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Abstract. In this paper, we establish the existence and uniqueness of strict fixed point for an asymptotically
regular multivalued mapping in a metric space. We also study the Ulam-Hyers stability, well-posedness
and data dependence of the associated strict fixed point problem. We give an example to illustrate our
results. Our work extends and complements important results existing in the literature.

1. Introduction

Let (X, d) be a metric space. We denote by P(X), B(X) and CB(X) the family of nonempty subsets of X,
the family of bounded subsets of X and the family of closed and bounded subsets of X, respectively. For
B,G ⊂ X, we adopt the following notations and definitions:

• The distance from m ∈ X to B;
d(m,B) := inf{d(m,w) : w ∈ B}.

• The diameter of B and G;
δ(B,G) := sup{d(m,w) : m ∈ B,w ∈ G}.

• The Hausdorff metric on CB(X);

H(B,G) := max{sup
m∈B

d(m,G), sup
q∈G

d(q,B)}.

For a multivalued mapping F : X→ 2X, we say m ∈ X is (i) a fixed point of F if m ∈ Fm; (ii) a strict fixed
point of F if Fm = {m}. A strict fixed point is also referred to a stationary point [14] or an endpoint [3]. By
Fix(F) and SFix(F), we mean the set of fixed points of F and the set of strict fixed points of F, respectively.
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Metric fixed point theory of a multivalued mapping was initiated by Markin [16] and Nadler [17].
Nadler, for example, established the existence of fixed point for a multivalued contraction. The existence
of a fixed point does not guarantee the existence of a strict fixed point. Therefore, several authors (see [2],
[3], [13], [14]) have studied the existence of strict fixed point for multivalued mappings.

In 1972, Reich proved the following strict fixed point result:

Theorem 1.1 ([23], [13]). Let (X, d) be a complete metric space and F : X → B(X) be a multivalued mapping.
Suppose there exists M ≥ 0 and K ≥ 0 such that M + 2K < 1 and for each m,w ∈ X,

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (1)

Then F has a unique strict fixed point.

Recently, Górnicki[12] generalized the works of Geraghty [11] and Boyd and Wong[6] as follows:

Theorem 1.2. Let (X, d) be complete metric space and F : X → X be an asymptotically regular mapping. Suppose
there exists φ ∈ J(See Definition 3.1) and K ∈ [0,∞) such that for each m,w ∈ X,

d(Fm,Fw) ≤ φ(d(m,w)) + K[d(m,Fm) + d(w,Fw)]. (2)

If F is orbitally continuous or k-continuous, then F has a unique fixed point z ∈ X. Moreover, for each w ∈ X,
Fnw→ z as n→∞.

Motivated by the results of Górnicki [12], Bisht [4], and Reich [23], we study the strict fixed point problem
of a multivalued asymptotically regular mapping in a metric space. We also investigate the Ulam-Hyers
stability, well-posedness and data dependence for an important consequence of our results.

2. Preliminaries

In this section, we state some needed definitions and lemmas.

Definition 2.1. Let F : X→ P(X) be a multivalued mapping. For any w0 ∈ X, {wn} is called orbital sequence of F if
wn+1 ∈ Fwn for all n = 0, 1, 2, . . ..

Browder and Petryshyn [5] introduced the concept of asymptotic regularity for single-valued mappings.
This notion is significant since several contractive mappings are asymptotically regular (see [6], [11]). Abbas
et al. [1] studied single-valued asymptotically regular mappings in complex-valued metric spaces. The
asymptotic regularity of multivalued mappings has been studied in [10], [20], [24] and [27].

Definition 2.2 ([24]). A multivalued mapping F : X→ CB(X) is said to be asymptotically regular at w0 if for each
sequence {wn} such that wn ∈ Fwn−1, we have lim

n→∞
d(wn,wn+1) = 0.

F is called asymptotically regular multivalued mapping if it is asymptotically regular at each point of X.

Example 2.3. Every multivalued contraction F : X → CB(X) with a strict fixed point is asymptotically regular as
follows:

Let p ∈ X be a strict fixed point of F. Then for any orbital sequence {wn},

d(wn,wn+1) ≤ d(wn, p) + d(wn+1, p)
= d(wn,Fp) + d(wn+1,Fp)
≤ H(Fwn−1,Fp) +H(Fwn,Fp)
≤ Md(wn−1, p) +Md(wn, p)
...

≤ Mnd(w0, p) +Mn+1d(w0, p).

Taking limit as n→∞, we get d(wn,wn+1)→ 0. Hence F is asymptotically regular.
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Following Deimling [9] and Ćirić [7], we have the forms of continuity of a multivalued mapping.

Definition 2.4. Let (X, d) be a metric space, F : X→ CB(X) a multivalued mapping and z ∈ X. We say

1. F is Hausdorff-continuous(or simply H-continuous) if H(Fwn,Fz) → 0 whenever a sequence {wn} in X
converges to z.

2. F is orbital H-continuous if H(Fwn,Fz)→ 0 whenever any orbital sequence {wn} in X converges to z.
Clearly, H-continuity implies orbital H-continuity.

Lemma 2.5 ([25]). Let B be a nonempty bounded subset of X and 0 < p < 1 be given. Then for every x ∈ X, there
exists u ∈ B such that

d(x,u) ≥ pδ(x,B).

Lemma 2.6 ([26]). Let F : X→ CB(X) a multivalued mapping. Let m,w ∈ X. If w′ ∈ Fw, then we have

d(m,w′) ≤ δ(m,Gm) +H(Fm,Fw).

3. Main Results

Throughout this section, we assume that X is a complete metric space unless stated otherwise.
First, we define some classes of mappings.

Definition 3.1.

1. Let S be the family of functions α : [0,∞)→ [0, 1) satisfying the condition α(tn)→ 1 implies tn → 0.
2. Let J be the family of functions φ : [0,∞)→ [0,∞) satisfying the conditions: (i) φ(t) < t for all t > 0, (ii) φ

is upper semi-continuous i.e. tn → t ≥ 0 implies lim sup
n→∞

φ(tn) ≤ φ(t).

Theorem 3.2. Let F : X→ CB(X) be an asymptotically regular mapping. Suppose there existsφ ∈ J and K ∈ [0,∞)
such that for each m,w ∈ X,

δ(Fm,Fw) ≤ φ(d(m,w)) + K[δ(m,Fm) + δ(w,Fw)]. (3)

If F is an orbitally H-continuous multivalued mapping, then F has a unique strict fixed point.

Proof. Let θ > 1. Using Lemma 2.4, we can define a single-valued mapping f of X into itself such that
f m ∈ Fm for all m ∈ X, and

δ(m,Fm) ≤ θd(m, f m) for all m ∈ X.

Then, (3.1) implies

d( f m, f w) ≤ δ(Fm,Fw)
≤ φ(d(m,w)) + K[δ(m,Fm) + δ(w,Fw)]
≤ φ(d(m,w)) + Kθ[d(m, f m) + d(w, f w)]

for all m,w ∈ X. For any w0 ∈ X, define wn+1 = f wn. Then wn+1 = f wn ∈ Fwn, and wn+1 is an orbital sequence
of F. It follows from the asymptotic regularity of F that

lim
n→∞

d(wn,wn+1) = 0. (4)

Next, we show that {wn} is a Cauchy sequence. Suppose on the contrary that {wn} is not Cauchy. Then there
exists an ϵ > 0 and sequences of integers {m(k)}, {n(k)} with m(k) > n(k) ≥ k such that for k = 1, 2, . . . , we
have

d(wm(k),wn(k)) ≥ ϵ. (5)
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By choosing m(k) to be the smallest number exceeding n(k) for which (3.3) holds, we may assume that
d(wm(k)−1,wn(k)) < ϵ. Now,

ϵ ≤ d(wm(k),wn(k)) ≤ d(wm(k),wm(k)−1) + d(wm(k)−1,wn(k))
< d(wm(k),wm(k)−1) + ϵ

Letting k→∞, it follows by asymptotic regularity of F that

lim
k→∞

d(wm(k),wn(k)) = ϵ. (6)

Now,

d(wn,wm) ≤ d(wn,wn+1) + d(wn+1,wm+1) + d(wm+1,wm)
= d(wn,wn+1) + d( f wn, f wm) + d(wm+1,wm)
≤ d(wn,wn+1) + φ(d(wn,wm)) + d(wm+1,wm)
+Kθ[d(wn, f wn) + d(wm, f wm)]

= φ(d(wn,wm)) + (Kθ + 1)[d(wn,wn+1) + d(wm,wm+1)].

Taking limit as k→∞, it follows from upper semi-continuity of φ, (3.1) and (3.4) that

ϵ = lim
k→∞

d(wn(k),wm(k)) ≤ lim sup
k→∞

φ(d(wn(k),wm(k))) ≤ φ(ϵ) < ϵ.

This is a contradiction. Hence {wn} is a Cauchy sequence. Since X is a complete metric space, {wn} converges
to c ∈ X.

Using Lemma 2.5, we have

δ(c,Fc) ≤ d(c,wn) + δ(wn,Fwn) +H(Fwn,Fc)
≤ d(c,wn) + θd(wn,wn+1) +H(Fwn,Fc).

(7)

Thus, we get from (3.2), (3.5) and orbital continuity of F that δ(c,Fc) = 0. Hence, c is a strict fixed point of F.
Suppose F has a strict fixed point v other than c. Then, we have

d(v, c) = δ(Fv,Fc) ≤ φ(d(v, c)) + K[δ(v,Fv) + δ(c,Fc)]
< d(v, c).

This is a contradiction. Hence F has a unique strict fixed point.

Theorem 3.3. Let F : X→ CB(X) be an asymptotically regular mapping. Suppose there exists α ∈ S and K ∈ [0,∞)
such that for each m,w ∈ X,

δ(Fm,Fw) ≤ α(d(m,w))d(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (8)

If F is an orbitally H-continuous multivalued mapping, then F has a unique strict fixed point.

Proof. Let θ > 1. Using similar reasoning as in the proof of Theorem 3.2, we can define a single-valued
mapping f and sequence {wn} such that

d( f m, f w) ≤ α(d(m,w))d(m,w) + Kθ[d(m, f m) + d(w, f w)]

for all m,w ∈ X and

lim
n→∞

d(wn,wn+1) = 0. (9)
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Next, we show that {wn} is a Cauchy sequence. Suppose otherwise. Then, lim sup
n,m→∞

d(wn,wm) > 0.

Now,

d(wn,wm) ≤ d(wn,wn+1) + d(wn+1,wm+1) + d(wm+1,wm)
= d(wn,wn+1) + d( f wn, f wm) + d(wm+1,wm)
≤ d(wn,wn+1) + α(d(wn,wm))d(wn,wm) + d(wm+1,wm)
+Kθ[d(wn, f wn) + d(wm, f wm)]

= α(d(wn,wm))d(wn,wm)
+(Kθ + 1)[d(wn,wn+1) + d(wm,wm+1)].

Then,

d(wn,wm)
[d(wn,wn+1) + d(wm,wm+1)]

≤
Kθ + 1

1 − α(d(wn,wm))
. (10)

Using the assumption that
lim sup

n,m→∞
d(wn,wm) > 0,

(3.7) and (3.8), we have

lim sup
n,m→∞

Kθ + 1
1 − α(d(wn,wm))

= ∞.

This implies that
lim sup

n,m→∞
α(d(wn,wm)) = 1

and consequently, since α ∈ S,
lim sup

n,m→∞
d(wn,wm) = 0.

This is a contradiction. Hence, {wn} is a Cauchy sequence. Completeness of X implies {wn} converges to
c ∈ X. Following similar arguments as in the proof of Theorem 3.2, we can show that c is a unique strict
fixed point of F.

As a special case of our Theorems 3.2 and 3.3, we get the following generalization of Theorem 2.1 due to
Bisht [4].

Corollary 3.4. Let F : X→ CB(X) be an asymptotically regular and orbitally H-continuous multivalued mapping.
Suppose there exists M ∈ [0, 1) and K ∈ [0,∞) such that for each m,w ∈ X,

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (11)

Then, F has a unique strict fixed point.

Next, we discuss the well-posedness of the strict fixed point problem.

Definition 3.5 ([21]). Let (X, d) be a metric space and F : X→ CB(X) a multivalued mapping. The strict fixed point
problem

Fm = {m}, m ∈ X (12)

is well-posed for F if:

(i) SFix(F) = {c}
(ii) If {wn} is a sequence in X such that lim

n→∞
δ(wn,Fwn) = 0, then wn → c as n→∞.
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Theorem 3.6. Let F : X → CB(X) be an asymptotically regular and orbitally H-continuous multivalued mapping.
Suppose there exists M ∈ [0, 1) and K ∈ [0,∞) such that for each m,w ∈ X,

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (13)

Then the strict fixed point problem is well-posed for F.

Proof. By Corollary 3.4, it follows that SFix(F) = {c}. Let {wn} be such that lim
n→∞
δ(wn,Fwn) = 0. Now,

d(wn, c) ≤ δ(wn,Fwn) + δ(Fwn,Fc)
≤ δ(wn,Fwn) +Md(wn, c) + K[δ(wn,Fwn) + δ(c,Fc)]
= Md(wn, c) + (K + 1)δ(wn,Fwn).

Thus, (1 −M)d(wn, c) ≤ (K + 1)δ(wn,Fwn) and lim
n→∞

d(wn, c) = 0.

The Ulam-Hyers stability is an important notion in the theory of differential and integral equations (See
[18], [15]). The Ulam-Hyers stability for the strict fixed point problem is defined as follows:

Definition 3.7 ([18]). Let (X, d) be a metric space and F : X→ P(X) a multivalued mapping. The strict fixed point
problem (3.10) is called Ulam-Hyers stable if there exists θ > 0 such that for each ϵ > 0 and for each ϵ-solution m ∈ X
of the strict fixed point problem i.e.

δ(m,Fm) ≤ ϵ, (14)

there exists a solution c of the strict fixed point problem (3.10) such that

d(m, c) ≤ θϵ.

Theorem 3.8. Let F : X → CB(X) be an asymptotically regular and orbitally H-continuous multivalued mapping.
Suppose there exists M ∈ [0, 1) and K ∈ [0,∞) such that for each m,w ∈ X,

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (15)

Then the strict fixed point problem is Ulam-Hyers stable.

Proof. By Corollary 3.4, we have that SFix(F) = {c}. Let ϵ > 0 and m ∈ X be such that δ(m,Fm) ≤ ϵ.
Now, we have

d(m, c) ≤ δ(m,Fm) + δ(Fm,Fc)
≤ δ(y,Fy) +Md(m,w) + K[δ(m,Fm) + δ(c,Fc)]
= (K + 1)δ(m,Fm) +Md(m,w).

Hence,

d(m, c) ≤
K + 1
1 −M

δ(m,Fm) ≤
K + 1
1 −M

ϵ.

Next, we present a data dependence result for the strict fixed point problem.

Theorem 3.9. Let F : X → CB(X) be an asymptotically regular and orbitally H-continuous multivalued mapping.
Suppose there exists M ∈ [0, 1) and K ∈ [0,∞) such that for each m,w ∈ X,

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]. (16)

Suppose that R : X → CB(X) is a multivalued mapping with SFix(R) , ∅ and there exists ξ > 0 such that
δ(Fm,Rm) ≤ ξ, for every m ∈ X. Then,

δ(SFix(F),SFix(R)) ≤
K + 1
1 −M

ξ.



D.M. Oyetunbi et al. / Filomat 38:2 (2024), 661–668 667

Proof. By Corollary 3.4, we have that SFix(F) = {c}. For any m ∈ SFix(R), we have

d(m, c) = δ(Rm,Fc)
≤ δ(Rm,Fm) + δ(Fm,Fc)
≤ ξ +Md(m, c) + K[δ(m,Fm) + δ(c,Fc)]
= ξ +Md(m, c) + Kδ(Gc,Fc)
≤ (K + 1)ξ +Md(m, c).

Hence,

d(m, c) ≤
K + 1
1 −M

ξ

and the result follows.

We illustrate the above results with an example.

Example 3.10. Let X = [−1, 1
2 ] be endowed with the usual metric. For m ∈ X, define F : X→ CB(X) by

Fm =
{

1
2 , m ∈ [−1, 0)

[m3,m2], m ∈ [0, 1
2 ]

.

We notice that if M,K ≥ 0, M + 2K < 1 and m = 0, then there exists w ∈ [−1, 0) such that

δ(Fm,Fw) ≤Md(m,w) + K[δ(m,Fm) + δ(w,Fw)]

does not hold. Hence, Reich’s Result (Theorem 1.1) is not applicable.

Case 1: m ∈ [−1, 0) and w ∈ [0, 1
2 ]. We have

δ(Fm,Fw) =
1
2
− w3, δ(w,Fw) = w − w3

and δ(m,Fm) = 1
2 −m. Clearly, m ≤ w. Thus,

m +
1
2
− w3

≤ w +
1
2
− w3 and δ(Fm,Fw) ≤ δ(m,Fm) + δ(w,Fw).

Case 2: m ∈ [0, 1
2 ] and w ∈ [0, 1

2 ]. Without loss of generality, let m ≤ w. Then

δ(Fm,Fw) = w2
−m3, δ(w,Fw) = w − w3

and δ(m,Fm) = m −m3. For w ∈ [0, 1
2 ],

y(y2 + y − 1) ≤ 0 ≤ m.

Hence,
δ(Fm,Fw) ≤ δ(m,Fm) + δ(w,Fw).

We note that F is not H-continuous. Indeed, let wn =
−1
n . Then wn → 0 and δ(Fwn,F0) = H(Fwn,F0) = 1

2 . For
w0 ∈ [−1, 1

2 ], let {wn} be any orbital sequence of F. Then

w3
n ≤ wn+1 ≤ w2

n ≤ wn ≤ w2
n−1 ≤ wn−1 ≤ . . . ≤ w0 ≤

1
2
.

It follows that {wn} is a nonincreasing sequence and thus converges to λ ≥ 0. If λ > 0, then

w3
n ≤ wn+1 ≤ w2

n ≤
1
2
,

which implies that λ3
≤ λ ≤ λ2

≤
1
2 and 1 ≤ λ ≤ 1

2 . This is a contradiction. Hence {wn} converges to 0. Now, we
can easily show that F is asymptotically regular and orbitally continuous. By Theorem 3.8, the associated strict fixed
point problem is Ulam-Hyers stable.
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Remark 3.11.

1. In view of (3.5), orbital H-continuity of F can be replaced by the following condition : δ(Fwn,Fz)→ 0 whenever
any orbital sequence {wn} in X converges to z ∈ X (See [8]).

2. Theorem 3.2 and Theorem 3.3 extend Theorem 2.2 and Theorem 2.1 in [12], respectively, for multivalued
mappings.

3. Reich [22], [23] and Petrusel and Petrusel [19] have extensively used the condition M + 2K < 1. Our work
(Corollary 3.4, Theorem 3.6 - Theorem 3.8) is independent of this condition.
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