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Relating the annihilation number and the 2-domination number for
unicyclic graphs

Xinying Hua?

#School of Mathematics, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, PR China

Abstract. The 2-domination number y,(G) of a graph G is the minimum cardinality of a set S C V(G) such
that every vertex from V(G) \ S is adjacent to at least two vertices in S. The annihilation number a(G) is the
largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most
the number of its edges. It was conjectured that y,(G) < a(G) +1 holds for every non-trivial connected graph
G. The conjecture was earlier confirmed for graphs of minimum degree 3, trees, block graphs and some
bipartite cacti. However, a class of cacti were found as counterexample graphs recently by Yue et al. [9] to

the above conjecture. In this paper, we consider the above conjecture from the positive side and prove that
this conjecture holds for all unicyclic graphs.

1. Introduction

Given a graph G, we denote by V(G) and E(G) the set of its vertices and edges, respectively. Also, we
let n(G) = |V(G)| and m(G) = |E(G)|. The open neighbourhood of a vertex v € V(G) is N¢g(v) = {uluv € E(G)}.
We denote the degree of a vertex v by dg(v) = INg(v)|. For a pair of vertices u,v € V(G), the distance dc(u, v)
between u and v is the length of a shortest (1, v)-path in G. A path P = x1x;...x, (p 2 3) in a graph G is said
to be a pendent path if dg(x1) = 1, dg(x2) = --- = dg(xp-1) = 2 and dg(x,) > 3. In particular, when p = 2, P
is said to be a pendent edge and x; is said to be a leaf or pendent vertex. The above x; is said to be a support
vertex. Further, if uvw is a 3-vertex path with dg(1) = 1 = dg(w) and dg(v) > 2, then v is said to be a strong
support vertex. A vertex of degree at least 3 is called a branch vertex. If X € V(G), then G — X denotes the
graph obtained from G by deleting all vertices in X and all edges incident with them. A connected graph is
unicyclic if it contains exactly one cycle. A unicyclic graph is a sun if each vertex on the cycle is connected
to exactly one leaf.

For a graph G of order n and a positive integer k(< n — 1), a vertex set D C V(G) is called a k-dominating
set if each vertex not in D has at least k neighbors in D. The k-domination number yi(G) is the minimum
cardinality of such a set D. A k-dominating set of cardinality y4(G) is called a yi-set of G. A 1-dominating
set is just the well-studied dominating set. The notion of the k-dominating set was introduced by Fink and
Jacobson [5], and a survey on k-dominating set can be found in [2].
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For avertexset S C V(G), we define }(S, G) = Y. dg(v). Then S is an annihilation set of Gif ) (S, G) < m(G).
veS
Let v1,v,...,v, be an ordering of the vertices of G such that d¢(v1) < dg(v2) < - -+ < dg(v,). The annihilation

k
number a(G), firstly introduced by Pepper in [8], is the largest integer k such that }. dc(v;) < m(G). Further,

i=1
S is an optimal annihilation set if |S| = a(G) and max{dg(v)lv € S} < min{d(u)lu € V(G)\S}.
A conjecture relating the 2-domination number and annihilation number of a graph reads as follows.

Conjecture 1.1 ([3, 4]). If G is a non-trivial connected graph, then y»(G) < a(G) + 1.

From the above definition of annihilation set, every graph satisfies a(G) > | 5]. Also, it was observed
in [1] that »(G) < [ 5] for 6(G) = 3. Hence, if 6(G) > 3, then Conjecture 1.1 holds. It remains for us to study
this conjecture for connected graphs with 6(G) = 1 or 2. Inspired by this, Desormeaux et al. [4] studied
Conjecture 1.1 for trees, and their result is stated as follows.

Theorem 1.2 ([4]). If G is a non-trivial tree, then y,>(G) < a(G) + 1.

It is interesting to note that Theorem 1.2 was re-proven by Lyle [7] by employing a new method in 2017.
Later, the result of Theorem 1.2 was extended to the family of block graphs by Jakovac [6]. More recently,
Yue et al. [9] disproved Conjecture 1.1 by giving a class of counterexample cacti with leaves. Nevertheless,
it still makes sense to consider some special graph family that satisfy Conjecture 1.1. Along this line, Yue et
al. [9] proved Conjecture 1.1 holds for a class of bipartite cacti. In this paper, we investigate Conjecture 1.1
for unicyclic graphs, and we obtain the following result.

Theorem 1.3. Let G be a unicyclic graph. Then y,(G) < a(G) + 1.

2. Preliminary results

In this section, we introduce two observations and a critical lemma.
We begin with the following two observations, which can be deduced from the definitions of 2-
dominating set and optimal annihilation set immediately.

Observation 1. Any 2-dominating set of a graph G contains all leaves.
Observation 2 ([9]). Any optimal annihilation set of a connected graph G of order n(> 3) contains all leaves of G.

For a unicyclic graph G with C; = uqu, ... ueu; being its unique cycle, we denote by Ty, the component
containing u; in G — {uj-1, uj1} (If j =1, we set uj—1 = ug and if j = ¢, then u;,1 = u3). Such a T, is also said
to be a subtree of G, rooted at u;.

Definition 2.1. The subdivided star Ss(Ki s+¢, 4)(s > 1, t > 0) is the graph on 2s+t+1 vertices which is constructed
from the star Ky s+t (with u being the centre) by subdividing any s edges exactly once. In particular, when s = 1
and t = 0, Ss(K1 544, ) = P3 with u being one end-vertex. When s = 1 and t = 1, Sg(Ky 54+, 1) = Py with u being a
2-degree vertex. When s = 2 and t = 0, S¢(Ky 51¢, u) = Ps with u being the central vertex. When s +t > 3, u is the
maximum degree vertex of Ss(Ky s4t, 1).

Lemma 2.2. Let G be a unicyclic graph with the unique cycle being C. If C contains a vertex u such that T, is a
subdivided star Ss(K1 s+, u)(s > 2), then y2(G) < a(G) + 1.

Proof. For eachi € [s], let uv/v; be a pendent path attached to u and for each j € [t], let w; be the leaf adjacent
touift > 1,seeFigure 1. Let G’ = G—V/(54(Kj s+, 4)). Then G’ is a non-trivial tree with m(G’) = m(G)—-2s—t-2.
By Theorem 1.2, we have y,(G’) < a(G’) + 1. Let D’ be a y,-set of G’. From Figure 1 and the definition of
2-dominating set, it can be seen that D = D" U{u, vy, 0y, ...,0s, w1, ..., W} is a 2-dominating set of G, yielding
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that y»(G) < |D| = |D’| +s+t+1 =y2(G') + s+t + 1. Suppose that S’ is an optimal annihilation set of G’ and
letS=5"U{v},0,...,05,w1,..., wi}. Ass >2,

Y(5.G)= Y (8,G) +da(®}) +dg(on) + - + dg(vs) +dg(wr) + -+ + do(w)

S(Z(S’,G’)+2)+2+s+t
<m(G)+4+s+t
<m(G)—s+2

< m(G).

Soa(G) = |S| = |S'|+s+t+1 = a(G')+s+t+1. This gives y»(G) < y2(G')+s+t+1 < a(G)+s+t+2 <a(G)+1. O

Figure 1: The structure of G in Lemma 2.2, where G is a unicyclic subgraph of G.

3. Proof of Theorem 1.3
In this section we prove Theorem 1.3.

Proof. We proceed by induction on n = n(G). If n = 3, then G = C3 and y2(C3) = 2 = a(C3) + 1. So, we let
n > 4 and assume that for every connected unicyclic graph G’ of order n” < n, we have y,(G’) < a(G’) + 1.
If G is a cycle, it’s easy to check that the statement is true. Thus, we may suppose that G contains one
cycle as a proper subgraph. Define £(G) = {v € V(G)|dg(v) = 1}. Since G is a unicyclic graph not isomorphic
to a cycle, L(G) # 0. Let C; be the unique cycle in G. For each u € V(C;) with dg(u) > 3, we define
h(u) = max{dg(u, x)|x € L(T,)} and h(G) = max{h(u)lu € V(C,) and dg(u) > 3}.
We first prove the following claim.

Claim 3.1. Let u be a branch vertex on V(Cy) such that T,, has a leaf v1 with dg(v1, u) = h(G). Assume that v, is the
unique neighbour of vy and v, is a strong support vertex. Then y»(G) < a(G) + 1.

Proof. As v, is a strong support vertex, v, has at least two leaf-neighbours. Let vq,z1,...,2(t > 1) be
leaf-neighbours of v, and G’ = G — {v1,v2, 21, . . ., z¢}. Then m(G’) = m(G) — dg(v2). Obviously, G’ has at least
two vertices. Let D’ be a y;-set of G’. Then D = D’ U {01, 21, ..., z;} is a 2-dominating set of G, which implies
72(G) £ ID| = |D’'|+t+1 = y2(G")+t+1. Let S’ be an optimal annihilation set of G’ and S = S’ U{vy,z1, ..., z).
Then

Y (5,6) =) (8,6) +do(en) +de(z1) + -+ + do(z1)

<().(8,G) +dgo) —t-1)+t+1
< m(G') +dg(v2)
< m(G)/
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yielding that a(G) > |S| = |S'| +t+1 = a(G’) + t + 1. If G’ is a non-trivial tree, then by Theorem 1.2,
72(G") £ a(G’) + 1. If G’ is a unicyclic graph, then by the induction hypothesis, y2(G’) < a(G’) + 1. Therefore,
Y2(G) £y2(G) +t+1<a(G)+t+2<a(G)+1. O

We will complete the proof by considering the following cases.
Case 1. h(G) =1.

Since h(G) = 1, every vertex outside of C; is a leaf attached to some vertex of C;. Clearly, each vertex of
C, is adjacent to at most one leaf. For otherwise, by Claim 3.1, we have y»(G) < a(G) + 1, as claimed. So, G
is a sun or a unicyclic graph obtained from the sun by removing some leaves.

First, we assume that Gis asun. Let V(C;) = {u3, up, ..., u,} and w; is the leaf adjacent to u; for each i € [£].
Clearly, m(G) = 2¢. Take D = {u1,uy, ..., Uzps1, W1, Wo,..., we} (M € [‘)5—3, 5;31]). Then D is a yp-set of G, and
hence y»(G) < |'§'|+€. SetS = {ul,uz,...,u[g]_l, wy, W, ..., wel. ThenY (S, G) = (|'§'|—1)><3+€ <20-1 <m(G),
yielding that a(G) > |S| = |'§'| +{—-1.50,y2(G) <a(G) + 1.

Second, we assume that G is not a sun. There exists a 3-degree vertex, say w, on C, that has a 2-degree
neighbour, say v, on C;. Denote the pendent vertex adjacent to w with w;. Set G’ = G — {w, w;}. Then
m(G’) = m(G) — 3. It follows from Theorem 1.2 that y>(G’) < a(G’) + 1, since G’ is a non-trivial tree. Let D’ be
a yp-set of G’ and S’ be an optimal annihilation set of G’. Since d¢/(v) = 1, by Observations 1 and 2, we have
veD' andv € S'. Then D = D’ U{w,}is a 2-dominating set of G and hence y>(G) < |D| = [D’|+1 = y»(G") +1.
Also, we have Y (§',G) < Y.(S’,G’) + 2. Take S = S’ U {w}. Then }.(S,G) = Y.(S', G) + dg(wq) < (Z(S’, G)+

2) +1 <m(G’) + 3 = m(G) and hence a(G) > |S| = |S’| + 1 = a(G’) + 1. Thus,
Y2(G) £y2(G)+1<a(G')+2 <a(G) + 1.
Case 2. h(G) = 2.

Assume that there exists a branch vertex u on C; such that T, contains a leaf v; satisfying thatdg(v1, u) = 2.
Let v, be the unique neighbour of v. If dg(v;) > 3, then v, is a strong support vertex. By Claim 3.1, we have
72(G) < a(G) + 1. So, we may assume that dg(v,) = 2. By the same reason, if NG(M)\(V(C[) u {02}) # (, then
for each x € Ng(u)\(V(Cr) U {0a}), we have dg(x) = 1 or dg(x) = 2. So, Ty = S(Keur, u)(s 2 1, 2 0). If s 2 2,
then we conclude that y,(G) < a(G) + 1 by Lemma 2.2. So, we assume thats = 1 and t > 0. Assume that
V(S1(Ki,146, 1)) = {1, 01,02, y1, ..., y:}, where u is the vertex defined as in Defintion 2.1, uv,v; is a pendent
pathand yq,- -+, y: are leaves attached to u if > 1.

We consider the following subcases.

Subcase 2.1. There exists at least a vertex of degree 2, say v, adjacent to u on Cy.

v

V2 Y1 Yt

U1
(a) (b)

Figure 2: The local structure of G when u has a 2-degree neighbour v on C,.
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Let N¢(v)\{u} = {w}. First, we assume that d¢(w) = 2. Then G can be viewed as the graph shown in Figure
2(a). If £ > 4, wesetG' =G — (V(Sl(KMH, u))u {v}). Then G’ is a non-trivial tree and m(G’) = m(G) — (¢t + 5).
According to Theorem 1.2, we have 7,(G’) < a(G’) + 1. Let D’ be a y;-set of G’ and S’ be an optimal
annihilation set of G’. Since dg/(w) = 1, we have w € D’ and w € S’ by Observations 1 and 2. Then
D = D' U{u,v1,11,...,y:} is a 2-dominating set of G. So y2(G) < [D| = |D’| + 4+ 2 = y,(G’) + t + 2. Take
S=S5U{v,v2,y1,..., ). Then Y (S, G) = Y (S, G) +dc(v1) + dg(v2) + da(y1) + - - - +da(yr) < (Z(S’, G)+ 2) +
(t+3) <m(G') + t +5 = m(G), which implies a(G) > |S| = |S’| + t + 2 = a(G’) + t + 2. Therefore,

12(G) £y2(G)+t+2 <a(G) +t+3 <a(G) + 1.

If £ =3, then m(G) =t + 5. Take D = {u,v,v1, 11, ..., y:} and hence D is a minimum 2-dominating set of G.
Then y»(G) < t+3. Take S = {v,v1,v2, y1,..., ¥i}. Then },(S,G) = t+5 = m(G) and we have a(G) = |S| =t + 3.
So, 2(G) <t +3 <a(G) <a(G) + 1.

Second, we assume that dg(w) > 3 and i(w) = 1. Then G can be viewed as the graph shown in Figure 2(b).
Let Ng(w)\V(Ce) = {wy,...,w} (p 2 1).

Suppose first thatp = 1. If £ > 4, weset G’ = G - (V(Sl(Kl,Ht, u)) U f{o, wl}). Obviously, G’ is a non-trivial
tree and m(G’) = m(G) — (t + 6). Let D’ be a y»-set of G’ and S’ be an optimal annihilation set of G’. Since
do(w) = 1, we obtain w € D’ and w € S’ by Observations 1 and 2. Let D = D’ U {u,v1,y1,..., Y, w1}
and hence D is a 2-dominating set of G. Then y»2(G) < D] = [D’|+t+3 = y(G') +t+3. Set S =
(S'\Mw)) U v, v1,v2, 11, ..., yr, wi}. Since ) (S'\{w}, G) < Y.(S’\{w}, G’) + 1, we have }(S,G) = Y.(S'\{w},G) +
dc(v) +dc(v1) +dg(v2) +dc(y1) - - - +dg(ye) +dg(wr) < (Z(S'\{w}/ G')+ 1) +(t+6)=2(8,G)—de(w)+t+7 <
m(G’) +t + 6 = m(G) and we have a(G) > |S| = |S'| + t + 3 = a(G’) + t + 3. Since G’ is a non-trivial tree, by
Theorem 1.2, we have y2(G’) < a(G’) + 1, and hence

12(G) £y2(G)+t+3<a(G) +t+4 <a(G) + 1.

If £ = 3, then m(G) =t + 6. Take D = {u,v,w1,v1, Y1, ...,y and hence D is a y,-set of G. Then y»(G) < t + 4.
Take S = {v, w1, v1,v2, ¥1,..., yi}. Then }(S,G) =t + 6 = m(G) and we have a(G) > |S| = t + 4. Accordingly,
72(G) £ t+4<a(G) <a(G) + 1.

Now, letp > 2. Set G’ = G — {w, w1, wy, ..., wp}. Then G’ is a non-trivial tree and m(G’) = m(G) —p — 2.
Let D’ be a y;-set of G’ and S’ be an optimal annihilation set of G’. Then D = D" U {wy, ws, ..., wy} is a
2-dominating set of G, yielding that y2(G) < |D| = [D'[ +p = y2(G’) + p. Take S = §" U {wy, wy, ..., wp}.
Then Y(S,G) = Y.(S',G) + dg(w1) + dc(wz) + -+ + dg(w,) < (L(S,G) +2) +p < m(G') + p +2 = m(G). So,
a(G) 2 |S| = S| + p = a(G’) + p. As G’ is a non-trivial tree, we have y,(G’) < a(G’) + 1 by Theorem 1.2.
Therefore,

72(G) < y2(G)+p<alG)+p+1<a(G)+ 1.

Finally, let dg(w) > 3 and h(w) = 2. By Claim 3.1, it suffices to prove Ty, = Sq, (Ki6,+1,, W) (51 > 1,¢1 2 0). If
s1 > 2, then by Lemma 2.2 we have y,(G) < a(G)+1. So, we assume thats; = 1. Now, G can be viewed as the
graph shown in Figure 2(c). First, we assume that £ > 4. Let G’ = G—(V(Sl(KLHt, u))UV(S1(K1,1+,1,w))U{v}).
Then m(G') = m(G) — (t + t1 + 8). If n’ = |G| = 2, then G’ is a non-trivial tree. Let D’ be a y»-set of G’. Then
D =D"U{u, w, v1, 03, Y1, Y, Yy, - .,ygl} isa 2-dominating set of G. Therefore, y>(G) < |D| = |D’|+t+t1+4 =
y2(G’) +t + t1 + 4. Let S’ be an optimal annihilation set of G’, we have },(5,G) < },(S’,G’) + 2. Take
S =5'Uto1,v},02,9), Y1, Y Yy, -+, Yy ) Then Y(S,G) < (Z(S’, G’)+2)+(t+t1+6) < m(G')+t+t1+8 = m(G)
and we have a(G) > |S| = S|+t + t; + 4 = a(G’) + t + t; + 4. Since G’ is a non-trivial tree, it follows from
Theorem 1.2 that y»(G’") < a(G’) + 1. Hence,

Y2(G) £ y2(G)+t+ 1 +4<a(G)+t+H +5<a(G) + 1.

Ifn =|G'|=1,then{ =4 and m(G) =t + t; + 8. If { = 3, then m(G) =t + ; + 7. Upon the case whenn’ =1
or{ =3, wetake D = {u, w, v1, v}, y1,---, Y, Yy, -+, ygl} and hence D is a minimum 2-dominating set of G.
Then y»(G) < t+t; +4. Take S = {01,0],02, 05, Y1,---, Y, Y7, - -+ ,ygl}. Then Y (S,G) = t+t; + 6 < m(G) and we
have a(G) > |S| = t + t; + 4. Therefore, y,(G) <t + 1t +4 <a(G) <a(G) + 1.
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Subcase 2.2. The vertex u has a neighbour v on V(Cy) such that h(v) = 1 and Ng(v)\V(C¢) = {z1,--- , 24} (g 2 1).

Figure 3: The local structure of G in Subcases 2.2 and 2.3, respectively.

In this subcase, G can be viewed as the graph shown in the Figure 3(a). First, we assume that g = 1.
Take G’ =G - (V(Sl(KLHt, u)) U {o, zl}) and m(G’) = m(G) — (t + 6). If n’ = |G’| = 1, then G is identical to the
graph as shown in Figure 2(b) for the case of £ = 3 and p = 1. So, y2(G) < a(G) + 1 by our previous proof
in Subcase 2.1. Now, we suppose that n’ > 2. Thus, G’ is a non-trivial tree. Let D’ be a y,-set of G’. Then
D =D'U{u,v1,y1,..., Y 21} is a2-dominating set of G, and hence y»(G) < |D| = |D’|+t+3 = y»(G’) +t+3. Let
S’ be an optimal annihilation set of G’ and S = S’ U{v1,v2, y1,..., Y1, z1}. Then Y.(S,G) = Y.(S/,G) + (t +4) <
(Z(S’, G)+ 2) +(t+4) <m(G')+t+6 =m(G) and we have a(G) > |S| = |S'| +t + 3 = a(G") + t + 3. Since G’ is
a non-trivial tree, we obtain y»(G’) < a(G’) + 1 according to Theorem 1.2. Thus,

12(G) £y2(G)+t+3<a(G) +t+4 <a(G) + 1.

Now, let g > 2. Set G" = G - {v,21,2,...,24}. Then G’ is a non-trivial tree and m(G’) = m(G) —q — 2.
Let D’ be a ys-set of G'. Then D = D’ U {z1,2y,...,z,} is a 2-dominating set of G, yielding that y,(G) <
ID| = ID’| + g = 72(G’) + q. Let S’ be an optimal annihilation set of G’ and let S = §" U {z,2,...,2,}.
Then Y(S,G) = LS, G) + de(z1) + do(z2) + -+ + da(zg) < (L(S,G) +2) + 9 < m(G') + 9 +2 = m(G). So,
a(G) 2 |S| = |S'| + q = a(G’) + g. As G’ is a non-trivial tree, we have y2(G") < a(G’) + 1 by Theorem 1.2. Thus,

Y2(G) £y2(G)+qg<a(G)+g+1<a(G) + 1.
Subcase 2.3. The vertex u has a neighbour v € V(Cy) such that h(v) = 2.

By Claim 3.1, it suffices to prove that T, = S,,(Kis,+t,,7)(S2 = 1,f, > 0). If s, > 2, then by Lemma 2.2,
we have y,(G) < a(G) + 1. So, we assume that s, = 1. Now, G can be viewed as the graph shown in
Figure 3(b). Let G’ = G - (V(Sl(Kl,Ht, 1)) U (V(S1(K1,1+4t,, v))\{v})). Then G’ is a tree with at least two vertices
and m(G’) = m(G) — (t + t, + 6). Let D’ be a y»-set of G’ and S’ be an optimal annihilation set of G’. It follows
from Observations 1 and 2 that v belongs to any y,-set and optimal annihilation set of G’ since it is a leaf
in G’. Now welet D = D' U{u, v1, 0}, y1,---, Y, Y3, - -, yiz} and hence D is a 2-dominating set of G. Then
72(G) < ID| = [ID'|+t+ty +3 = y2(G') +t + £, + 3. Take S = (S'\{v}) U {v1,0],02,05, y1,---, Y1, yi,...,ygz}.
As Y (S'\[0},G') = L(S',G) —de(v) = L(S',G) = 1, L(S'\[0},G) < 1(S"\{0},G') +1 = 2.(§,G") < m(G).
So, X.(S,G) = L(S'\(0), G) + do(01) + do(v]) + do(v2) + do(@}) + do(ys) + -+ do(ye) +do(y) + -+ do(y],) <
m(G’) + t + t, + 6 = m(G). Then we have a(G) > |S| = |5'| + t + t, + 3 = a(G’) + t + t, + 3. By Theorem 1.2, we
have y,(G’) < a(G’) + 1 since G’ is a non-trivial tree. Accordingly,

Y2(G) £ y2(G)+t+t+3<a(G)+t+h+4<a(G) +1.
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Case 3. h(G) > 3.

Assume that there is a branch vertex u € V(Cy) such that T,, contains a leaf v; satisfying that dg(u, v1) =
h(G). Let P = v1v,03 ... u be the shortest path connecting v; and u. Since h(G) > 3, we have u # v; for each
i € [3]. If dg(v2) > 3, then v, is a strong support vertex. By Claim 3.1, y2(G) < a(G) + 1. So, we assume that
dg(v2) = 2. Assume that v; have s leaf-neighbors.

If s > 1, we denote these leaf-neighbors of v3 with x1, x5, ..., %s. Let 05, = Ng(v3)\{v4, x1, %2, ..., xs}. Then
|Ov,] 2 1, a5 3 € Oy,. If |04,] = 2, let Oy, \ {02} = {y1,. .., y:}. Each vertex in 8,, must be a support vertex since
dg(u,v1) = h(G). By Claim 3.1, it suffices to prove that d(y;) = 2 for each i € [t]. Let z; be the only child of y;
for each i € [t]. It is clear that dg(v3) = s + t + 2, since the subtree T, is rooted at u and u # vs.

Now, let G’ = G—{v1,v2, X1, %2, ..., X5, Y1, .-, Y, 21, , Z¢}. Som(G") = m(G)—s—2t-2and dg (v3) = 1. By
Observations 1 and 2, v3 belongs to any minimum 2-dominating set and optimal annihilation set of G’. Let
D’ be a y,-set of G’ and S’ be an optimal annihilation set of G’. Hence, D = D’ U {v1,x1, X2, ..., %5, 21, ..., 2}
is a 2-dominating set of G, which gives that y,(G) < |D| = [D’|+s+t+1 = y»(G') +s+t+ 1. Let
S= (S'\{Ug}) U {01, 0V2,X1,X2, ..., Xs,2Z7,+- ,Zt}. Then Z(S, G) = Z(S', G) —dG(U3) +dc(’01) +dG(Z)2) +dc(x1) +--+
do(xs) +dg(z1) + - +dg(z) < (XS, G)+dg(v3)—1)—dg(vs) +s+t+3 <m(G')+s+t+2 =m(G)—t < m(G).
Soa(G) 2 |S| =|S'|+s+t+1=a(G)+s+t+1. Obviously, G’ is a unicyclic graph of order n’ < n. By the
induction hypothesis, y,(G’) < a(G’) + 1. Then

72(G) £ y2(G)+s+t+1<a(G)+s+t+2<a(G)+ 1.

This completes the proof. [
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