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Abstract. We study the structure of a graded 3-Lie-Rinehart algebraL over an associative and commutative
graded algebra A. For G an abelian group, we show that if (L,A) is a tight G-graded 3-Lie-Rinehart algebra,
then L and A decompose as L =

⊕
i∈ILi and A =

⊕
j∈J A j, where any Li is a non-zero graded ideal of L

satisfying [Li1 ,Li2 ,Li3 ] = 0 for any i1, i2, i3 ∈ I different from each other, and any A j is a non-zero graded
ideal of A satisfying A jAl = 0 for any l, j ∈ J such that j , l, and both decompositions satisfy that for any i ∈ I
there exists a unique j ∈ J such that A jLi , 0. Furthermore, any (Li,A j) is a graded 3-Lie-Rinehart algebra.
Also, under certain conditions, it is shown that the above decompositions of L and A are by means of the
family of their, respectively, graded simple ideals.

1. Introduction

The notion of Lie-Rinehart algebra plays an important role in many branches of mathematics. They
are algebraic analogs of Lie algebroids. The idea of this notion first introduced by Herz [14] as pseudo-Lie
algebras, then studied by Palais [28] under the name ”d-Lie ring”. Lie-Rinehart structures have been the
subject of extensive studies, such as in relation to differential geometry [30], differential Galois theory [19],
symplectic geometry [25, 26], Poisson structures [29], various kinds of quantizations [15, 16], Lie groupoids
and Lie algebroids [27, 31, 33]. For a very extensive survey of those topics, the reader can be found in
[10, 12, 17, 18, 21, 32].

The study of gradings on Lie algebras begins in the 1933 by Jordan’s work [20], with the purpose of
formalizing Quantum Mechanics. Since then, many papers describing different physic models by means of
graded Lie type structures have appeared, being remarkable the interest on these objects in the last years.
It is worth mentioning that the so-called techniques of connection of roots had long been introduced by
Calderon, Antonio J, on split Lie algebras with symmetric root systems in [5]. For instance, in reference
[6] the author studied the structure of arbitrary graded Lie algebras, being extended to the framework of
graded Lie superalgebras in [9] by the technique of connections of elements in the support of the grading.
Recently, in [7, 8, 22], the structure of arbitrary graded commutative algebras, graded Lie triple systems
and graded 3-Leibniz algebras have been determined by the connections of the support of the grading.

A 3-Lie-Rinehart algebra is a triple (L,A, ρ),where L is a 3-Lie algebra, A is a commutative, associative
algebra, L is an A−module, (A, ρ) is a L−module in such a way that both structures are related in an
appropriate way. Our goal in this work is to study the inner structure of arbitrary graded 3-Lie-Rinehart

2020 Mathematics Subject Classification. 17B05, 17B22, 17B60, 17A60.
Keywords. 3-Lie-Rinehart algebra, graded algebra and structure theory.
Received: 24 March 2023; Revised: 23 June 2023; Accepted: 08 July 2023
Communicated by Dijana Mosić
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algebras by the developing technique of connections of elements in the supports of the grading of L and
A. The finding of the present paper is an improvement and extension of the work on graded Lie-Rinehart
algebras in [2].

The article is organized as follows; In Section 2, we recall the definition of 3-Lie-Rinehart algebras
and introduced a class of graded 3-Lie-Rinehart algebra by means of the abelian group G. In Section 3,
as a second step, we extend the techniques of connections in the support of the grading for graded Lie
algebras in [6] to the framework of graded 3-Lie-Rinehart algebra (L,A). In Section 4, we get, as a third
step, a decomposition of A as direct sum of adequate ideals. We also characterized the relation between the
decomposition of L which is obtained in section 3 and the given decomposition of A. Section 5 is devoted
to show that, under mild conditions, the given decompositions of L and A are by means of the family of
their, corresponding, graded simple ideals.

Throughout this paper, algebras and vector spaces are over a fieldF of characterestic zero, and A denotes
an associative and commutative algebra over F.We also consider an abelian group G with unit element 1.

2. Preliminaries

In this section, we recall definitions and some results on 3-Lie-Rinehart algebras and also introduced a
class of graded 3-Lie-Rinehart algebra by means of the abelian group G.

Definition 2.1. [13] A 3-Lie algebra consists of a vector spaceL together with a trilinear map [., ., .] : L×L×L −→ L
such that the following conditions are satisfied:

(i) skew symmetry: [x1, x2, x3] = −[x2, x1, x3] = −[x1, x3, x2];

(ii) fundamental identity:

[[x1, x2, x3], y1, y2] = [[x1, y1, y2], x2, x3] + [[x2, y1, y2], x3, x1] (1)
+ [[x3, y1, y2], x1, x2],

for all elements x1, x2, x3, y1, y2 ∈ L.

Definition 2.2. [24] Let (L, [., ., .]) be a 3-Lie algebra, V be a vector space and ρ : L × L −→ 1l(V) be a linear
mapping. Then (V, ρ) is called a representation of L or V is an L-module if the following two conditions hold:

(i) [ρ(x1, x2), ρ(x3, x4)] = ρ([x1, x2, x3], x4) − ρ([x1, x2, x4], x3),

(ii) ρ([x1, x2, x3], x4) = ρ(x1, x2)ρ(x3, x4) + ρ(x2, x3)ρ(x1, x4) + ρ(x3, x1)ρ(x2, x4),

for all elements x1, x2, x3, x4 ∈ L.

Next, define
ad : L ×L −→ 1l(L); ad(x, y)z = [x, y, z], ∀x, y, z ∈ L.

Tanks to fundamental identity, (L, ad) is a representation of the 3-Lie algebra L, and it is called the adjoint
representation of L. One can see that ad(L,L) is a Lie algebra which is called inner derivation algebra of
L.We also have by fundamental identity,

[ad(x1, x2), ad(y1, y2)] = ad([x1, y1, x2], y2) + ad(x2, [x1, y1, y2]).

Definition 2.3. [4] Let (L, [., ., .]) be a 3-Lie algebra, L be an A-module and (A, ρ) be an L-module. If ρ(L,L) ⊂
Der(A) and,

[x, y, az] = a[x, y, z] + ρ(x, y)az, ∀x, y, z ∈ L, ∀a ∈ A, (2)

ρ(ax, y) = ρ(x, ay) = aρ(x, y), ∀x, y ∈ L, ∀a ∈ A, (3)

then (L,A, [., ., .], ρ) is called a 3-Lie-Rinehart algebra.
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Remark 2.4. (1) If ρ = 0 then (L,A, [., ., .]) is a 3-Lie A-algebra.

(2) Let (G, [., .]) be a Lie algebra, G be an A−module and (A, ρ) be a G-module. If ρ(G) ⊂ Der(A) and

[x, ay] = a[x, y] + ρ(x)ay, ρ(ax) = aρ(x), ∀x, y ∈ G, ∀a ∈ A,

then (G, [., .],A, ρ) a Lie-Rinehart algebra (for detail see [4]).

Example 2.5. In the following we recall that a procedure to induce 3-Lie-Rinehart algebras from a Lie-Rinehart
algebra. We begin by constructing 3-Lie algebras starting with a Lie algebra analogues of trace [1]. Let (L, [., .]) be a
Lie algebra we recall a linear map τ : L −→ F is a [, ., ]-tracee (or trace) if τ([x, y]) = 0 for all x, y ∈ L. Now, for any
x1, x2, x3 ∈ L, we define the 3-ary bracket by

[x1, x2, x3]τ = τ(x1)[x2, x3] − τ(x2)[x1, x3] + τ(x3)[x1, x2]. (4)

Then (L, [., ., .]τ) is a 3-Lie algebra (see [1] for detail). Next, we begin by constructing 3-Lie-Rinehart algebras starting
with a Lie-Rinehart algebras. Let (L,A, [., .], ρ) be a Lie-Rinehart algebra and τ be a trace. If the condition

τ(ax)y = τ(x)ay,

is satisfied for any x, y ∈ L, a ∈ A, then (L,A, [., ., .]τ, ρτ) is a 3-Lie-Rinehart algebra, where [., ., .]τ is defined as
Eq.(4) and ρτ is defined by

ρτ : L ×L −→ 1l(L); ρτ(x, y) = τ(x)ρ(y) − τ(y)ρ(x), ∀x, y ∈ L

(see Theorem 2.1 in [3] for superalgebras).

Definition 2.6. Let (L,A, [., ., .], ρ) be a 3-Lie-Rinehart algebra.

(1) If S is a 3-Lie subalgebra of L satisfying AS ⊂ S then

(S,A, [., ., .]|S×S×S, ρ|S×S)

(which is a 3-Lie-Rinehart algebra) is called a subalgebra of the 3-Lie-Rinehart algebra (L,A, [., ., .], ρ).

(2) If I is a 3-Lie ideal of L satisfying ρ(I, I)(A)(L) ⊂ I and

(I,A, [., ., .]|I×I×I, ρ|I×I)

(which is a 3-Lie-Rinehart algebra) is called an ideal of the 3-Lie-Rinehart algebra (L,A, [., ., .], ρ).

(3) We also say that (L,A, [., ., .], ρ) is simple if [L,L,L] , 0, AA , 0,AL , 0 and its only ideals are {0},L and
kerρ := {x ∈ L : ρ(x,L) = 0}.

For a 3-Lie-Rinehart algebra (L,A, [., ., .], ρ),we denote

Ann(A) := {a ∈ A : aA = 0}, and AnnL(A) := {a ∈ A : ax = 0,∀x ∈ L},

the annihilator of A and the annihilator of A in L, respectively. We also denote

Zρ(L) := {x ∈ L : [x,L,L] = 0, and ρ(x,L) = 0},

the center of 3-Lie-Rinehart algebra (L,A, [., ., .], ρ). Note that Zρ(L) = kerρ ∩ Z(L), and by Theorem 2.3 in
[4], AnnL(A) is an ideal of A and Zρ(L) is an ideal of 3-Lie-Rinehart algebra (L,A, [., ., .], ρ).
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Definition 2.7. Let L be a 3-Lie algebra. It is said that L is graded by means of an abelian group G if it decomposes
as the direct sum of linear subspaces

L =
⊕
1∈G

L1,

where the homogeneous components satisfy [L1,Lh,Lk] ⊂ L1hk for any 1, h, k ∈ G (denoting by juxtaposition the
product and unit element 1 in G).

Note that split 3-Lie algebras [11] and graded Lie triple systems [8] are examples of graded 3-Lie algebras.

Definition 2.8. We say that a 3-Lie-Rinehart algebra (L,A, [., ., .], ρ) is a graded algebra, by means of the abelian
group G, if L is a G-graded 3-Lie algebra as in Definion 2.7 and the algebra A is a G-graded (commutative and
associative) algebra in the sense that A decomposes as A =

⊕
h∈G Ah, with A1Ah ⊂ A1h, satisfying

AhL1 ⊂ Lh1 (5)

ρ(L1,L1′ )(Ah) ⊂ A11′h, (6)

for any 1, 1′, h ∈ G.

Split 3-Lie-Rinehart algebra is an example of graded 3-Lie-Rinehart algebra. So this paper extends the
results obtained in [23].

As it is usual in the theory of graded algebras, the regularity conditions will be understood in the graded
sense compatible with the 3-Lie-Rinehart algebra structure. That is, a 3-Lie-Rinehart graded subalgebra
(or graded ideal) of (L,A) is a graded linear subspace S (or I) as in Definition 2.6. More precisely, S (or I)
splits as S =

⊕
1∈G S1, S1 = S∩L1, similarly for I. Also we will say that (L,A) is a graded-simple(for short

gr-simple) 3-Lie-Rinehart algebra if [L,L,L] , 0 and its only graded ideals are {0},L and kerρ.
We denote the G-support of the grading in L and in A to the sets

Σ1 = {1 ∈ G \ {1} : L1 , 0} and Λ1 = {h ∈ G \ {1} : Ah , 0},

respectively. If (L,A) is a graded 3-Lie-Rinehart algebra then we can rewrite

L = L1 ⊕ (
⊕
1∈Σ1

L1) and A = A1 ⊕ (
⊕
h∈Λ1

Ah).

3. Connections in Σ1 and decompositions

In this section, we begin by developing the techniques of connections in Σ1. Let (L,A) be a graded
3-Lie-Rinehart algebra, with the decomposition

L = L1 ⊕ (
⊕
1∈Σ1

L1) and A = A1 ⊕ (
⊕
λ∈Λ1

Aλ),

and with the G-supports Σ1 and Λ1, respectively.
We define

Σ−1 = {1−1 : 1 ∈ Σ1
}, and Λ−1 = {λ−1 : λ ∈ Λ1

}.

Let us denote
Σ = Σ1

∪ Σ−1, and Λ = Λ1
∪Λ−1.

Definition 3.1. Let 1, h be two elements in Σ1. We say that 1 is Σ1-connected to h if there exists a family
{11, 12, 13, ..., 12n+1} ⊂ Σ ∪Λ ∪ {1}, satisfying the following conditions;
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(1) 1 = 11,

(2) {111213, 1112131415, ..., 111213...12n−1} ⊂ Σ,

(3) 111213...12n+1 ∈ {h, h−1
}.

The family {11, 12, 13, ..., 12n+1} is called a Σ1-connection from 1 to h.

The next result shows that the Σ1-connection relation is an equivalence relation. Its proof is analogous
to the one for graded Lie triple system in [2], Proposition 3.1.

Proposition 3.2. The relation ∼Σ1 in Σ1 defined by

1 ∼Σ1 h if and only if 1 is Σ1-connected to h,

is an equivalence relation.

By the Proposition 3.2, we can consider the equivalence relation in Σ1 by the connection relation ∼Σ1 .
So we denote by

Σ1/ ∼Σ1 := {[1] : 1 ∈ Σ1
},

where [1] denotes the set of elements of Σ1 which are connected to 1.
Clearly, if h ∈ [1], then h−1

∈ [1].

Remark 3.3. For 1′, 1′′ ∈ Σ ∪ Λ ∪ {1}, if h ∈ [1] and 11′1′′ ∈ Σ1 then h ∼Σ1 11′1′′. Indeed, the family {1, 1′, 1′′} is
a Σ1-connection from 1 to 11′1′′. Now, taking into account 1 ∼Σ1 h and Proposition 3.2, we get h ∼Σ1 11′1′′.

Our next goal is to associate an adequate ideal I[1] of L to any [1]. For a fixed 1 ∈ Σ1,we define

L1,[1] :=
( ∑

h∈[1]∩Λ1

Ah−1Lh

)
+
( ∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ]
)
⊂ L1. (1)

Next, we define

V[1] :=
⊕
h∈[1]

Lh. (2)

Finally, we denote by I[1] the direct sum of the two subspaces above, that is,

I[1] := L1,[1] ⊕V[1]. (3)

Proposition 3.4. For any [1] ∈ Σ1/ ∼Σ1 , the following assertions hold.

(1) [I[1], I[1], I[1]] ⊂ I[1].

(2) AI[1] ⊂ I[1]

Proof. (1) By Eq. (3) we have

[I[1], I[1], I[1]] = [L1,[1] ⊕V[1],L1,[1] ⊕V[1],L1,[1] ⊕V[1]]
⊂ [L1,[1],L1,[1],L1,[1]] + [L1,[1],L1,[1],V[1]] + [L1,[1],V[1],L1,[1]] (4)
+ [L1,[1],V[1],V[1]] + [V[1],L1,[1],L1,[1]] + [V[1],L1,[1],V[1]]
+ [V[1],V[1],L1,[1]] + [V[1],V[1],V[1]].

Since L1,[1] ⊂ L1 and by the skew symmetry of trilinear map, we clearly have

[L1,[1],L1,[1],V[1]] + [L1,[1],V[1],L1,[1]] + [V[1],L1,[1],L1,[1]] ⊂ V[1]. (5)
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Consider now the summand [L1,[1],V[1],V[1]] in (4). By L1,[1] ⊂ L1,we have

[L1,[1],V[1],V[1]] ⊂ [L1,V[1],V[1]]. (6)

Suppose there exist 1′, 1′′ ∈ [1] such that [L1,L1′ ,L1′′ ] , 0. Then 1′ ∈ Σ0 and 1′1′′ ∈ Σ1
∪ {1}. If 1′′ = 1′−1,

clear that [L1,L1′ ,L1′′ ] = [L1,L1′ ,L1′−1 ] ⊂ L1,[1]. Otherwise, if 1′′ , 1′−1, and {11, 12, 13, ..., 12n+1} is a Σ1-
connection from 1 to h. Then {11, 12, 13, ..., 12n+1, 1, k} is a Σ1-connection from 1 to hk in case 111213...12n+1 = h
and {11, 12, 13, ..., 12n+1, 1, k−1

} in case 111213...12n+1 = h−1.Hence, hk ∈ [1]. Taking into account Eq. (6), we get
[L1,[1],V[1],V[1]] ⊂ V[1]. By the skew symmetry of trilinear map, we get

[L1,[1],V[1],V[1]] + [V[1],L1,[1],V[1]] + [V[1],V[1],L1,[1]] ⊂ V[1]. (7)

Consider now the summand [V[1],V[1],V[1]] in (4). Suppose there exist h, k, l ∈ [1] such that [Lh,Lk,Ll] ,
0. Then hk ∈ Σ0

∪ {1} and hkl ∈ Σ1
∪ {1}. If either h = k−1 or hkl = 1, then

[Lh,Lk,Ll] = Ll ⊂ V[1] or [Lh,Lk,Ll] ⊂ L1,[1].

Otherwise, if hk ∈ Σ0 and hkl ∈ Σ1,and {11, 12, 13, ..., 12n+1} is aΣ1-connection from1 to h.Then {11, 12, 13, ..., 12n+1, k, l}
is aΣ1-connection from 1 to hkl in case 111213...12n+1 = h and {11, 12, 13, ..., 12n+1, k−1, l−1

} in case 111213...12n+1 =
h−1. Hence, hkl ∈ [1] and so we get

[V[1],L1,[1],V[1]] ⊂ V[1]. (8)

Finally, consider the first summand [L1,[1],L1,[1],L1,[1]] in (4). By Eq. 1, we have

[L1,[1],L1,[1],L1,[1]] ⊂

∑
h,k,l∈[1]∩Λ1

[Ah−1Lh,Ak−1Lk,Al−1Ll] +∑
h,k∈[1]∩Λ1

l′,l′′∈[1]

[
Ah−1Lh,Ak−1Lk, [Ll′Ll′′ ,L(l′l′′)−1 ]

]
(9)

+
∑

h,l∈[1]∩Λ1

k′,k′′∈[1]

[
Ah−1Lh, [Lk′ ,Lk′′ ,L(k′k′′)−1 ],Al−1Ll

]

+
∑

h∈[1]∩Λ1

k′,k′′,l′,l′′∈[1]

[
Ah−1Lh, [Lk′ ,Lk′′ ,L(k′k′′)−1 ]

, [Ll′ ,Ll′′ ,L(l′l′′)−1 ]
]

+
∑

h′,h′′∈[1]
k∈[1]∩Λ1

[
[Lh′ ,Lh′′ ,L(h′h′′)−1 ],Ak−1Lk,Al−1Ll

]

+
∑

h′,h′′,l′,l′′∈[1]
k∈[1]∩Λ1

[
[Lh′ ,Lh′′ ,L(h′h′′)−1 ],Ak−1Lk

, [Ll′ ,Ll′′ ,L(l′l′′)−1 ]
]

+
∑

h′,h′′,k′,k′′∈[1]
l∈[1]∩Λ1

[
[Lh′ ,Lh′′ ,L(h′h′′)−1 ], [Lk′ ,Lk′′ ,L(k′k′′)−1 ]

,Al−1Ll

]
+

∑
h′,h′′,k′,k′′,l′,l′′∈[1]

[[Lh′ ,Lh′′ ,L(h′h′′)−1 ], [Lk′ ,Lk′′ ,L(k′k′′)−1 ],

[Ll′ ,Ll′′ ,L(l′l′′)−1 ]]
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For the first summand in (9), if there exist h, k, l ∈ [1] ∩Λ1 such that

[Ah−1Lh,Ak−1Lk,Al−1Ll] , 0,

by Eqs. (2) and (5) we have

[Ah−1Lh,Ak−1Lk,Al−1Ll] ⊂ [Lhh−1 ,Lkk−1 ,Al−1Ll]
= Al−1 [Lhh−1 ,Lkk−1 ,Ll] + ρ(Lhh−1 ,Lkk−1 )Al−1Ll

⊂ Al−1Ll ⊂ L1,[1].

For the second summand in (9), if there exist h, k ∈ [1] ∩Λ1, l′, l′′ ∈ [1] such that[
Ah−1Lh,Ak−1Lk, [Ll′Ll′′ ,L(l′l′′)−1 ]

]
, 0,

by Eqs. (2), (5) and skew symmetry we have[
Ah−1Lh,Ak−1Lk, [Ll′Ll′′ ,L(l′l′′)−1 ]

]
⊂

[
Lhh−1 , [Ll′Ll′′ ,L(l′l′′)−1 ],Ak−1Lk

]
= Ak−1

[
Lhh−1 , [Ll′Ll′′ ,L(l′l′′)−1 ],Lk

]
+ ρ

(
Lhh−1 , [Ll′Ll′′ ,L(l′l′′)−1 ]

)
Ak−1Lk

⊂ Ak−1Lk ⊂ L1,[1].

The proof for the rest of summands (exept the last summand) in (9) are similar. For the last summand in
(9), if there exist h′, h′′, k′, k′′, l′, l′′ ∈ [1] such that[

[Lh′ ,Lh′′ ,L(h′h′′)−1 ], [Lk′ ,Lk′′ ,L(k′k′′)−1 ], [Ll′ ,Ll′′ ,L(l′l′′)−1 ]
]
, 0.

By applying identities in Defenition 2.1, we get[
[Lh′ ,Lh′′ ,L(h′h′′)−1 ],L1,L1

]
⊂

[
[Lh′ ,L1,L1],Lh′′ ,L(h′h′′)−1

]
+
[
[Lh′′ ,L1,L1],L(h′h′′)−1 ,Lh′

]
(10)

+
[
[L(h′h′′)−1 ,L1,L1],Lh′ ,Lh′′

]
⊂ [Lh′ ,Lh′′ ,L(h′h′′)−1 ] + [Lh′′ ,L(h′h′′)−1 ,Lh′ ]
+ [L(h′h′′)−1 ,Lh′ ,Lh′′ ]
⊂ L1,[1].

Thus, all summands in (9) contained in L1,[1]. Therefore,

[L1,[1],L1,[1],L1,[1]] ⊂ L1,[1]. (11)

From Eqs. (5), (7), (8) and (11), we conclude that [I[1], I[1], I[1]] ⊂ I[1].
(2) Observe that

AI[1] =
(
A1 ⊕ (

⊕
λ∈Λ1

Aλ)
)(

I1,[1] ⊕V[1]

)
=
(
A1 ⊕ (

⊕
λ∈Λ1

Aλ)
)(( ∑

h∈[1]∩Λ1

Ah−1Lh

)
+
( ∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ]
)
⊕

⊕
h∈[1]

Lh

)
.

We discuss it in six cases:
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Case 1. For the item A1(
∑

h∈[1]∩Λ1 Ah−1Lh), since L is an A-module, for h ∈ [1] ∩Λ1 we have

A1(Ah−1Lh) = (A1Ah−1 )Lh ⊂ Ah−1Lh ⊂ L1,[1].

Therefore,
A1(

∑
h∈[1]∩Λ1

Ah−1Lh) ⊂ I[1].

Case 2. Consider the item A1

(∑
h,k∈[1][Lh,Lk,L(hk)−1 ]

)
. By Eq. (2), for any h, k ∈ [1],we have

A1[Lh,Lk,L(hk)−1 ] ⊂ [Lh,Lk,A1L(hk)−1 ] + ρ(Lh,Lk)(A1)L(hk)−1

⊂ [Lh,Lk,L(hk)−1 ] + A(hkL(hk)−1 ,

thanks to A1L(hk)−1 ⊂ L(hk)−1 and ρ(Lh,Lk)(A1) ⊂ Ahk.Now, if Ahk , 0 (otherwise is trivial), then hk ∈ [1]∩Λ1.
Thus [Lh,Lk,L(hk)−1 ] + AhkL(hk)−1 ⊂ L1,[1]. Therefore,

A1(
∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ]) ⊂ I[1].

Case 3. Let us consider the item A1(
⊕

h∈[1]Lh). Since L is an A-module, for h ∈ [1] we have A1Lh ⊂

Lh ⊂ V[1]. Therefore,
A1(
⊕
h∈[1]

Lh) ⊂ I[1].

Case 4. For the item (
⊕
λ∈Λ1 Aλ)(

∑
h∈[1]∩Λ1 Ah−1Lh), suppose λ ∈ Λ1, h ∈ [1]∩Λ1, by associativity of A we

have
Aλ(Ah−1Lh) = (AλAh−1 )Lh ⊂ Aλh−1Lh.

If λh−1
∈ Σ1 and Lλ , 0, then the family {h, λh−1, 1} is a Σ1-connection from h to Λ. That is λ ∈ [1], so

Aλh−1Lh ⊂ Lλ ⊂ V[1]. Therefore
(
⊕
λ∈Λ1

Aλ)(
∑

h∈[1]∩Λ1

Ah−1Lh) ⊂ I[1].

Case 5. Consider the item (
⊕
λ∈Λ1 Aλ)

(∑
h,k∈[1][Lh,Lk,L(hk)−1 ]

)
. By Eq. (2), for λ ∈ Λ1, h ∈ [1] we have

Aλ[Lh,Lk,L(hk)−1 ] ⊂ [Lh,Lk,AλL(hk)−1 ] + ρ(Lh,Lk)(Aλ)L(hk)−1

⊂ [Lh,Lk,Lλ(hk)−1 ] + Aλ(hk)L(hk)−1 .

As in previous case, ifLλ , 0 andLλ(hk)−1 , 0 we get λ, λ(hk)−1
∈ Σ1, and by Remark 3.3 we have λ ∈ [1]. So

[Lh,Lk,Lλ(hk)−1 ] + Aλ(hk)L(hk)−1 ⊂ V[1]. Therefore,

(
⊕
λ∈Λ1

Aλ)
( ∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ]
)
⊂ I[1].

Case 6. Finally, consider the item (
⊕
λ∈Λ1 Aλ)(

⊕
h∈[1]Lh). For λ ∈ Λ1 and h ∈ [1] we have AλLh ⊂ Lλh.

Using Remark 3.3 as in previous case, we can prove λh ∈ [1]. Hence, AλLh ⊂ V[1]. Therfore,

(
⊕
λ∈Λ1

Aλ)(
⊕
h∈[1]

Lh) ⊂ I[1].

Now, summarizing a discussion of above six cases, we get the result.

Proposition 3.5. Let [1], [h], [k] ∈ Σ1/ ∼Σ1 be different from each other, then

[I[1], I[h], I[k]] = 0, and [I[1], I[1], I[h]] = 0.
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Proof. We have

[I[1], I[h], I[k]] = [L1,[1] ⊕V[1],L1,[h] ⊕V[h],L1,[k] ⊕V[k]]
⊂ [L1,[1],L1,[h],L1,[k]] + [L1,[1],L1,[h],V[k]] + [L1,[1],V[h],L1,[k]]
+ [L1,[1],V[h],V[k]] + [V[1],L1,[h],L1,[k]] + [V[1],L1,[h],V[k]]
+ [V[1],V[h],L1,[k]] + [V[1],V[h],V[k]]. (12)

Let us consider the last item [V[1],V[h],V[k]] in Eq. (12). Suppose that there exist 11 ∈ [1], h1 ∈ [h] and k1 ∈ [k]
such that [L11 ,Lh1 ,Lk1 ] , 0. By definition of grading, 11h1k1 ∈ Σ

1. Since 11 ∈ [1] and 11h1k1 ∈ Σ
1, we get

1 ∼Σ1 11h1k1. Similarly, one can get h ∼Σ1 11h1k1. Now, Proposition 3.2 implies that [1] = [h] a contradiction.
Therefore,

[V[1],V[h],V[k]] = 0. (13)

Now, we consider the item [L1,[1],V[h],V[k]] in Eq. (12). We have

[L1,[1],V[h],V[k]] =
[( ∑
1′∈[1]∩Λ1

A1′−1L1′

)
+
( ∑

h′,k′∈[1]

[Lh′ ,Lk′ ,L(h′k′)−1 ]
)
,

⊕
h1∈[h]

Lh1 ,
⊕
k1∈[k]

Lk1

]
(14)

⊂

[ ∑
1′∈[1]∩Λ1

A1′−1L1′ ,
⊕
h1∈[h]

Lh1 ,
⊕
k1∈[k]

Lk1

]
+
[ ∑

h′,k′∈[1]

[Lh′ ,Lk′ ,L(h′k′)−1 ],
⊕
h1∈[h]

Lh1 ,
⊕
k1∈[k]

Lk1

]
.

For the first summand in (14), suppose there exist1′ ∈ [1]∩Λ1, h1 ∈ [h] and k1 ∈ [k] such that [A1′−1L1′ ,Lh1 ,Lk1 ] ,
0. By Eq. (2),

[A1′−1L1′ ,Lh1 ,Lk1 ] = A1′−1 [Lh1 ,Lk1 ,L1′ ] + ρ(Lh1 ,Lk1 )A1′−1L1′ .

Taking into account Eq.(13), we get [Lh1 ,Lk1 ,L1′ ] = 0. If ρ(Lh1 ,Lk1 )A1′−1L1′ , 0, then Ah1k11
′−1 , 0 and

h1k11
′−1
∈ Λ1.We take the family {1′, k−1

1 , h1k11
′−1
} as a Σ1-connection from 1′ to h1, and so [1] = [h] wich is

a contradiction. That is ρ(Lh1 ,Lk1 )A1′−1L1′ = 0. Hence,

[A1′−1L1′ ,Lh1 ,Lk1 ] = 0, (15)

and so

[
∑

1′∈[1]∩Λ1

A1′−1L1′ ,
⊕
h1∈[h]

Lh1 ,
⊕
k1∈[k]

Lk1 ] = 0. (16)

Next, consider the second summand in (14). For h′, k′ ∈ [1], h1 ∈ [h] and k1 ∈ [k], by fundamental identity
and Eq. (13), we get[

[Lh′ ,Lk′ ,L(h′k′)−1 ],Lh1 ,Lk1

]
⊂

[
[Lh′ ,Lh1 ,Lk1 ],Lk′ ,L(h′k′)−1

]
+
[
[Lk′ ,Lh1 ,Lk1 ],L(h′k′)−1 ,Lh′

]
+
[
[L(h′k′)−1 ,Lh1 ,Lk1 ],Lh′ ,Lk′

]
= 0,

and so[ ∑
h′,k′∈[1]

[Lh′ ,Lk′ ,L(h′k′)−1 ],
⊕
h1∈[h]

Lh1 ,
⊕
k1∈[k]

Lk1

]
= 0. (17)
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From Eqs. (16) and (17), we have [L1,[1],V[h],V[k]] = 0. By the skew symmetry of trilinear map, we also get

[L1,[1],V[h],V[k]] = [V[1],L1,[h],V[k]] = [V[1],V[h],L1,[k]] = 0. (18)

Next, we consider the summand [L1,[1],L1,[h],V[k]] in Eq. (12). We have

[L1,[1],L1,[h],V[k]] =
[( ∑
1′∈[1]∩Λ1

A1′−1L1′

)
+
( ∑
11,12∈[1]

[L11 ,L12 ,L(1112)−1 ]
)
,

( ∑
h′∈[h]∩Λ1

Ah′−1Lh′
)
+
( ∑

h1,h2∈[h]

[Lh1 ,Lh2 ,L(h1h2)−1 ]
)
,

⊕
k1∈[k]

Lk1

]
. (19)

The above statement includs four items which we consider in the following. First, consider the item
[
∑
1′∈[1]∩Λ1 A1′−1L1′ ,

∑
h′∈[h]∩Λ1 Ah′−1Lh′ ,

⊕
k1∈[k]Lk1 ] in (19). For 1′ ∈ [1] ∩ Λ1, h′ ∈ [h] ∩ Λ1 and k1 ∈ [k], by

using Eqs. (13) and (15) we have

[A1′−1L1′ ,Ah′−1Lh′ ,Lk1 ] = [Lk1 ,Ah′−1Lh′ ,A1′−1L1′ ]
= A1′−1 [Lk1 ,Ah′−1Lh′ ,L1′ ] + ρ(Lk1 ,Ah′−1Lh′ )A1′−1L1′

= A1′−1

(
Ah′−1 [Lk1 ,Lh′ ,L1′ ] + ρ(Lk1 ,L1′ )Ah′−1Lh′

)
+ Ah′−1ρ(Lk1 ,Lh′ )A1′−1L1′

= A1′−1 Ah′−1 [Lk1 ,Lh′ ,L1′ ] + A1′−1ρ(Lk1 ,L1′ )Ah′−1Lh′

+ Ah′−1ρ(Lk1 ,Lh′ )A1′−1L1′

= 0.

Therefore,

[
∑

1′∈[1]∩Λ1

A1′−1L1′ ,
∑

h′∈[h]∩Λ1

Ah′−1Lh′ ,
⊕
k1∈[k]

Lk1 ] = 0. (20)

Second, consider the item [ ∑
1′∈[1]∩Λ1

A1′−1L1′ ,
∑

h1,h2∈[h]

[Lh1 ,Lh2 ,L(h1h2)−1 ],
⊕
k1∈[k]

Lk1

]
,

in Eq. (19). For 1′ ∈ [1] ∩Λ1, h1, h2 ∈ [h] and k1 ∈ [k], again by using Eqs. (13) and (15) we have[
A1′−1L1′ , [Lh1 ,Lh2 ,L(h1h2)−1 ],Lk1

]
=
[
[Lh1 ,Lh2 ,L(h1h2)−1 ],Lk1 ,A1′−1L1′

]
= A1′−1

[
[Lh1 ,Lh2 ,L(h1h2)−1 ],Lk1 ,L1′

]
+ ρ

(
[Lh1 ,Lh2 ,L(h1h2)−1 ],Lk1

)
A1′−1L1′

= 0.

Hence,[ ∑
1′∈[1]∩Λ1

A1′−1L1′ ,
∑

h1,h2∈[h]

[Lh1 ,Lh2 ,L(h1h2)−1 ],
⊕
k1∈[k]

Lk1

]
= 0. (21)

By skew symmetry, we also have[ ∑
11,12∈[1]

[L11 ,L12 ,L(1112)−1 ],
∑

h′∈[h]∩Λ1

Ah′−1Lh′ ,
⊕
k1∈[k]

Lk1

]
= 0. (22)
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Now, consider the forth item in Eq. (19). For 11, 12 ∈ [1], h1, h2 ∈ [h] and k1 ∈ [k], using Eq. (13) we have

bi1[[L11 ,L12 ,L(1112)−1 ], [Lh1 ,Lh2 ,L(h1h2)−1 ],Lk1 ] ⊂ [V[1],V[h],V[k]

]
= 0.

So we get[ ∑
11,12∈[1]

[L11 ,L12 ,L(1112)−1 ],
∑

h1,h2∈[h]

[Lh1 ,Lh2 ,L(h1h2)−1 ],
⊕
k1∈[k]

Lk1

]
= 0. (23)

Now, from Eqs. (20)-(23), we get

[L1,[1],L1,[h],V[k]] = 0. (24)

By skew symmetry, we also get

[L1,[1],V[h],L1,[k]] = [V[1],L1,[h],L1,[k]] = [L1,[1],L1,[h],V[k]] = 0. (25)

Finally, consider the first item in Eq. (12). We have

[L1,[1],L1,[h],L1,[k]] =
[( ∑
1′∈[1]∩Λ1

A1′−1L1′

)
+
( ∑
11,12∈[1]

[L11 ,L12 ,L(1112)−1 ]
)
,

L1,[h],L1,[k]

]
⊂

[ ∑
1′∈[1]∩Λ1

A1′−1L1′ ,L1,[h],L1,[k]

]
+
[ ∑
11,12∈[1]

[L11 ,L12 ,L(1112)−1 ],L1,[h],L1,[k]

]
. (26)

By a similar argument as in Eq. (22), the first summand in (26) is zero. For the second summand (26),
suppose 11, 12 ∈ [1] we have[

[L11 ,L12 ,L(1112)−1 ],L1,[h],L1,[k]

]
⊂

[
[L11 ,L1,[h],L1,[k]],L12 ,L(1112)−1

]
+
[
[L12 ,L1,[h],L1,[k]],L(1112)−1 ,L11

]
+
[
[L(1112)−1 ,L1,[h],L1,[k]],L11 ,L12

]
.

All of the above three snmmands are zero, thanks to Eq. (25). Therefore,

[L1,[1],L1,[h],L1,[k]] = 0. (27)

From Eqs. (13) , (18), (25) and (27), we get

[I[1], I[h], I[k]] = 0.

By a similar argument as above, one can prove [I[1], I[1], I[h]] = 0.

Theorem 3.6. The following assertions hold

(1) For any [1] ∈ Σ1/ ∼Σ1 , the linear space
I[1] = L1,[1] ⊕V[1],

associated to [1] is a graded ideal of (L,A).

(2) If (L,A) is gr-simple, then there exists a Σ1-connection from 1 to h for any 1, h ∈ Σ1, and

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ].
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Proof. (1) We are going to check [I[1],L,L] ⊂ I[1].We have

[I[1],L,L] =
[
L1,[1] ⊕V[1],L1 ⊕ (

⊕
h∈Σ1

Lh),L1 ⊕ (
⊕
k∈Σ1

Lk)
]

⊂ [L1,[1],L1,L1] + [L1,[1],L1,
⊕
k∈Σ1

Lk] + [L1,[1],
⊕
h∈Σ1

Lh,L1]

+ [L1,[1],
⊕
h∈Σ1

Lh,
⊕
k∈Σ1

Lk] + [V[1],L1,L1] + [V[1],L1,
⊕
k∈Σ1

Lk]

+ [V[1],
⊕
h∈Σ1

Lh,L1] + [V[1],
⊕
h∈Σ1

Lh,
⊕
k∈Σ1

Lk]. (28)

Let us consider the first summan in Eq. (28), we have

[L1,[1],L1,L1] =
[ ∑

h∈[1]∩Λ1

Ah−1Lh +
∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ],L1,L1

]
⊂ [

∑
h∈[1]∩Λ1

Ah−1Lh,L1,L1] +
[ ∑

h,k∈[1]

[Lh,Lk,L(hk)−1 ],L1,L1

]
. (29)

Suppose h ∈ [1] ∩Λ1, by Eq. (2),

[Ah−1Lh,L1,L1] = Ah−1 [L1,L1,Lh] + ρ(L1,L1)Ah−1Lh ⊂ L1,[1].

Now, if h, k ∈ [1] then
[
[Lh,Lk,L(hk)−1 ],L1,L1

]
⊂ L1,[1], thanks to Eq. (10). Taking into account Eq. (29), we

get
[L1,[1],L1,L1] ⊂ L1,[1].

Next, by Proposition 3.4(1), for the rest of all summands in Eq. (29), we get [I[1],L,L] ⊂ I[1]. So I[1] is a 3-Lie
ideal of L. By Proposition 3.4(2), we also have AI[1] ⊂ I[1], that is I[1] is an A-module. Finally, by Eq. (2) we
have

ρ(I[1], I[1])(A)L ⊂ [I[1], I[1],AL] + A[I[1], I[1],L] ⊂ [I[1], I[1],L] + I[1] ⊂ I[1].

By construction of I[1], it is a graded ideal of (L,A).

(2) The gr-simplicity of (L,A) implies that 0 , I[1] ∈ {L,kerρ} for any 1 ∈ Σ1. If I[1] = L for some 1 ∈ Σ1,
then [1] = Σ1. Otherwise, if I[1] = kerρ for all 1 ∈ Σ1 we have [1] = [h] for any h ∈ Σ1 and again Σ1 = [1].We
conclude that all the elements of the G-support Σ1 are Σ1-connected . Moreover, clearly

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ].

Theorem 3.7. Let (L,A) be a graded 3-Lie-Rinehart algebra. For a vector space complementU of
∑
1∈Σ1∩Λ1 A1−1L1+∑

h,k∈Σ1 [Lh,Lk,L(hk)−1 ], in L1, we have
L =U ⊕

∑
[1]∈Σ1/∼Σ1

I[1],

where any I[1] is one of the graded ideals of (Ł,A) described in Theorem 3.6-(1). Furthermore, [I[1], I[h], I[k]] = 0 where
[1], [h], [k] ∈ Σ1/ ∼Σ1 be different from each other.

Proof. Each I[1] is well defined and by Theorem 3.6-(1), a graded ideal of (L,A). It is clear that

L = L1 ⊕ (
⊕
1∈Σ1

L1) =U ⊕
∑

[1]∈Σ1/∼Σ1

I[1],
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whereU is a linear space complement of∑
1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ],

in L1. By Proposition 3.5, we also have [I[1], I[h], I[k]] = 0, where [1], [h], [k] ∈ Σ1/ ∼Σ1 be different from each
other.

Corollary 3.8. If Zρ(L) = {0} and

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ],

then L is the direct sum of the graded ideals given in Theorem 3.6-(1),

L =
⊕

[1]∈Σ1/∼Σ1

I[1],

Moreover, [I[1], I[h], I[k]] = 0 where [1], [h], [k] ∈ Σ1/ ∼Σ1 be different from each other.

Proof. Since L1 =
∑
1∈Σ1∩Λ1 A1−1L1 +

∑
h,k∈Σ1 [Lh,Lk,L(hk)−1 ],we get

L =
∑

[1]∈Σ1/∼Σ1

I[1],

where I[1] is one of the graded ideals of (Ł,A) described in Theorem 3.6-(1) satisfying in Proposition 3.5. For
the direct character, suppose there exists x ∈ I[1] ∩

∑
[h]∈Σ1/∼Σ1

I[h] such that [1] , [h]. The fact [I[1], I[1], I[h]] = 0
with [1] , [h] and x ∈ I[1], implies that

[x,
∑

[1]∈Σ1/∼Σ1

I[1],L] = 0.

We also have [x, I[1],L] = 0, thanks to x ∈
∑

[h]∈Σ1/∼Σ1
I[h] with [1] , [h] and the same above fact.Therefore,

[x,L,L] = 0. Next, by Eq. (2), we have ρ(x,L) = 0. Thus, we get x ∈ Zρ(L) = {0}.

4. Connections in Λ1 and decomposition of A.

Let (L,A) be a G-graded 3-Lie-Rinehart algebra (see Definition 2.8). In this section we begin by introduc-
ing the so called connection among of the elements in the G-supportΛ1 for an associative and commutative
algebra A associated to (L,A). Recall that A admits a G-grading as

A = A1 ⊕ (
⊕
λ∈Λ1

Aλ),

where Λ1 = {λ ∈ G \ {1} : Aλ , 0}, is the G-support of grading. We will consider the sets Σ± and Λ± as in
Section 3. Note that, the proof of some results in this section are similar to the one for graded Lie-Rinehard
algebra (see [2]), we will omit them.

Definition 4.1. Let λ, µ ∈ Λ1, we say that λ is Λ1-connected to µ and denoted by λ ≈Λ1 µ, if there exists a family
{λ1, λ2, λ3, ..., λn} ⊂ Σ ∪Λ ∪ {1}, such that the following conditions are satisfied;
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(1) λ1 = λ.

(2) λ1λ2 ∈ Λ,
λ1λ2λ3 ∈ Λ,
...
λ1λ2λ3... + λn−1 ∈ Λ.

(3) λ1λ2λ3...λn ∈ {µ, µ−1
}.

The family {λ1, λ2, λ3, ..., λn} is called a Λ1-connection from λ to µ.

The next result shows that the Λ1-connection relation is an equivalence relation (see Proposition 3.2 in
[2]).

Proposition 4.2. The relation ≈Λ1 in Λ1 defined by

λ ≈Λ1 µ if and only if λ is Λ1
−connected to µ,

is an equivalence relation.

Remark 4.3. Let λ, µ ∈ Λ1 such that λ ≈Λ1 µ. If λη ∈ Λ1, for η ∈ Σ∪Λ then λ ≈Λ1 µη. Considering the connection
{µ, η} we get µ ≈Λ1 µη and by transitivity λ ≈Λ1 µη.

By the Proposition 4.2, we can consider the equivalence relation in Λ1 by the Λ1-connection relation ≈Λ1

in Λ1. So we denote by
Λ1/ ≈Λ1 := {[λ] : λ ∈ Λ1

},

where [λ] denotes the set of elements of Λ1,which are Λ1-connected to λ.
Our next goal in this section is to associate an adequate graded idealA[λ] of A to any [λ] ∈ Λ1/ ≈Λ1 . For

a fixed λ ∈ Λ1,we define

A1,[λ] :=
( ∑
µ∈[λ]

Aµ−1 Aµ
)
+
( ∑

h,k∈[λ]∩Σ1

ρ(Lh,Lk)A(hk)−1

)
⊂ A1. (1)

Next, we define

A[λ] :=
⊕
µ∈[λ]

Aµ. (2)

Finally, we denote byA[λ] the direct sum of the two graded subspaces above, that is,

A[λ] := A1,[λ] ⊕ A[λ]. (3)

The detail proofs of the following properties of A can be found in [2];

Proposition 4.4. For any [λ] ∈ Λ1/ ≈Λ1 , we haveA[λ]A[λ] ⊂ A[λ].

Proposition 4.5. For any λ, µ ∈ Λ1, if [λ] , [µ] thenA[λ]A[µ] = 0.

We recall that a G-graded subspace I of a commutative and associative algebra A is called an ideal of A
if AI ⊂ I.We say that A is gr-simple if AA , 0 and it contains no proper ideals.

Theorem 4.6. Let (L,A) be a graded 3-Lie-Rinehart algebra. Then the following assertions hold.

(1) For any [λ] ∈ Λ1/ ≈Λ1 , the linear subspace

A[λ] = A1,[λ] ⊕ A[λ],

of algebra A associated to [λ] is a graded ideal of A.
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(2) If A is gr-simple then all elements of Λ1 are Λ1-connected. Furthermore,

A1 =
∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 .

Proof. The proof is similar to the one in [2], Theorem 3.6 for a graded Lie-Rinehart algebra.

Theorem 4.7. Let (L,A) be a graded 3-Lie-Rinehart algebra. Then

A =V +
∑

[λ]∈Λ1/≈Λ1

A[λ],

whereV is a linear complement of ∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 ,

in A1 and any A[λ] is one of the graded ideals of A described in Theorem 4.6-(1). Forthermore A[λ]A[µ] = 0, when
[λ] , [µ].

Proof. The proof is similar to the one in [2], Theorem 3.7 for a graded Lie-Rinehart algebra.
Recall that, denote by

Ann(A) := {a ∈ A : aA = 0}, and AnnL(A) := {x ∈ L : Ax = 0},

the annihilator of the commutative and associative algebra A and the annihilator of A in L.

Corollary 4.8. Let (L,A) be a graded 3-Lie-Rinehart algebra. If Ann(A) = 0 and

A1 =
∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 ,

then A is the direct sum of the graded ideals given in Theorem 4.6-(1),

A =
⊕

[λ]∈Λ1/≈Λ1

A[λ].

Furthermore,A[λ]A[µ] = 0, when [λ] , [µ].

Proof. This can be proved analogously to Corollary 3.8 in [2].

In the following, we will discuss the relation between the decompositions of L and A of a graded 3-Lie
Rinehart algebra (L,A).

Definition 4.9. A graded 3-Lie-Rinehart algebra (L,A) is tight if Zρ(L) = 0, Ann(A) = 0 = AnnL(A), AA =
A, AL = L and

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ],

A1 =
∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 .
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Remark 4.10. If (L,A) is a tight graded 3-Lie-Rinehart algebra then it follows from Corollaries 3.8 and 4.8 that

L =
⊕

[1]∈Σ1/∼Σ1

I[1], A =
⊕

[λ]∈Λ1/≈Λ1

A[λ],

with any I[1] a graed ideal of L satisfying [I[1], I[h]] = 0 if [1] , [h] and any A[λ] a graded ideal of A satisfying
A[λ]A[µ] = 0, when [λ] , [µ].

Proposition 4.11. Let (L,A) be a tight graded 3-Lie-Rinehart algebra. Then for any [1] ∈ Σ1/ ∼Σ1 there exists a
unique [λ] ∈ Λ1/ ≈Λ1 such thatA[λ]I[1] , 0.

Proof. At first, we are going to prove the existence. We claim AI[1] , 0 for any [1] ∈ Σ1/ ∼Σ1 . Indeed, if
AI[1] = 0 for some [1] ∈ Σ1/ ∼Σ1 , then by the fact I[1] is a graded ideal of Lwe have

[I[1],AL,AL] =
[
I[1],

⊕
[h]∈Σ1/∼Σ1

AI[h],
⊕

[k]∈Σ1/∼Σ1

AI[k]

]
=
[
I[1],AI[1],AI[1]

]
= 0.

Taking into account AL = L,we get I[1] ⊂ Z(L) = 0,which is a contradiction. Now, by A =
⊕

[λ]∈Λ1/≈Λ1
A[λ],

there exists [λ] ∈ Λ1/ ≈Λ1 such thatA[λ]I[1] , 0.
Second, we will prove the uniqueness. Suppose that there exist [λ], [µ] ∈ Λ1/ ≈Λ1 such thatA[λ]I[1] , 0

and A[µ]I[1] , 0 for any [1] ∈ Σ1/ ∼Σ1 . From here, we can take λ1 ∈ [λ], µ2 ∈ [µ] and 11, 12 ∈ [1] such
that Aλ1 I11 , 0 and Aµ2 I12 , 0. Since 11, 12 ∈ [1], we can consider the Σ1-connection {11, h2, h3, ..., h2n+1} ⊂

Σ ∪Λ ∪ {1} from 11 to 12.We continue the proof in four cases;
Case 1. If λ111 , 1 and µ212 , 1, then λ111, µ212 ∈ Λ

1.We can consider a Λ1-connection

{λ1, 11, λ1
−1, h2, ..., h2n+1, µ2, 12

−1
} ⊂ Σ ∪Λ,

from λ1 to µ2 in the case 11h2...h2n+1 = 12, and in case 11h2...h2n+1 = 12
−1 is

{λ1, 11, λ1
−1, h2, ..., h2n+1, µ2

−1, 12} ⊂ Σ ∪Λ.

Then λ1 ≈Λ1 µ2 and so [λ] = [µ].
Case 2. If λ111 = 1 and µ212 , 0, then λ1 = 11

−1 and µ212 ∈ Σ
1. So we have a Λ1-connection

{11
−1, h2

−1, ..., h2n+1
−1, µ2

−1, 12} ⊂ Σ ∪Λ,

from λ1 to µ2 in the case 11h2...hn = 12. In the case 11h2...hn = 12
−1 the Λ1-connection is

{11
−1, h2

−1, ..., h2n+1
−1, µ2, 12

−1
} ⊂ Σ ∪Λ.

Then λ1 ≈Λ1 µ2, and so [λ] = [µ].
Case 3. If λ111 , 1 and µ212 = 1, then by a similar argumen as the second case we get [λ] = [µ].
Case 4. If λ111 = 1 and µ212 = 1, then λ1 = 11

−1 and µ2 = 12
−1. So we have a Λ1-connection

{11
−1, h2

−1, ..., h2n+1
−1
} ⊂ Σ ∪Λ.

from λ1 to µ2, and so [λ] = [µ].
Therefore, we conclude that for any [1] ∈ Σ1/ ∼Σ1 there exists a unique [λ] ∈ Λ1/ ≈Λ1 such that

A[λ]I[1] , 0.

It could be remarked that Proposition 4.11 shows that I[1] is an A[λ]-module. Hence we can assert the
following result.
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Theorem 4.12. Let (L,A) be a tight graded 3-Lie-Rinehart algebra. Then

L =
⊕

i∈I

Li, A =
⊕

j∈J

A j,

where any Li is a non-zero graded ideal of L satisfying [Li,Lk] = 0, when i , k, and any A j is a non-zero graded
ideal of A such that A jAl = 0 when j , l.Moreover, both decompositions satisfy that for any i ∈ I there exists a unique
j ∈ J such that

A jLi , 0.

Fortheremore, any (Li,A j) is a graded 3-Lie-Rinehart algebra.

5. the simple components of graded 3-Lie-Rinehart algebras

In this section we focus on the simplicity of graded 3-Lie-Rinehart algebra (L,A) by centering our
attention in those of maximal length. From now on, we will suppose Σ1 is symmetric, that is, if 1 ∈ Σ1 then
1−1
∈ Σ1 and also that Λ1 is symmetric in the same sense.
Let us introduce the concepts of root-multiplicativity and maximal length in the framework of graded

3-Lie-Rinehart algebra, in a similar way to the ones for split Lie-Rinehart algebra in [22].

Definition 5.1. A graded 3-Lie-Rinehart algebra (L,A) is called G-multiplicative if for any 1, h, k ∈ Σ1 and
λ, µ ∈ Λ1 the following conditions hold

- If 1hk ∈ Σ1 then [L1,Lh,Lh] , 0.

- If λ1 ∈ Σ1 then AλL1 , 0.

- If λµ ∈ Λ1 then AλAµ , 0.

Definition 5.2. A graded 3-Lie-Rinehart algebra (L,A) is called of maximal length if for any 1 ∈ Σ1 and λ ∈ Λ1

we have dimL1 = 1 = dim Aλ.

Remark 5.3. If (L,A) is a graded 3-Lie-Rinehart algebra such that L and A are ge-simple algebras then Z(L) =
{0} = Ann(A) and AnnL(A) = {0}. Also as consequence of Theorem 3.7-(2) and Theorem 4.6-(2) we get that all of the
non-zero elements in Σ1 are connected, that all of the non-zero elements in Λ1 are also connected and that

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 +
∑

h,k∈Σ1

[Lh,Lk,L(hk)−1 ],

A1 =
∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 .

From here, the conditions for (L,A) of being tight together with the ones of having Σ1 and Λ1 all of their elements
connected, are necessary conditions to get a characterization of the gr-simplicity of the algebras L and A. Actually,
we are going to shwo that under the hypothesis of being (L,A) of maximal length and G-multiplicative, these are also
sufficient conditions.

Lemma 5.4. Let (L,A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If I is a
graded ideal of L such that I ⊂ L1, then I = {0}.

Proof. Suppose there exists a non-zero graded ideal I of L such that I ⊂ L1. We are going to show that
I ⊂ AnnL(A).

If 1, h ∈ Σ1 with 1h , 1,we have

[I,L1,Lh] ⊂ L1h ∩ L1 = 0. (1)
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Otherwise, if h = 1−1 and [I,L1,L1−1 ] , 0 for some 1 ∈ Σ1, then there exist x ∈ L1, x′ ∈ L1−1 and i ∈ I such
that [i, x, x′] , 0. By the G-maltiplicativity (consider 1, 1, 1 ∈ Σ1

∪ {1}) and the maximal length of (L,A) there
exist x1 ∈ L1 such that 0 , [i, x, x1] ∈ I a contradiction. Hence,

[I,L1,L1−1 ] = 0, ∀1 ∈ Σ1. (2)

By Eqs. (1) and (2), we get [I,L1,Lh] = 0 for all 1, h ∈ Σ1. therefore,

[I,L,L] = 0. (3)

Next, we show that AI = 0. Note that

AI =
(
A1 ⊕

(⊕
λ∈Λ1

Aλ
))

I ⊂ A1I +
⊕
λ∈Λ1

AλI. (4)

For the second summand in (4), since (L,A) is a tight graded 3-Lie-Rinehart algebra, we have⊕
λ∈Λ1

AλI ⊂
⊕
λ∈Σ1

Lλ ∩ L1 = 0. (5)

Now, consider the first summand in (4), since

A1 =
∑
µ∈Λ1

Aµ−1 Aµ +
∑

h,k∈Λ1∩Σ1

ρ(Lh,Lk)A(hk)−1 ,

we have

A1I ⊂
∑
µ∈Λ1

(
Aµ−1 Aµ

)
I +

∑
h,k∈Λ1∩Σ1

ρ(Lh,Lk)
(
A(hk)−1

)
I. (6)

For the first item in (6), by the fact that I is an A-module and Eq. (5), we get

(Aµ−1 Aµ)I = Aµ−1 (AµI) = 0. (7)

Consider the second item in (6), by Eq. (2), the fact that I is an A-module and Eq. (3), we have

ρ(Lh,Lk)(A(hk)−1 )I ⊂ [Lh,Lk,A(hk)−1 I] + A(hk)−1 [Lh,Lk, I]
⊂ [Lh,Lk, I] + A(hk)−1 [Lh,Lk, I] (8)
= 0.

Eqs. (7) and (8), give us

A1I = 0. (9)

Now, Eqs. (5) and (9), implies that AI = 0, taking into account Eq. (3) we obtain I ⊂ AnnL(A) = 0.

Proposition 5.5. Let (L,A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If all
the elements in Σ1 are Σ1-connected, then either L is gr-simple or L = I ⊕ I′ where I and I′ are graded simple ideals
of L.

Proof. Consider I a nonzero graded ideal of L. By Lemma 5.4, we have I ⊈ L1 and the maximal length of
L gives us

I = (I ∩ L1) ⊕
(⊕
1∈Σ1

(I ∩ L1)
)
,
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with (I ∩ L1) , 0 for some 1 ∈ Σ1. Denote by I1 := I ∩ L1 and by Σ1
I := {1 ∈ Σ1 : I1 , 0} = {1 ∈ Σ1 : I ⊂ L1}.

Then we can rewrite
I = (I ∩ L1) ⊕

(⊕
1∈Σ1

I

I1
)
,

with Σ1
I , ∅. Let us distinguish two cases.

Case 1. Suppose there exists 10 ∈ Σ
1
I such that 10

−1
∈ Σ1

I . Then 0 , I10 ⊂ I and by the maximal length of
(L,A) we have

0 , L10 ⊂ I. (10)

Now, let us take some h ∈ Σ1 satisfying h < {10, 10
−1
}. By the assumption, 10 is Σ1-connected to h, then

we have a Σ1-connection {11, 12, ..., 12n+1} ⊂ Σ
1
∪Λ1

∪ {1}.
Consider 11, 12, 13 ∈ Σ

1
∪ Λ1

∪ {1} and if 111213 ∈ Σ (respectively, 1112 ∈ Λ), since 10 = 11 ∈ Σ
1
I we hav

L11 , 0. From here, the G-multiplicativity and maximal length of L allow us to get

0 , [L11 ,L12 ,L13 ] = L111213 (respectively, 0 , A11L12 = L1112 ).

Since 0 , L11 ⊂ I as consequence of Eq. (10), we have

0 , L111213 ⊂ I (respectively,L1112 ⊂ I).

We can follow this process with the connection {11, 12, ..., 12n+1} and obtain that

0 , L111213...12n+1 ⊂ I.

Thus we have shown that

for any h ∈ Σ1, we have that 0 , Lk ⊂ I for some k ∈ {h, h−1
}. (11)

Since 1−1
0 ∈ Σ

1
I ,we have {1−1

1 , 1
−1
2 , ..., 1

−1
2n+1} is a Σ1-connection from 1−1

0 to h satisfying

1−1
1 1
−1
2 1
−1
3 ...1

−1
2n+1 = k−1.

By arguing as above we get,

0 , Lk−1 ⊂ I, (12)

and so Σ1
I = Σ

1. The fact L1 =
∑
1∈Σ1∩Λ1 A1−1L1 +

∑
h,k∈Σ1 [Lh,Lk,L(hk)−1 ], implies that

L1 ⊂ I. (13)

From Eqs. (10)-(13), we obtain L ⊂ I, and so L is gr-simple.
Case 2. In the second case, suppose that for any 10 ∈ Σ

1
I we have that 1−1

0 < Σ
1
I . Observe that by arguing

as in the case 1, we can write

Σ1 = Σ1
I ∪ Σ

c
I , (14)

where Σc
I = {1

−1 : 1 ∈ Σ1
I }. Denote by

I′ :=
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1 ⊕
(⊕
1′∈Σc

I

L1′

)
.
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We are giong to show that I′ is a graded ideal of 3-Lie-Rinehart algebra (L,A).By construction I′ is G-graded.
First, we will show that I′ is a 3-Lie ideal of L. Taking into account Eq. (5), we have

[L,L, I′] =
[
L1 ⊕ (

⊕
h∈Σ1

Lh),L1 ⊕ (
⊕
k∈Σ1

Lk),
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1 ⊕ (
⊕
1′∈Σc

I

L1′ )
]

⊂

[
L1,L1,

∑
1∈Λ1, 1−1∈Σc

I

A1L1−1

]
+
[
L1,L1,

⊕
1′∈Σc

I

L1′

]
(15)

+
[
L1,
⊕
h∈Σ1

Lh,
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1

]
+
[
L1,
⊕
k∈Σ1

Lk,
⊕
1′∈Σc

I

L1′

]
+
[⊕

h∈Σ1

Lh,L1,
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1

]
+
[⊕

h∈Σ1

Lh,L1,
⊕
1′∈Σc

I

L1′

]
+
[⊕

h∈Σ1

Lh,
⊕
k∈Σ1

Lk,
∑
1∈Λ1

1−1
∈Σc

I

A1L1−1

]
+
[⊕

h∈Σ1

Lh,
⊕
k∈Σ1

Lk,
⊕
1′∈Σc

I

L1′

]
.

For the first summand in (15), if there exist 1 ∈ Λ1 and 1−1
∈ Σc

I such that [L1,L1,A1L1−1] , 0, by Eq.(2) we
have

[L1,L1,A1L1−1] = A1[L1,L1,L1−1] + ρ(L1,L1)A1L1−1

⊂ A1L1−1 ⊂ I′.

Therefore,

[L1,L1,
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1] ⊂ I′. (16)

For the second summand in (15), it is clear that

[L1,L1,
⊕
1′∈Σc

I

L1′ ] ⊂ I′. (17)

Connsider the third summand in (15), if [L1,Lh,A1L1−1] , 0 for some 1 ∈ Λ1, 1−1
∈ Σc

I and h ∈ Σ1. Then in
case h = 1−1 clearly [L1,Lh,A1L1−1] ⊂ Lh ⊂ I′, and in case h = 1, the maximal length of L and the fact I is a
graded ideal give us

Lh = [L1,Lh,A1L1−1 ] ⊂ I ∩ I′ = {0},

which is a contradiction with 1 ∈ Σ1
I . Now, if h < {1, 1−1

},we then have

0 , [L1,Lh,A1L1−1 ] ⊂ A1[L1,Lh,L1−1 ] + ρ(L1,Lh)A1L1−1 .

By the maximal length of L,

either 0 , A1[L1,Lh,L1−1 ] = Lh or 0 , ρ(L1,Lh)A1L1−1 = Lh.

In both cases, by G-multiplicativity, we have that Lh−1 ⊂ I and therefore h−1
∈ Σ1

I , this implies that h ∈ Σc
I

and then Lh ⊂ I′. Hence,

[L1,
⊕
h∈Σ1

Lh,
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1] ⊂ I′. (18)

By the skew symmetry,

[
⊕
h∈Σ1

Lh,L1,
∑

1∈Λ1, 1−1∈Σc
I

A1L1−1] ⊂ I′. (19)
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A similar argument as above for the seventh summand in (15), one can show that[⊕
h∈Σ1

Lh,
⊕
k∈Σ1

Lk,
∑
1∈Λ1

1−1
∈Σc

I

A1L1−1

]
⊂ I′. (20)

Next, consider the fourt summand in (15), suppose there exist k ∈ Σ1 and 1′ ∈ Σc
I such that [L1,Lk,L1′ ] , 0.

In case k = 1′−1, we have 0 , [L1,Lk,L1′ ] ⊂ I. Now, since I is a graded ideal and L is G-multiplicative, we
have

L1′ =
[
[L1,Lk,L1′ ],L1,L1′

]
⊂ I,

and so 1′ ∈ Σ1
I a contradiction with 1′ ∈ Σc

I . In case k , 1′−1, the G-multiplicativity gives us Lk−11′−1 =

[L1,Lk−1 ,L1′−1 ] ⊂ I. From here k−11′
−1
∈ Σ1

I and so k1′ ∈ Σc
I . Thus, we get [L1,Lk,L1′ ] = Lk1′ ⊂ I′. Therefor,[

L1,
⊕
k∈Σ1

Lk,
⊕
1′∈Σc

I

L1′

]
⊂ I′. (21)

By the skew symmetry,[⊕
h∈Σ1

Lh,L1,
⊕
1′∈Σc

I

L1′

]
⊂ I′. (22)

Finally, for the last summand in (15). Suppose 0 , [Lh,Lk,L1′ ] for some h, k ∈ Σ1 and 1′ ∈ Σc
I . If hk = 1,

clearly [Lh,Lk,L1′ ] = L1′ ⊂ I′. Now, if 1′ , h−1 and 1′ , k−1, the G-multiplicativity and maximal length
of L allow us to get L1′ = [Lh,Lk,L1′ ] ⊂ I, a contradiction. In case 1′ , h−1, we have (hk)−1 and so
L1′ = [Lh,Lk,L1′ ] ⊂ I. Therefore,[⊕

h∈Σ1

Lh,L1,
⊕
1′∈Σc

I

L1′

]
⊂ I′. (23)

From Eqs. (16)-(23), we conclud that I′ is a 3-Lie ideal of L.
Second, we will check AI′ ⊂ I′.We have

AI′ =
(
A1 ⊕

(⊕
λ∈Λ1

Aλ
))( ∑
1∈Λ1, 1−1∈Σc

I

A1L1−1 ⊕
(⊕
1′∈Σc

I

L1′

))
⊂ I′ +

(⊕
λ∈Λ1

Aλ
)( ∑
1∈Λ1, 1−1∈Σc

I

A1L1−1

)
+
(⊕
λ∈Λ1

Aλ
)(⊕
1′∈Σc

I

L1′

)
(24)

Consider the third summand in (24) and suppose that AλL1′ , 0 for some λ ∈ Λ1, 1′ ∈ Σc
I . If λ1′ ∈ Σ1

I ,
so λ−11′−1

∈ Σ1 then by the G-multiplicativity of L we get Aλ−1L1′−1 , 0. Now by the maximal length of L
and the fact 1′−1

∈ Σ1
I , we conclud that Aλ−1L1′−1 = Lλ−11′−1 ⊂ I. Therefore λ−11′−1 = (λ1′)−1

∈ Σ1
I which is a

contradiction. Hence λ1′ ∈ Σc
I , and so AλL1′ ⊂ I′. Therefore,(⊕

λ∈Λ1

Aλ
)(⊕
1′∈Σc

I

L1′

)
⊂ I′. (25)

We can argue as above with the second summand in (24), so as to conclude that(⊕
λ∈Λ1

Aλ
)( ∑
1∈Λ1, 1−1∈Σc

I

A1L1−1

)
⊂ I′. (26)
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From Eqs. (25) and (26) we get AI′ ⊂ I′.
Finally, let us check ρ

(
I′, I′
)
(A)L ⊂ I′. In fact by Eq. (2) we have

ρ
(
I′, I′
)
(A)L ⊂ [I′, I′,AL] + A[I′, I′,L]

Tanks to I′ is a 3-Lie ideal we get the result.
Summarizing a discussion of above, we conclude that I′ is a graded ideal of the graded 3-Lie-Rinehart

algebra (L,A).
Next, by Eq. (14) we get

∑
h,k∈Σ1 [Lh,Lk,L(hk)−1 ] = 0, so by hypothesis we must have

L1 =
∑

1∈Σ1∩Λ1

A1−1L1 =
∑

1∈Σ1
I , 1

−1∈Λ1

A1−1L1 ⊕

∑
1−1∈Σc

I , 1∈Λ
1

A1L1−1 .

For direct character, take
0 , x ∈

∑
1∈Σ1

I , 1
−1∈Λ1

A1−1L1 ∩

∑
1−1∈Σc

I , 1∈Λ
1

A1L1−1 .

Taking into account Zρ(L) = {0} and L is graded, there exist 0 , y ∈ Lh, 0 , z ∈ Lk for some h, k ∈ Σ1 such
that [x, y, z] , 0, being then Lh ∈ I ∩ I′ = {0}, a contradiction. Hence the sum is direct. Taking into account
the above observation and Eq. (14) we have

L = I ⊕ I′.

Note that, one can proceed with I and I′ as we did for L in the first case of the proof to conclude that I and
I′ are graded simple ideals of L,which completes the proof of the proposition.

In a similar way to Proposition 5.5, one can prove the next result;

Proposition 5.6. Let (L,A) be a tight graded 3-Lie-Rinehart algebra of maximal length and G-multiplicative. If all
the elements in Λ1 are Λ1-connected, then either A is gr-simple or A = J ⊕ J′ where J and J′ are graded simple ideals
of A.

Now, we are ready to state our main result;

Theorem 5.7. Let (L,A) be a tight graded 3-Lie-Rinehart algebra of maximal length, G-multiplicative, with sym-
metric G−supports Σ1 and Λ1 in such a way that Σ1 and Λ1 have all their elements Σ1-connected and Λ1-connected,
respectively.Then

L =
⊕

i∈I

Li, and A =
⊕

j∈J

A j,

where any Li is a graded simple ideal of L having all of its elements in G-support Σ1-connected and such that
[Li1 ,Li2 ,Li3 ] = 0 for any i1, i2, i3 ∈ I different from each other, and any A j is a graded simple ideal of A satisfying
A jAl = 0 for any l ∈ J such that j , l.Moreover, both decompositions satisfy that for any r ∈ I there exists a unique
r̄ ∈ J such that

Ar̄Lr , 0.

Fortheremore, any (Lr,Ar̄, ρ|Li×Li ) is a graded 3-Lie-Rinehart algebra.

Proof. By Theorem 4.12 we can write

L =
⊕

[1]∈Σ1/∼Σ1

I[1],
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with any I[1] a graded ideal of L, being each I[1] a graded 3-Lie-Rinehart algebra having as G-support [1].
Also we can write A as the direct sum of the graded ideals

A =
⊕

[λ]∈Λ1/≈Λ1

A[λ],

in such a way that anyA[λ] has as G-support [λ], for any [1] ∈ Σ1/ ∼Σ1 there exists a unique [λ] ∈ Λ1/ ≈Λ1

such thatA[λ]I[1] , 0 and being (I[1],A[λ]) a graded 3-Lie-Rinehart algebra.
Now, by applying Proposition 5.5 and Proposition 5.6 to each (I[1],A[λ]), in a similar manner to observe

that the Σ1-multiplicativity of (I[1],A[λ]), that is, (I[1],A[λ]) is Σ1-multiplicative as consequence of the Σ1-
multiplicativity of (L,A). Clearly (I[1],A[λ]) is of maximal length. We also have (I[1],A[λ]) is tight, as
consequence of tightness of (L,A) (see Proposition 5.5 and Proposition 5.6).

Next, we can apply Proposition 5.5 and Proposition 5.6 to each (I[1],A[λ]) so as to conclude that any I[1]
is either graded simple or the direct sum of graded simple ideals I[1] = P ⊕ Q, and that any A[λ] is either
graded simple or the direct sum of graded simple idealsA[λ] = R ⊕ S. From here, it is clear that by writing
Li = P⊕Q andA j = R⊕ S ifLi orA j are not graded simple. Then Theorem 4.12 allows as to assert that the
resulting decomposition satisfies the assertions of the theorem.
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