposition 3.2 implies that [g] = [l] a contradiction.
Therefore,

[Vig, Vi, Vinl = 0. (13)
Now, we consider the item [ Ly 151, Vi, Vil in Eq. (12). We have

Z A -1.59 Z (L, L, Lyvi 1])

g'€[glNA! I k' €[g]

@ Ly, @ -Ekl] (14)

h1 elh Kelk]

(L1, Vi, Vil

C Z A —1129,@.&1,@-&1
g elgInAl melhl kel

+ Z [-Lh/-Ek/-L(hk)Tll@Lhw@Lh]
I k' €lg) h€[h] ki€[k]

For the first summand in (14), suppose there exist ¢’ € [g]NAl, iy € [h]and k; € [k] such that [Ag- Ly, Ly, Li] #
0. By Eq. (2),

[Ag- Ly, Ly, Lin] = Ag-1[Lny, Liy, Ly 1+ p( Ly, Li))Ag-1 Ly -
Taking into account Eq.(13), we get [Ly,, Ly, Ly] = 0. If p(Ly,, Ly, JA - Ly # 0, then A g * 0 and

hikig’ ™" € Al. We take the family g,k k g’ "'} as a Z!-connection from ¢’ to h;, and so [g] = [#] wich is
a contradiction. That is p(Ly,, Lk, )Ag/—l.L:gf = 0. Hence,

[Ag"l -Lg’ ’ Lh] ’ Lk] ] = 0/ (15)
and so
[ Z A wg,@zhl,@f:kl]- (16)
gINAl h1€[h] ki€[k]

Next, consider the second summand in (14). For /', k" € [g],h; € [h] and k; € [k], by fundamental identity
and Eq. (13), we get

(L, Lo, Loy+], Lu, L]

N

[[Lh’ ’ -Ehl 7 Lkl ]/ Ly, -E(h’k’)*l ]
+ [[Lk'/ Ly, L], Lgviry, Lh/]

[[L(h’k')* Ly, L1, Li, ka]
=0,

+

and so

[ Z (L, Li, Liry], @th,@ﬁkl]= (17)

hi€[h] ki€elk]
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From Egs. (16) and (17), we have [ L1 51, Vi, V] = 0. By the skew symmetry of trilinear map, we also get

(L1101, Vi, Vil = [Vig, Lo, Vial = [Vig, Vi, L] = 0. (18)
Next, we consider the summand [ L[4}, L1111, Vi in Eq. (12). We have
[ Lyt Lo, V) [ Z AgaLy)+ Z (Lo, Ly, Ligigpn]),
g7€lgInA? g1 92€[9]
(), AvLw)+( ) L Loy L1,
W elhlNAL hy,hp€lh]
¢ Lkl] (19)
krelk]

The above statement includs four items which we consider in the following. First, consider the item
[Xyeignat Ag-1 Ly, Lwepnar Ah,_1£h/,@k1€[k] L, 1in (19). For g’ € [gINn ALK € [l N A" and k; € [k], by
using Egs. (13) and (15) we have

[Ag/*1 Lg’ 7 Ahr*1 Lh/ 7 -£k1 ] = [‘Ekl 7 Ah/*1 Lh’ 7 Ang Lq’ ]
Agl—l [£k1 , Ah,—l -Eh’/ Lg’] + p(£k1 , Ah,—l .Eh/)Ag/—‘ngr

Ag (AL, L, Ly 1+ p(Liy, Ly Ay L)

+ Ah”] p("Ekl 7 Lh' )Ag/*l Lg'
= Ag/—l Ah'_l [‘[:kl 7 Lh’, -l:y'] + Ag/—l p(‘Ekl , .l:g/ )Ah,—l Lh’
+ Ah,—l p(.[,kl, Ly )Ag,f1 Lg/
= 0.
Therefore,
[ ), ApLy, Y, AeLvPLil=0. (20)
g'€lglnAl I’ e[h]NAL ki€[k]

Second, consider the item

[ Z A —1.£g , Z [£h1/£hy L(hlhz)’l]’@ﬁkl]’

gelglnal Iy haelh] ki€[k]
in Eq. (19). For g’ € [g] N AV, hy, by € [h] and ky € [K], again by using Egs. (13) and (15) we have
[Ag= L L0 Ly Loyl L] = [0 Lo Lii) Lio, Ay Ly |
= Ayn [[th, Ly Lyl L, -Eg’]

+ p([Lus Los Lonnay 1) Li JAg 1 Ly
= 0
Hence,
[ Z AprLy, Y Ly Loy Lyl P L] =0. (21)
gInA! el kielk]

By skew symmetry, we also have

[ Z [‘591’ '£92’ ‘E(glgz)’] 1 Z 1-£h ’ @ -Ekl] 0. (22)

91,92€[9] he[h]NAL ki€[k]
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Now, consider the forth item in Eq. (19). For g1, 92 € [g], I, ha € [h] and k; € [k], using Eq. (13) we have

bigll Ly, Ly, Ligig ) [ Lns Liys Ly 1 Liy1 € [(V[g]r(v[h]/(v[k]] =0.

So we get
[ Z [‘[:91 ’ ng, ‘E(%gz)'ll’ Z [Ln,, Ly, “C(hlhz)‘llf @ £k1] =0. (23)
91.92€19] I ha€lh] kie[k]

Now, from Egs. (20)-(23), we get

(L1, L, Vil = 0. (24)
By skew symmetry, we also get

[Lyig1, Vi, Lol = [Vigr Liim, Lol = [Lg1, Lam, Vil = 0. (25)

Finally, consider the first item in Eq. (12). We have

(Lo Lo, Lyl = [( Z AgaLy)+( Z (L5 Lo Liggoy11),

g,e[g]ﬂ/\l y1,g26[9]
Ly, Ll,[kl]

c [ Z Ag,_1£gf,£1,[h],£1,[k]]
g'€[gINAT

+ [ Z [-EglfL!}z"z(.‘hﬂ)’l]’Ll’[h]"zl’[kl]. (26)
g1,92€l9]

By a similar argument as in Eq. (22), the first summand in (26) is zero. For the second summand (26),
suppose g1, > € [g] we have

[[Lyu Lyzr L(glgz)fl]/ Ly, Ll,[k]] C [[me Ly, Ll ng, 'L(glg2)71:|
+ (L0 Ly, Lisal Ligigarr Lo
+ [[L(Mz)*l L, Ll Lo ng].
All of the above three snmmands are zero, thanks to Eq. (25). Therefore,
(L1101, Lo, L] = 0. -
From Egs. (13), (18), (25) and (27), we get
Uigr, L, Ipg] = 0.
By a similar argument as above, one can prove [Ijy, Iy, Ijiy] =0. O
Theorem 3.6. The following assertions hold

(1) Forany [g] € £/ ~x1, the linear space
lig = Li1g ® Vig

associated to [g] is a graded ideal of (L, A).
(2) If (L, A) is gr-simple, then there exists a L'-connection from g to h for any g,h € £, and

Ly = Z Ap Ly + Z (L, Li, Ly 1

geXInAl hkex!
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Proof. (1) We are going to check [Ij;}, £, L] C Ij;;. We have

g, £, L] = [Lyg@Vig, Lo (@D £, Lie (P L]
hexl kexl!
C [ Lag, L1, L1+ [Lagg, £, P Lid + [ L, P L, £1]
kext hex!
+ L D L D L+ (Vi L, L1 + Vi, L1, D £
hext kext! kexl!

+ [(V[g]/ @ Ly, L1]+ [(V[g], @ Ly, @ Lil. (28)

hex! hexl kex?

Let us consider the first summan in Eq. (28), we have

(Lig, L1, L] = [ Z A Ly + Z [.Eh,l:k,£(;1k)-1],£1,£1]

helgInAl Iokelg)
[ Z Ay Ly, Ly, L] +[ Z [ﬁzh/Lk/L(hk)*l]r‘Ll/Ll]- (29)
helginAl Iikelg)

Suppose h € [g] N A!, by Eq. (2),
(A Ly, L1, L1] = Ay [ Ly, Ly, L] + p( Ly, L)ALy € Ly g

Now, if i, k € [g] then [[L;I,Lk, L(;lk)fl],£1,£1] C L[], thanks to Eq. (10). Taking into account Eq. (29), we
get
(L, L1, L] € Ly

Next, by Proposition 3.4(1), for the rest of all summands in Eq. (29), we get [Ij;, £, L] C Ij;). So I} is a 3-Lie
ideal of L. By Proposition 3.4(2), we also have Alj; C I, that is I}, is an A-module. Finally, by Eq. (2) we
have

p(I[g],I[g])(A)L C [I[g],l[g],AL] + A[I[g],l[g],.[:] C [I[g],l[g],.[:] + I[g] C I[y].

By construction of Iy, it is a graded ideal of (£, A).
(2) The gr-simplicity of (£, A) implies that 0 # Ij; € {£, ker p} for any g € £!. If I;;) = £ for some g € I,

then [g] = X!. Otherwise, if Ij;) = ker p for all g € £ we have [g] = [h] for any h € X! and again ! = [g]. We
conclude that all the elements of the G-support X! are !-connected . Moreover, clearly

Z Apr Ly + Z [Ln, L, Loy
geXInAl I kext

O

Theorem 3.7. Let (L, A) bea graded 3-Lie-Rinehart algebra. For a vector space complement U of ¥ yexinnt A1 Lg+
Zh/kgzl [Lh, Lk, .L(hk)—l], in Ll/ we have

L=Us Z I[g]/

[g1€Xt [~y

where any Ij; is one of the graded ideals of (£, A) described in Theorem 3.6-(1). Furthermore, [Ijy), I, Iyi] = O where
[g], [1], [K] € £t/ ~5:1 be different from each other.

Proof. Each I}, is well defined and by Theorem 3.6-(1), a graded ideal of (£, A). It is clear that

L= Lle(@zzg)—w@ Y. g

gexl glexl/~x
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where U is a linear space complement of

Z ALy + Z (Lh, Li, Loy 1,

geTINAL Ikext

in £;. By Proposition 3.5, we also have [Ijy}, I}, [j] = 0, where [g], [1], [k] € Y1/ ~51 be different from each
other. O

Corollary 3.8. If Z,(L) = {0} and
-Ll = Z qu -Lg + Z [Lh/ -Ek/ L(hk)’] ]/
geXInAl hkex!
then L is the direct sum of the graded ideals given in Theorem 3.6-(1),
L= @ Iig),
[g1€Xt /[~

Moreover, [Ijg), Ijny, Iyg] = O where [g], [h], [k] € £/ ~x1 be different from each other.

Proof. Since L1 = ). jexinat A1 Ly + Loppert [Ln, Li, Loy 1, we get

L= Z Iig),

[g1ex! /~p1

where I is one of the graded ideals of (£, A) described in Theorem 3.6-(1) satisfying in Proposition 3.5. For
the direct character, suppose there exists x € Ij5) N }.jjes1/~, Iin such that [g] # [h]. The fact [Ijy, Iy, Ijy] = 0
with [g] # [h] and x € I}, implies that

[x, Z I[g],.E]:O.

[g1€x!/~p1

We also have [x, [[;), £] = 0, thanks to x € ¥ (jex1/~, Iy with [g] # [h] and the same above fact.Therefore,
[x, L, L] = 0. Next, by Eq. (2), we have p(x, L) = 0. Thus, we get x € Zp(.lj) ={0}. O

4. Connections in A! and decomposition of A.

Let (£, A) be a G-graded 3-Lie-Rinehart algebra (see Definition 2.8). In this section we begin by introduc-
ing the so called connection among of the elements in the G-support A! for an associative and commutative
algebra A associated to (£, A). Recall that A admits a G-grading as

A=A (DA,

AeAT

where Al = (A e G\ {1} : A; #0)},is the G-support of grading. We will consider the sets Z* and A* as in
Section 3. Note that, the proof of some results in this section are similar to the one for graded Lie-Rinehard
algebra (see [2]), we will omit them.

Definition 4.1. Let A, u € A!, we say that A is A'-connected to p and denoted by A ~ 1 y, if there exists a family
{A1, A2, As, ., Ay} € 2 U AU (1Y, such that the following conditions are satisfied;
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(1) A=A

(2) AMAx €A,
AMA2Az € A,

/\1/\2A3... + /\n—l € A.
(3) AMAxA3.A, € {y, ,u’l}.
The family {A1, Ay, As, ..., Ay} is called a Al—connectionfrom A to .

The next result shows that the A'-connection relation is an equivalence relation (see Proposition 3.2 in

(2]).
Proposition 4.2. The relation ~ 1 in A defined by

A~ uifand only if A is A'—connected to p,
is an equivalence relation.

Remark 4.3. Let A,y € Al suchthat A =, p. If An € AL, forn € SUA then A 1 un. Considering the connection
{u, N} we get p =x1 un and by transitivity A = un.

By the Proposition 4.2, we can consider the equivalence relation in A! by the Al-connection relation = 1

in Al. So we denote by
Al == {[A]: A e Al

where [1] denotes the set of elements of A!, which are Al-connected to A.
Our next goal in this section is to associate an adequate graded ideal A, of A to any [A] € Al/ ~): . For
a fixed A € Al, we define

Ay = ( Z Ay—lAy) + ( Z P(Lh,-ﬁk)A(hk)—l) C A;. 1)
1

el hke[AINZ!

Next, we define

A = P A 2)

ueli]
Finally, we denote by Aj; the direct sum of the two graded subspaces above, that is,
Ay = AL © Apg- 3)
The detail proofs of the following properties of A can be found in [2];
Proposition 4.4. For any [A] € Al/ =1, we have A Ay € Ay
Proposition 4.5. Forany A,y € A', if [A] # [u] then AnA = 0.

We recall that a G-graded subspace I of a commutative and associative algebra A is called an ideal of A
if AI C I. We say that A is gr-simple if AA # 0 and it contains no proper ideals.

Theorem 4.6. Let (L, A) be a graded 3-Lie-Rinehart algebra. Then the following assertions hold.
(1) Forany [A] € A1/ =, the linear subspace
A = A1 @ Apy,

of algebra A associated to [A] is a graded ideal of A.
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(2) If A is gr-simple then all elements of A! are A'-connected. Furthermore,

A = Z AA+ Z (L, L) Aoy -

HEAT hke A1NX!

Proof. The proof is similar to the one in [2], Theorem 3.6 for a graded Lie-Rinehart algebra. [

Theorem 4.7. Let (L, A) be a graded 3-Lie-Rinehart algebra. Then

A=YV + Z ﬂ[)\],

[MleAl/~

where V is a linear complement of

ZAH’lAH+ Z (L, LAy,

peA! hkeAtNE!

in Ay and any A\, is one of the graded ideals of A described in Theorem 4.6-(1). Forthermore Ay Ay = 0, when
[A] # [u].

Proof. The proof is similar to the one in [2], Theorem 3.7 for a graded Lie-Rinehart algebra. [
Recall that, denote by

Ann(A) ={ac€A:aA =0}, and AnngA):={xeL:Ax=0},
the annihilator of the commutative and associative algebra A and the annihilator of A in L.

Corollary 4.8. Let (L, A) be a graded 3-Lie-Rinehart algebra. If Ann(A) = 0 and

Ay = Z A Ay + Z (L, LA,

HEAT hkeAINL!

then A is the direct sum of the graded ideals given in Theorem 4.6-(1),

A= @ ﬂ[)\].
[

AleAl /=1
Furthermore, A Ay = 0, when [A] # [u].
Proof. This can be proved analogously to Corollary 3.8 in [2]. O

In the following, we will discuss the relation between the decompositions of £ and A of a graded 3-Lie
Rinehart algebra (£, A).

Definition 4.9. A graded 3-Lie-Rinehart algebra (L, A) is tight if Z,(L) =0,  Ann(A) =0 = Anng(A), AA =
A, AL =Land

Ly = Z Agr Ly + Z (L1, Lr, L1,

geXInAl hkex!

Ay = Z AA+ Z (L, Li) Ay

peAl hkeAlNL!
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Remark 4.10. If (L, A) is a tight graded 3-Lie-Rinehart algebra then it follows from Corollaries 3.8 and 4.8 that

£= P Ig],A— P Aw

[gl€xt/~p1 AeAl /= 4

with any Iy a graed ideal of L satisfying [I5), Iyg] = 0 if [g] # [h] and any Ay a graded ideal of A satisfying
ﬂ[)\]ﬂ[y] =0, when [A] # [y]

Proposition 4.11. Let (£, A) be a tight graded 3-Lie-Rinehart algebra. Then for any [g] € £/ ~y:1 there exists a
unique [A] € A'/ =1 such that Ayl # 0.

Proof. At first, we are going to prove the existence. We claim Alj; # 0 for any [g] € £'/ ~y: . Indeed, if
Al = 0 for some [g] € £!/ ~y1, then by the fact Iy is a graded ideal of £ we have

g, AL AL = [Iig, @ Alpp, @ Alyg| = [Iigy, Aligy, Al =

[n]ex!/~p1 [kleX!/~p1

Taking into account AL = £, we get Ij;) C Z(L) = 0, which is a contradiction. Now, by A = EB[ Aeat/~ ., A
A

there exists [A] € A!/ ~ 1 such that Al # 0.

Second, we will prove the uniqueness. Suppose that there exist [A], [u] € A'/ ~ such that Apylj, # 0
and Ayl # 0 for any [g] € £!/ ~51 . From here, we can take Ay € [A], pp € [u] and g1, 92 € [g] such
that Ay I, # 0 and A,,l;, # 0. Since g1, 92 € [g], we can consider the Y!-connection {g1, hy, h3, ..., han+1} C
L UA U ({1} from g1 to g,. We continue the proof in four cases;

Case 1. If A1g1 # 1 and pogr # 1, then Ag1, pago € Al. We can consider a Al-connection

{/\1/ !]1/ Al_lthI ey h2n+1/ ”2/ 92_1} - Z U A/
from A; to py in the case g1hy...hpn11 = g2, and in case g1hy...hope1 = gz‘l is
A, g1, M7y, e hona, w27, gal € ZUA.

Then Ay =1 pp and so [A] = [p].
Case 2. If A1g1 = 1 and ppgs # 0, then A; = g1~ and ppg2 € I So we have a Al-connection

{gl_lrhz_ll a4 h2n+1_1/ #2_1/ _1]2} C Z‘ U A/

from A to s in the case g1h...h, = go. In the case g1hp...h, = go7! the Al-connection is

™ e e T 2, g7 C ZUA

Then Ay =1 yp, and so [A] = [u].
Case 3. If 1191 # 1 and ppg» = 1, then by a similar argumen as the second case we get [A] = [u].
Case 4. If A1g1 = 1 and ppga = 1, then A1 = g1 ! and pp = g2, So we have a Al-connection

™ i T C ZUA
from A; to up, and so [A] = [u].
Therefore, we conclude that for any [g] € !/ ~y: there exists a unique [A] € Al/ ~,1 such that

Anlig #0. O

It could be remarked that Proposition 4.11 shows that Ij;) is an Ajjj-module. Hence we can assert the
following result.
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Theorem 4.12. Let (L, A) be a tight graded 3-Lie-Rinehart algebra. Then
=P, a=-Pa,
i€l j€J

where any L; is a non-zero graded ideal of L satisfying [ L, L] = 0, when i # k, and any A; is a non-zero graded
ideal of A such that A;A; = 0 when j # |. Moreover, both decompositions satisfy that for any i € I there exists a unique
j € J such that

A j.Li * 0.

Fortheremore, any (L;, A;) is a graded 3-Lie-Rinehart algebra.

5. the simple components of graded 3-Lie-Rinehart algebras

In this section we focus on the simplicity of graded 3-Lie-Rinehart algebra (£, A) by centering our
attention in those of maximal length. From now on, we will suppose X! is symmetric, that is, if g € £! then
g~! € ! and also that A! is symmetric in the same sense.

Let us introduce the concepts of root-multiplicativity and maximal length in the framework of graded
3-Lie-Rinehart algebra, in a similar way to the ones for split Lie-Rinehart algebra in [22].

Definition 5.1. A graded 3-Lie-Rinehart algebra (L, A) is called G-multiplicative if for any g,h,k € ! and
A, u € Al the following conditions hold

- Ifghk € X' then [£,, Ly, L] # 0.
- If Ag e X then Ay L, # 0.
- If Ap e Al then AyA, #0.

Definition 5.2. A graded 3-Lie-Rinehart algebra (L, A) is called of maximal length if for any g € £! and A € A!
we have dim L; =1 = dim A,.

Remark 5.3. If (L, A) is a graded 3-Lie-Rinehart algebra such that L and A are ge-simple algebras then Z(L) =
{0} = Ann(A) and Ann p(A) = {0}. Also as consequence of Theorem 3.7-(2) and Theorem 4.6-(2) we get that all of the
non-zero elements in L' are connected, that all of the non-zero elements in A are also connected and that

Ly = Z Agr Ly + Z [Lh, L, L],

geXinAl hkexr!
A = Z AAy+ Z (L, L) Ay
HEA! hkeA1NL!

From here, the conditions for (L, A) of being tight together with the ones of having L' and A all of their elements
connected, are necessary conditions to get a characterization of the gr-simplicity of the algebras L and A. Actually,
we are going to shwo that under the hypothesis of being (L, A) of maximal length and G-multiplicative, these are also
sufficient conditions.

Lemma 5.4. Let (L, A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If I is a
graded ideal of £ such that I C Ly, then I = {0}.

Proof. Suppose there exists a non-zero graded ideal I of L such that I ¢ £;. We are going to show that
I c Anng(A).
If g, h € ! with gh # 1, we have

[, £y, £4] C LN L3 = 0. (1)
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Otherwise, if h = g~! and [I, Ly, L] # 0 for some g € Y! then there exist x € Ly,x" € L1 and i € [ such
that [i,x,x'] # 0. By the G-maltiplicativity (consider 1,g,1 € Z! U {1}) and the maximal length of (£, A) there

exist x; € Ly such that 0 # [, x, x1] € I a contradiction. Hence,
(1, L, L1]1=0, Vge rl

By Egs. (1) and (2), we get [I, £, L] =0 forall g, h € ! therefore,
[I, £ L]=0.

Next, we show that AI = 0. Note that

Al = (A1 o @AA))I cml+ Pa

AeA! AeA!

For the second summand in (4), since (£, A) is a tight graded 3-Lie-Rinehart algebra, we have

Now, consider the first summand in (4), since

Ay = Z A Ay + Z (L, LAy,

HEAT hke AINL!

we have

A C Z(Ay_lAy)1+ Z (L, L)(Aguo L.

peAl hkeAINE!
For the first item in (6), by the fact that I is an A-module and Eq. (5), we get
(A Al = A (AuD) = 0.
Consider the second item in (6), by Eq. (2), the fact that [ is an A-module and Eq. (3), we have

(L, LAy € [ L, Lr, Aguoy 1] + Ay [ L, Lx, 1]
[Ln, L, 11+ Aoy [Ln, Li, 1]
= 0.

N

Egs. (7) and (8), give us
Al =0.

Now, Egs. (5) and (9), implies that Al = 0, taking into account Eq. (3) we obtain I € Annyp(A) =0. O

)

)

(7)

©)

Proposition 5.5. Let (L, A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If all
the elements in X! are X-connected, then either L is gr-simple or £ = 1@ I’ where [ and I’ are graded simple ideals

of L.

Proof. Consider I a nonzero graded ideal of £. By Lemma 5.4, we have I € £; and the maximal length of

L gives us

I=(nLye(PunLy),

gexl
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with (I N Ly) # 0 for some g € £!. Denote by I, :=INLyandby Xl :={ge X! : [, 20} ={ge X' : 1 c Ly}

Then we can rewrite
I=unLye(P),
ge):}

with I} # 0. Let us distinguish two cases.

Case 1. Suppose there exists gy € L] such that go™' € I}. Then 0 # I, C I and by the maximal length of
(£, A) we have

0# Ly, Cl. (10)

Now, let us take some h € I! satisfying i ¢ {go, go~'}. By the assumption, gy is Z'-connected to h, then
we have a L!-connection {g1, g2, ..., gans1} € L U AL U {1}.

Consider g1, 92,93 € £' U A U {1} and if g19,95 € X (respectively, g192 € A), since go = g1 € X} we hav
Ly, # 0. From here, the G-multiplicativity and maximal length of £ allow us to get

0#[Ly, Ly, Ly] = Ly, (respectively,0 # Ay Ly, = Ly,4,).
Since 0 # £,, C I as consequence of Eq. (10), we have
0# Ly g9, C1 (respectively, Ly, C I).
We can follow this process with the connection {g1, g2, ..., §2n+1} and obtain that
0 Ea £y1y2y3--<!]2n+1 cl
Thus we have shown that
for any he !, we have that 0# L cI for some ke {hh}. (11)

Since g, € X7, we have {g;%, 45", ..., g,.,,} is a Z!-connection from g, to & satisfying

970595 oy =K.

By arguing as above we get,

0# L C, (12)
and so Xj = X!. The fact £; = Ygesinnt A1 Ly + Y kesi [ Ly Li, Li-1], implies that

LiclL (13)
From Egs. (10)-(13), we obtain £ C I, and so L is gr-simple.

Case 2. In the second case, suppose that for any go € X} we have that g;' ¢ L]. Observe that by arguing

as in the case 1, we can write

rl=rjux, (14)

where Xf = {g7! : g € X}. Denote by

=Y ALae(PLy)

geAl, glexs g'ex]
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We are giong to show that I’ is a graded ideal of 3-Lie-Rinehart algebra (£, A). By construction I’ is G-graded.
First, we will show that I’ is a 3-Lie ideal of L. Taking into account Eq. (5), we have

iLL1 = [ce@onLe@L Y, AlLae@@L)
hext kext geAl, glexy g'ex]
c [aLn ), ALpa]+[Ln L P Ly (15)
geAl, glexs g'ex]
+ [Ll/ @ -Eh/ Z Ang 1 [Ll/ @ Lk/ @ Lg’]
hexl geAl, gleXs kext g'exy

+ [ @ Lh/ -[:1/ Z g-l:g—l + [ @ Lh/ Ll/ @ Lg’]

hex?! geAl, glexs hex?! g'exs
PP Y AL P

hext kexl geA! hext kexl g'ex]

glexs

For the first summand in (15), if there exist g € Al and g’l € X{ such that [ £y, £y, A;L;-1] # 0, by Eq.(2) we
have

(L1, L, AgLy ] = AglLy, Ly, Lya]l+p(Ly, L1)Ag Ly
c AL, CT.

Therefore,

['Llr Ll/ Z Ang-]] cr. (16)
geAl, gleXs
For the second summand in (15), it is clear that
(L, L, P Lylcr. (17)

g'EeL]

Connsider the third summand in (15), if [£1, Ly, AjLy-1] # 0 for some g € A, g € £f and h € £!. Then in
case h = g‘l clearly [£y, Ly, Ay Ly1] € L, C I',and in case h = g, the maximal length of £ and the fact I is a
graded ideal give us

Ly =L, Ly, Ag L] cINT = {0},
which is a contradiction with g € £}. Now, if i ¢ {g, 9!}, we then have
0# [Li, L, Ag L1 C AglLy, Ly, L]+ p(Ly, Li)Ag Ly
By the maximal length of L,
either 0 # Ag[Ll,Lh,qu] =Ly or 0% p(Ly, L)AgLy = Ly

In both cases, by G-multiplicativity, we have that £, C I and therefore h™' € ¥, this implies that i € Xf
and then £, C I’. Hence,

L, EP L Y, ALpalcl (18)

hex! geAl, g-lexs

By the skew symmetry,

(DLt ), ALpalcr. (19)

hex! geAl, glexs
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A similar argument as above for the seventh summand in (15), one can show that

[@ Ly, @ Ly, Z Ag-Lg—l] cr. (20)

hex? kex! geA!
-1
g7 €Ly

Next, consider the fourt summand in (15), suppose there exist k € ! and g’ € X{such that [ Ly, Ly, Ly] # 0.
In case k = g'~!, we have 0 # [ L1, Lk, L] c I. Now, since [ is a graded ideal and £ is G-multiplicative, we
have

Ly =[[L1, Lo Ly] L1, Ly C 1,

and so ¢’ € X! a contradiction with g’ € X¢. In case k # ¢'~!, the G-multiplicativity gives us £ g =
[Ll,qu,Lg,q] c I. From here k‘lg’*l € Z} and so kg" € . Thus, we get [ L1, Ly, Ly] = Ly CI'. Therefor,

(4. EP L. P Ly]cr. (21)
kex! g'ex]
By the skew symmetry,
[@Lmlh@ﬁg/] crl. (22)
hext g'er]

Finally, for the last summand in (15). Suppose 0 # [L;, Ly, L] for some I,k € Yland ¢ € Yo Ithk =1,
clearly [Ly, L, Ly] = Ly < I'.Now, if g # ™! and g’ # k™!, the G-multiplicativity and maximal length
of L allow us to get Ly = [Ly, Li, Ly] C I, a contradiction. In case g’ # k=1, we have (hk)™! and so
Ly =[Ly, Li, Ly] C 1. Therefore,

[P L. &P Ly]cr. (23)

hex! g'exs

From Egs. (16)-(23), we conclud that I’ is a 3-Lie ideal of L.
Second, we will check AI’ C I’. We have

Al = (Al@(@A/\))( Y. Agﬁy—l@(@@’))

AeA! geAl, glexs gEer]
c r+(Pa) Y, AL)+(Pa)PL) (24)
AeA! geAl, glexs AeA! g'exs

Consider the third summand in (24) and suppose that AyL, # 0 for some A € A!, ¢/ € X If Ay’ € ],
so A7yt € I! then by the G-multiplicativity of £ we get Aj-1.Ly-1 # 0. Now by the maximal length of £
and the fact g'~! € L], we conclud that Ay-1.Ly-1 = Ly-1p-1 C L. Therefore A7'g'~! = (Ag’)™! € L] which is a
contradiction. Hence Ag’ € X¢, and so A A.ng c I'. Therefore,

(DaNDLr)er 25)
AeAT g'er]
We can argue as above with the second summand in (24), so as to conclude that

(P a) 2 AgLy)cT. (26)

AeA! geAl, g*lezj
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From Egs. (25) and (26) we get AI’ C I,
Finally, let us check p(I’, I ’)(A).L c I'. In fact by Eq. (2) we have

p(I' )AL I, T, AL+ AT, T, L]

Tanks to I’ is a 3-Lie ideal we get the result.

Summarizing a discussion of above, we conclude that I’ is a graded ideal of the graded 3-Lie-Rinehart
algebra (L, A).

Next, by Eq. (14) we get ¥, yex1[Ln, Li, Lyw1] = 0, so by hypothesis we must have

Y, ApLy= Y ApLie Y ALy

geXINAL gex}, gleAl glexs, geAl

O#xe Y. ApLyn Y. ALy

gex;, gleAl glexs, geAl

For direct character, take

Taking into account Z,(£) = {0} and L is graded, there exist 0 # y € £, 0 # z € Ly for some h, k € ! such
that [x, y,z] # 0, being then £, € IN I’ = {0}, a contradiction. Hence the sum is direct. Taking into account
the above observation and Eq. (14) we have

L=IaT.

Note that, one can proceed with I and I’ as we did for L in the first case of the proof to conclude that I and
I’ are graded simple ideals of £, which completes the proof of the proposition. [

In a similar way to Proposition 5.5, one can prove the next result;

Proposition 5.6. Let (L, A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If all
the elements in A are A'-connected, then either A is gr-simple or A = ] & |’ where ] and ]’ are graded simple ideals
of A. O

Now, we are ready to state our main result;

Theorem 5.7. Let (L, A) be a tight graded 3-Lie-Rinehart algebra of maximal length, G-multiplicative, with sym-
metric G—supports £ and A in such a way that ©' and A have all their elements Y. -connected and A'-connected,

respectively.Then
=P, mi aA=F4;
i€l j€J

where any L; is a graded simple ideal of L having all of its elements in G-support L'-connected and such that
[Li, Li,, Li,] = 0 for any iy, 12,13 € I different from each other, and any A; is a graded simple ideal of A satisfying
AjA; = 0 for any | € ] such that j # I. Moreover, both decompositions satisfy that for any r € I there exists a unique
7 € | such that

AL #0.

Fortheremore, any (L, As, ple,xs,) s a graded 3-Lie-Rinehart algebra.

Proof. By Theorem 4.12 we can write

@ Iig1,

[gl€xt [~
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with any I, a graded ideal of £, being each Ij; a graded 3-Lie-Rinehart algebra having as G-support [g].
Also we can write A as the direct sum of the graded ideals

A= @ A,
[

/\]EAl/zAl

in such a way that any A, has as G-support [A], for any [g] € L1/ ~51 there exists a unique [A] € Al =
such that A I, # 0 and being (Ij;, Ay) a graded 3-Lie-Rinehart algebra.

Now, by applying Proposition 5.5 and Proposition 5.6 to each (Ij;, Ajy)), in a similar manner to observe
that the X'-multiplicativity of (Ij;}, Apy), that is, (Izy, Apy) is L'-multiplicative as consequence of the I!-
multiplicativity of (£, A). Clearly (Ij;, Ay) is of maximal length. We also have (Ij;, Apy) is tight, as
consequence of tightness of (£, A) (see Proposition 5.5 and Proposition 5.6).

Next, we can apply Proposition 5.5 and Proposition 5.6 to each (If,, Aa)) so as to conclude that any I
is either graded simple or the direct sum of graded simple ideals Ij;) = P & Q, and that any A, is either
graded simple or the direct sum of graded simple ideals A[y] = R @ S. From here, it is clear that by writing
Li=P®Qand A; = R®Sif L; or A; are not graded simple. Then Theorem 4.12 allows as to assert that the
resulting decomposition satisfies the assertions of the theorem. [
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