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Abstract. This paper introduces a new basis for generalized blended trigonometric (GBT) Bézier curves
along with one shape parameter. The recursive technique is adopted to formulate the basis for higher
order GBT-Bézier curves. The curves are better approximated using the proposed basis than the traditional
Bernstein basis. New basis functions and curves satisfy all the properties followed by classical Bézier
curves. The shape of these curves can be adjusted by changing the values of the parameter, keeping the
control polygon unchanged. This adds to the flexibility of new GBT-Bézier curves. Appropriate conditions
for parametric (C0,C1,C2 and C3) and geometric (G0, G1, G2 and G3) continuities to compose two or more
GBT-Bézier curves have been worked upon. Applications of the proposed GBT-Bézier curves are discussed
with different formations.

1. Introduction

Bézier curves have become indispensable instruments to understand the work involved in various ap-
plications ranging from CAGD to generic object shape descriptors. There are numerous applications of
Bézier curves in time domains like animation, interface design, describing font characters, image compres-
sion, highway modeling, robotics, and many other fields [16]. Bézier curves are parametric curves that
use Bernstein polynomials as basis functions [23]. These curves are popularized since their mathemat-
ical descriptions are compact, easy to compute, and quite stable. Bézier from Renault had a significant
impact in this context. He played a key role in the creation of Bézier curves, a potent tool for creating
free-form curves and surfaces. This motivated several researchers to work upon the Bézier variant of
different p.l.o. and applications of generalizations corresponding to the p.l.o. in various fields [22]. Acar
and Agrawal [1] introduced the Bézier-variant of Durrmeyer modification of the Bernstein operators based
on a function τ, which is infinite times continuously differentiable and strictly increasing function on [0, 1].
Similar work has been done for Bernstein-Durrmeyer-type operators, summation-integral-type operators
and Srivastava-Gupta-type operators in [2], [13] and [14] respectively. Despite these advantages, classical
Bézier curves have some constraints as their control polygons fix the shape and position of the curves. So,
shape adjustability is only possible by altering the control points in the case of traditional Bézier curves. In
CAD/CAM technology areas, the flexibility of these curves is a subject of concern. Designing and changing
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shapes is a tedious and time taking task in classical Bézier curves. These drawbacks are vanquished by
using shape parameters in trigonometric Bézier curves as they prove to be a better choice for spiral or
circular formations as compared to polynomial Bézier curves with shape parameters.
Over the last few years, a number of researchers have used diversified bases with varying ranges of shape
parameters to define Bézier curves to overcome the limitations of classical Bézier curves. In [8], Han pro-
vided the references for initially available literature and constructed quadratic trigonometric polynomial
curves parallel to quadratic B-spline curves. The study was held forth for cubic trigonometric curves in
[9, 11]. Quintic trigonometric Bézier curves with two shape parameters were introduced by Misro et al. in
[20]. In [27], Uzma et al. constructed trigonometric Bézier curves of degree 2 (QT-Bézier curves) with single
shape parameter, which were used for representing ellipse. Authors concluded that QT-Bézier curves were
helpful in approximating circular arcs. Their work was further extended to cubic trigonometric Bézier
curves (CBT-Bézier curves) with one shape parameter. Different bases were defined for cubic trigono-
metric Bézier curves in [17, 25] and [7, 24] can be referred to for quartic trigonometric Bézier curves. A
generalization of Bernstein basis functions was introduced along with n shape parameters by Han [10] to
generate Quasi Bézier (Q-Bézier) curves, continuity conditions for which have been studied in [12]. In [4],
Bashir et al. introduced two parameters for quasi-quintic trigonometric Bézier curves. Some engineering
applications of the cubic trigonometric curves have been discussed in [26] along with C1, C2 parametric
continuities and G1, G2 geometric continuities. Conditions for G3 continuity are mentioned in [6] and [17].
Other papers that can be referred to study parametric and geometric continuities of trigonometric Bézier
curves are [5, 21].
As the study of these curves gained pace, numerous researchers stepped up to introduce shape parameters
varying over different intervals. Our work is motivated by Ammad et al. [3] and Maqsood et al. [18] in
which the authors generalized the trigonometric Bézier curves and introduced two shape parameters. The
recurrence technique having trigonometric functions was opted to generalize the results. In a subsequent
paper, Maqsood et al. [19] improved this recursive formula by introducing algebraic and trigonometric
functions for defining the mth order Generalized Blended Trigonometric Bézier curves with two shape
parameters.
In this paper, we introduce the new GBT-Bernstein-like basis with one shape parameter for mth degree
using the recursive technique formulated in [19]. The conditions for parametric continuity are stated to
compose multiple Bézier curves which are helpful in designing complex structures. The curves formed
using new basis have more flexibility and shape adaptability which lacked in classical Bézier curves.
The layout of the paper is as follows. Section 2 consists of definitions and properties associated with the
new GBT-basis functions. Construction of corresponding new GBT-Bézier curves is dealt with in Section 3
along with the properties of the curves. In Section 4, we have introduced the conditions for composing two
or more Bézier curves which require parametric continuity, and examples related to different parametric
constraints are plotted for curves of degrees 3, 4, and 5. Geometric constraints of the proposed basis func-
tions and examples corresponding to these curves are discussed in the same section. The final arguments
are concluded in Section 5 of the paper.

2. Definition and properties of new generalized blended trigonometric Bézier curves

We introduce the new GBT-basis functions and further define the recursive technique in this section.

2.1. New GBT-basis functions

Definition 1: For an arbitrary shape parameter α ∈ [−2, 1) and z ∈ [0, 1], the functions
β0,2(α, z) = 1

2 (1 − sin π2 z)
[
(1 − α sin π2 z) + cos π2 z

]
β2,2(α, z) = 1

2 (1 − cos π2 z)
[
(1 − α cos π2 z) + sin π2 z

]
β1,2(α, z) = 1 − β0,2(α, z) − β2,2(α, z) are called the second degree new GBT-basis functions.
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In contemplation of defining new basis βi,m(α, z) (i = 0, 1, ...,m) for degree m ≥ 3, recursive technique
has been used as below:
βi,m(α, z) = (1 − z)βi,m−1(α, z) + zβi−1,m−1(α, z) where βi,m(α, z) = 0 when i=−1 or i > m.

Figure 1 provides the comparison between the basis functions of new GBT and classical Bézier curves.
It is evident that the new GBT basis functions provide more flexibility for the varying values of shape
parameter α ∈ [−2, 1). Blue color indicates the classical Bernstein basis functions whereas red and black
color is used to indicate the new GBT-basis functions for α = 0.99 and α = −2 respectively.
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Figure 1: Comparison between the basis functions of new GBT and classical Bernstein Bézier curves

2.2. Properties of new basis functions

The new basis functions βi,m(α, z) have the following properties:

1. Partition of unity:
m∑

i=0

βi,m(α, z) = 1, which can be proved by inductive hypothesis.

For “m” = 2, we have:
2∑

i=0

βi,2(α, z) = 1 (Obvious by Definition 1).

Let us assume this is true for m = k i.e.
k∑

i=0

βi,k(α, z) = 1.

Therefore, if we choose m = k + 1, then according to the recursive formula for defining a new
GBT-Bézier basis of degree m, we can write:
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k+1∑
i=0

βi,k+1(α, z) =
k+1∑
i=0

[
(1 − z)βi,k(α, z) + zβi−1,k(α, z)

]
=

k+1∑
i=0

(1 − z)βi,k(α, z) +
k+1∑
i=0

zβi−1,k(α, z)

= (1 − z)

 k∑
i=0

βi,k(α, z) + βk+1,k(α, z)

 + z

 k∑
i=0

βi,k(α, z) + β−1,k(α, z)


= (1 − z)(1 + 0) + z(1 + 0) = 1.

2. Non-negativity: For shape parameter α ∈ [−2, 1) and z ∈ [0, 1], we have βi,m(α, z) ≥ 0 for i = 0, 1, ...,m.
Since (1−sin π2 z) ≥ 0, (1−α sin π2 z) ≥ 0 ∀ α ∈ [−2, 1) along with cos π2 z ≥ 0, we get that β0,2(α, z) ≥ 0.On
similar grounds it can be proved that β1,2(α, z) and β2,2(α, z) are non-negative. For higher degree bases
we have the recursive technique which involves the combination of (1 − z) and z. Since z ∈ [0, 1] and
βi,m−1(α, z) and βi−1,m−1(α, z) ≥ 0, therefore βi,m(α, z) is non negative ∀z ∈ [0, 1]. It is verified graphically
as in Figure 2. It also represents the effect of varying the shape parameter on the new GBT-basis
functions.
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Figure 2: Non-negativity property of new GBT-basis functions

3. Terminal property: The basis functions at the end points are given by:

βi,m(α, 0) =

1, i = 0
0, i = 1, 2, ...,m.

(1)

βi,m(α, 1) =

1, i = m
0, i = 0, 2, ...,m − 1.

(2)
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4. Symmetry: The basis functions follow a symmetry throughout, i.e. if p0, p1, ..., pm are m + 1 control
points then, βi,m(α, z, p0, p1, ..., pm) = βm−i,m(α, 1 − z, pm, pm−1, ..., p1, p0), for i = 0, 1, ...,m.
For m = 2, we have:

βi,2(α, z) = β2−i,2(α, 1 − z).

Let us assume this holds true for m = k i.e.

βi,k(α, z) = βk−i,k(α, 1 − z).

So, as we choose m = k + 1 and apply the recursive technique, we get

βi,k+1(α, 1 − z) = z βi,k(α, 1 − z) + (1 − z) βi−1,k(α, 1 − z)
= z βk−i,k(α, z) + (1 − z) βk+1−i,k(α, z)
= (1 − z) βk+1−i,k(α, z) + z βk−i,k(α, z)
= βk+1−i,k+1(α, z).

3. Constructing new GBT-Bézier curves

For given m+ 1 control points pi (i = 0, 1, ...,m) in R2, the new GBT-Bézier curve of degree m with shape
parameter α is defined as following:

r(α, z) =
m∑

i=0

βi,m(α, z) ∗ pi, z ∈ [0, 1], α ∈ [−2, 1).

3.1. Properties of new GBT-Bézier curves
The new GBT-Bézier curves satisfy the following properties:

1. Endpoint interpolation: The new proposed GBT-Bézier curve passes through the initial and final
control points i.e.

r(α, 0) = p0,

r(α, 1) = pm.

Here p0 & pm are initial and final points respectively.

2. Convex hull property: Since the basis functions are non-negative and follow the property of parti-
tion of unity, the curve formed with the help of control points assigned will always lie within the convex
hull of the control polygon.

3. Geometric invariance: The shape of the GBT-Bézier curve doesn’t depend upon the coordinates chosen,
i.e. the following equations are satisfied:

r(z;α; p0 + v, p1 + v, ..., pm + v) = r(z;α; p0, p1, ..., pm) + v

where v is arbitrary vector in R2.

4. Derivatives at endpoints: The value of derivatives at initial and final points is given by:

β′i,m(α, 0) =



−

[
π
4 (α + 2) +m2

]
, i = 0

[
π
4 (α + 2) +m2

]
, i = 1

0, otherwise.

(3)
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β′i,m(α, 1) =



−

[
π
4 (α + 2) +m2

]
, i = m − 1

[
π
4 (α + 2) +m2

]
, i = m

0, otherwise.

(4)

β′′i,m(α, 0) =



π2

8 (2α − 1) + π2 (α + 2)m2 +m2m3, i = 0

−
π2

8 α − π(α + 2)m2 − 2m2m3, i = 1

−
π2

8 (α − 1) + π2 (α + 2)m2 +m2m3, i = 2

0, otherwise.

(5)

β′′i,m(α, 1) =



−
π2

8 (α − 1) + π2 (α + 2)m2 +m2m3, i = m − 2

−
π2

8 α − π(α + 2)m2 − 2m2m3, i = m − 1

π2

8 (2α − 1) + π2 (α + 2)m2 +m2m3, i = m

0, otherwise.

(6)

β′′′i,m(α, 0) =



π3

16 (α + 5) − 3π2

8 (2α − 1)m2 −
3π
4 (α + 2)m2m3 −m2m3m4, i = 0

−
π3

16 (α + 8) + 3π2

8 (3α − 1)m2 +
3π
4 (α + 2)3m2m3 + 3m2m3m4, i = 1

3π3

16 −
3π2

8 m2 −
3π
4 (α + 2)3m2m3 − 3m2m3m4, i = 2

−3π2

8 (α − 1)m2 +
3π
4 (α + 2)m2m3 +m2m3m4, i = 3

0, otherwise.

(7)
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β′′′i,m(α, 1) =



3π2

8 (α − 1)m2 −
3π
4 (α + 2)m2m3 −m2m3m4, i = m − 3

−3π3

16 +
3π2

8 m2 +
3π
4 (α + 2)3m2m3 + 3m2m3m4, i = m − 2

π3

16 (α + 8) − 3π2

8 (3α − 1)m2 −
3π
4 (α + 2)3m2m3 − 3m2m3m4, i = m − 1

−
π3

16 (α + 5) + 3π2

8 (2α − 1)m2 +
3π
4 (α + 2)m2m3 +m2m3m4, i = m

0, otherwise.

(8)

Here, m2 = m − 2 , m3 = m − 3, m4 = m − 4 and m is the degree of the new GBT curve.

4. Composition of new GBT-Bézier curves

During the formation of complex figures, we need to join multiple curves in order to obtain the desired
structure. Thus for the composition of new GBT-Bézier curves, conditions for parametric and geometric
continuities need to be worked upon. Section 4 provides the constraints for the same. This section is further
divided into two subsections. Subsection 4.1 provides the conditions for the composition of new GBT-
Bézier curves that follow parametric continuities. Subsection 4.2 helps us in understanding the constraints
required to compose new GBT-Bézier curves that follow geometric continuities. The applicability of the
parametric and geometric continuity constraints is demonstrated in 4.1.1 and 4.2.1 respectively. To begin
with, let us consider new GBT-Bézier curves as defined by equation (9)

r(α, z) =
m∑

i=0

βi,m(α, z) ∗ pi, z ∈ [0, 1], α ∈ [−2, 1),

s(α, z) =
m∑

i=0

βi,m(α, z) ∗ qi, z ∈ [0, 1], α ∈ [−2, 1),
(9)

where pi and qi are control points for the new GBT-Bézier curves r(α, z) & s(α, z) respectively and βi,m(α, z)
represent the new basis functions.
Also, we have

r(α, 0) = p0, r(α, 1) = pm

and
s(α, 0) = q0, s(α, 1) = qm

where p0 & q0 are initial control points of the first curve r(α, z) and second curve s(α, z) respectively and pm
& qm are final control points of the first curve r(α, z) and second curve s(α, z) respectively.

4.1. Parametric continuity constraints of new GBT-Bézier curves
Computer-Aided Geometric Design (CAGD) is used in aerospace, automotive, ship building, pharma-

ceutical design, animation, etc. During virtual prototyping, multiple curves are used to obtain the final
design. To ensure the smoothness of the curves involved in the process of expected outcomes, parametric
continuity is imperative. In this section, we have worked on the required parametric continuity constraints.
Theorem 4.1: The necessary and adequate constraints for parametric continuity between two GBT-Bézier
curves as defined in equation (9) are given by:
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1. Conditions for C0 continuity: The value of the first curve at “z = 1” must be equal to the value of
second curve at “z = 0” i.e. r(α, 1) = s(α, 0). This means that the beginning of the second curve marks the
ending of the first curve as shown in figure 3 i.e. p4 = q0. Since r(α, 1) = pm and s(α, 0) = q0, this leads to the
constraint for C0 continuity as:

q0 = pm. (10)
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Figure 3: Composition of C0 continuous graphs

2. Conditions for C1 continuity: Along with the constraints of C0 continuity, the curve has to follow
additional condition that the first derivative of first curve at “z = 1” must be equal to the first derivative
of the second curve at “z = 0” i.e. r(α, 1) = s(α, 0) and r′(α, 1) = s′(α, 0). Thus, we get the conditions for C1

continuity as:q0 = pm

q1 = 2pm − pm−1.
(11)

Hence, C1 continuity can be visualized through Figure 4, exhibiting common tangents to both the curves.
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Figure 4: Composition of C1 continuous graphs

3. Conditions for C2 continuity: C2 continuity provides a smooth transition between the curves by
flattening them at the point of confluence which can be seen in Figure 5. These constraints are obtained by
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using r(α, 1) = s(α, 0), r′(α, 1) = s′(α, 0) and r′′(α, 1) = s′′(α, 0) leading to the following conditions:

q0 = pm

q1 = 2pm − pm−1

q2 = pm−2 −
2β′′1,m(α,0)
β′′2,m(α,0) (pm − pm−1)

(12)
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Figure 5: Composition of C2 continuous curves

4. Conditions for C3 continuity: Considering r(α, 1) = s(α, 0), r′(α, 1) = s′(α, 0) , r′′(α, 1) = s′′(α, 0) and
r′′′(α, 1) = s′′′(α, 0), we get the constraints for C3 continuity of the curves:

q0 = pm

q1 = 2pm − pm−1

q2 = pm−2 −
2β′′1,m(α,0)
β′′2,m(α,0) .(pm − pm−1)

q3 = −pm−3 −

[
2pm−2 −

2β′′1,m(α,0)
β′′2,m(α,0) (pm − pm−1)

]
β′′′2,m(α,0)
β′′′3,m(α,0) − 2pm

β′′′1,m(α,0)+β′′′0,m(α,0)
β′′′3,m(α,0) .

(13)

Figure 6 shows the composition of two new GBT-Bézier curves of degree six. The first curve (represented
by solid lines) can be formed freely. The continuity constraints impose the conditions over control points
of the second curve under consideration (represented by dotted lines). Once the first curve is drawn, we
apply the C3 continuity constraints given by equation (13) to extract the first four points of the second
curve. The remaining control points can be chosen independently. The type of smoothness depends upon
the applications of the curve. C3 continuity comes into play when smoother curves are demanded.
With the introduction of shape parameter, the new GBT-Bézier curves procure versatility in their shapes.
This property proves to be influential when it comes to the designing of complicated curves. The graphs
related to parametric continuity of the curves in the previous subsection are formed using new basis
functions with shape parameter α ∈ [−2, 1). In these figures (Figure: 3 - 6), the shifting of α is in black,
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Figure 6: Composition of C3 continuous curves of degree 6

magenta, blue and red lines corresponding to its value at -2, -1, 0 and 0.9 respectively. The solid lines indicate
the variation of α over curve 1 and dotted lines are used to signify the alteration of α over curve 2. As we
augment the shape parameter, the curve approaches the control polygon, giving a better approximation.
Whereas, the classical Bézier curve generated a unique curve correlated to the given set of control points.
Given that case to incorporate the desired changes, the control points of the classical Bézier curves had to be
altered. On the contrary, the inclusion of the shape parameter in the basis functions saves us from this task.
Moreover, it can be visualized graphically that every curve corresponding to various values of α satisfies
the convex hull property and is non-negative.

4.1.1. Applications based on parametric continuity
This section deals with a variety of formations like flower, leaf, sparrow, heart-shaped, S-shaped, and

spiral patterns created using new GBT-Bézier curves as an application to parametric continuities. The
parameter α ∈ [−2, 1) varies according to the specification needed in the curve designing.

In Figure 7 and 8, the color red, green, blue, magenta and black is used to represent the values of α
as 0.9, 0.5, 0, -1, -2 respectively. These figures demonstrate the variation in shapes, keeping control points
fixed and therefore enhancing the flexibility during curve modeling.
Figure 7 (a)-(c) fore-shows a flower formation for curves of degrees three, four and five respectively.
Condition derived in equation (10) for C0 continuity has been imposed on these curves. Red, green and
blue lines show the impact of changing parameter on the curve for positive values of α though red and
black lines indicate the impact for negative values of α. It is evident from the figure that curve is closest to
the control polygon for α = 0.9. These figures can be further beautified by adding leaves and stalks of the
flowers.
Figure 8 exhibits C1 continuous curves using equation (11) where sub figures display (a) S-shaped, (b)
spiral-shaped and (c) heart-shaped formations. Figure 8 also exemplifies the formation of conterminous
curves requiring layered arcs. It represents curves of degree three in (a)-(b) and degree five in (c).

Application of C2 continuity is designed in Figure 9. Additional conditions of C2 continuity give con-
straints for first three points of the second curve involved and remaining points can be chosen freely. In
Figure 9 (a), first curve (drawn using solid black arc) is formed by choosing α= -2. We have used five control
points for each arc, to obtain curves of degree four. The next five control points for the curve in red color
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Figure 7: Flower formations using C0 continuous curves
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Figure 8: Geometric modeling using C1 continuous curves

are obtained by using equation (12) after substituting α as 0.9. To get the detailed leaf formation, dotted
curves in magenta and blue color are extracted by introducing variation in 4th and 5th points obtained after
using α as 0.9 in equation (12). Figure 9 (b) discloses the final output drawn using solid and dotted black
arcs, in the absence of control polygons.

0 2 4 6 8 10 12 14 16

-20

-15

-10

-5

0

5

10

15

20

(a) With control polygon
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Figure 9: Leaf formation using C2 continuous curves

In figure 10 (a), the curve in solid black is formed by substituting α = -1.5 and is joined to the curve in
solid red, calculated at α = 0. To draw the tail, multiple curves are calculated that satisfy equation (12),
indicated by solid blue for α = 0 and for α = -2, dotted lines in green color are used. The first three control
points for the curves represented by dotted lines in green color, are identical. The variation of the last two
points is used to form wings in the figure. It is further modeled using black color and detailing is done to
demonstrate the overall outcome in figure 10 (b).

The freedom of choosing control points increases as we augment the degree of the curve while dealing
with C3 continuity. This is because first four points of the second curve to be composed are decided
according to the continuity constraints and the remaining are chosen independently. In Figure 11 (a)-(b),
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(a) Using α = 1.5, α = 0, α = -2 (b) Added details to the graph

Figure 10: Sparrow formation using C2 continuous curves
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Figure 11: C3 continuous graphs

curves of degree 8 have been used for which the last five control points are chosen freely, contrary to first
four points. Curve traced in black color is composed using (13) for α = -2. The third curve drawn in red
color is obtained by substituting α = 0.9 in (13).

4.2. Geometric continuity constraints of new GBT-Bézier curves
In aviation, the smoothness of materials used in aircraft is a major concern since it impacts the resistance

of air and hence affects performance. If we consider computer animation, the transition of the images
following a geometric continuous trajectory, results in the depiction of smooth movements per frame.
Hence it becomes mandatory to understand the requirements to attain smoothness in these curves.

We introduce the conditions for new GBT-Bézier curves to achieve geometric continuity in this section.
Theorem 4.2: The required and acceptable constraints for geometric continuity of two GBT-Bézier curves
defined by using (9) are given below:
1. Conditions for G0 continuity: G0 continuity is similar to C0 continuity. The condition is attained by
using:

s(α, 0) = q0 = pm = r(α, 1). (14)

2. Conditions for G1 continuity: Along with the constraints of G0 continuity, the curve has to follow
additional condition r(α, 1) = s(α, 0) and r′(α, 1) = µ s′(α, 0), provided µ > 0. Thus, we get the constraints
for G1 continuity as:q0 = pm

q1 =
(
µ+1
µ

)
pm −

1
µpm−1.

(15)
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3. Conditions for G2 continuity: Along with G1 continuity constraints, the curves need to have equal
curvatures at the point of joining i.e. κ1(1) = κ2(0). If K1 = r′(α, 1) × r′′(α, 1) is the vice normal vector for
r(α, z) at z = 1 and K2 = s′(α, 0) × s′′(α, 0) is reverse normal vector for s(α, z) at z = 0, then K1 and K2 need
to have same direction at the joining point to achieve G2 continuity. Therefore r′(α, 1), r′′(α, 1), s′(α, 0) and
s′′(α, 0) are in the same plane. So, we can write:

r′′(α, 1) = ζ s′′(α, 0) + τ s′(α, 0). (16)

Here, ζ > 0 and τ is chosen arbitrarily. On substituting the values of respective curvatures:

κ1(1) =
|r′(α, 1) × r′′(α, 1)|
|r′(α, 1)|3

=
|µ s′(α, 0) × (ζ s′′(α, 0) + τ s′(α, 0))|

|µ s′(α, 0)|3

=
|µ s′(α, 0) × ζ s′′(α, 0)|

µ3 |s′(α, 0)|3

=
ζ |s′(α, 0) × s′′(α, 0)|
µ2 |s′(α, 0)|3

= κ2(0).

(17)

we obtain ζ = µ2. Hence the equation (16) is modified to:

r′′(α, 1) = µ2 s′′(α, 0) + τ s′(α, 0). (18)

Referring to equation (3), (5) and (6), we substitute the values of s′(α, 0), s′′(α, 0) and r′′(α, 1) in (18) to get:

β′′m−2,m(α, 1) pm−2 + β
′′

m−1,m(α, 1) pm−1 + β
′′

m,m(α, 1) pm = µ
2
[
β′′0,m(α, 0) q0 + β

′′

1,m(α, 0) q1 + β
′′

2,m(α, 0) q2

]
+ τ

[
β′0,m(α, 0) q0 + β

′

1,m(α, 0) q1

]
.

(19)

By comparing the values between β′′0,m(α, 0) and β′′0,m(α, 1) in (5) & (6) and using G1 continuity conditions in
(15), we re-write (19) as:

β′′2,m(α, 0)pm−2 + β
′′

1,m(α, 0)pm−1 + β
′′

0,m(α, 0)pm = µ
2

[
β′′0,m(α, 0)pm + β

′′

1,m(α, 0)
((
µ + 1
µ

)
pm −

1
µ

pm−1

)
+ β′′2,m(α, 0)q2

]
+ τ

[
β′0,m(α, 0)pm + β

′

1,m(α, 0)
((
µ + 1
µ

)
pm −

1
µ

pm−1

)]
.

(20)

On simplifying the above equation, we obtain:

q2 =
1
µ2 pm−2 −

(
µ + 1
µ2

) β′′1,m(α, 0)

β′′2,m(α, 0)

 [µpm − pm−1
]
−
τ

µ3

β′1,m(α, 0)

β′′2,m(α, 0)

 [(µ + 1)pm − pm−1
]

+
1
µ2

β′′0,m(α, 0)(1 − µ2) − β′0,m(α, 0)τ

β′′2,m(α, 0)

 pm.

(21)
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By using the endpoint properties of the curves, we get the following constraints for G2 continuity:

q0 = pm

q1 =
(
µ+1
µ

)
pm −

1
µpm−1

q2 =
1
µ2 pm−2 −

(
µ+1
µ2

) [ β′′1,m(α,0)
β′′2,m(α,0)

]
(µpm − pm−1)

−
τ
µ3

[
β′1,m(α,0)
β′′2,m(α,0)

] [
(µ + 1)pm − pm−1

]
+ 1
µ2

[
β′′0,m(α,0)(1−µ2)−β′0,m(α,0).τ

β′′2,m(α,0)

]
pm.

(22)

On substituting µ = 1 and τ = 0, we get (10). Hence, G2 continuity constraints are reducible to C2 continuity
constraints.

4. Conditions for G3 continuity: As we proceed to calculate G3 continuity conditions, it is to be noted that
the derivative of curvature of the curves needs to be equal at the point of junction (i.e. κ′1(1) = µκ′2(0)) in
addition to G2 continuity constraints. Therefore we have the derivative of curvatures of the two curves at
endpoints as:

κ′1(1) =
∥r′(., 1)∥2 {r′(., 1) × r′′′(., 1)} − 3{r′(., 1) × r′′(., 1)}{r′(., 1).r′′(., 1)}

∥r′(., 1)∥5

κ′2(0) =
∥s′(., 0)∥2 {s′(., 0) × s′′′(., 0)} − 3{s′(., 0) × s′′(., 0)}{s′(., 0).s′′(., 0)}

∥s′(., 0)∥5
.

(23)

So in order to be G3 continuous, the curves need to satisfy the following conditions:
r(α, 1) = s(α, 0)
r′(α, 1) = µs′(α, 0)
r′′(α, 1) = µ2s′′(α, 0) + τs′(α, 0)
r′′′(α, 1) = ξs′′′(α, 0) + 3µτs′′(α, 0) + τs′(α, 0).

(24)

Considering κ′1(1) and by using equation (24) we get

κ′1(1) =
∥r′(., 1)∥2 {r′(., 1) × r′′′(., 1)} − 3{r′(., 1) × r′′(., 1)}{r′(., 1).r′′(., 1)}

∥r′(., 1)∥5

=

∥µs′(., 0)∥2
{
µs′(., 0) × (ξs′′′(., 0) + 3µτs′′(., 0) + τs′(., 0))

}
∥µs′(., 0)∥5

−

3
{
µs′(., 0) × (µ2s′′(., 0) + τs′(., 0))

}{
µs′(., 0).(µ2s′′(., 0) + τs′(., 0))

}
∥µs′(., 0)∥5

= µκ′2(0).

(25)

We get ξ = µ3 and hence

r′′′(α, 1) = µ3s′′′(α, 0) + 3µτs′′(α, 0) + τs′(α, 0). (26)
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Referring to equation (3),(5), (7) and (8), we substitute the values of s′(α, 0), s′′(α, 0), s′′′(α, 0) and r′′′(α, 1) in
(19) to get:

β′′′m−3,mpm−3(α, 1) + β′′m−2,m(α, 1)pm−2 + β
′′

m−1,m(α, 1)pm−1 + β
′′

m,m(α, 1)pm = µ
3
[
β′′′0,m(α, 0)q0 + β

′′′

1,m(α, 0)q1

+ β′′′2,m(α, 0)q2 + β
′′′

3,m(α, 0)q3

]
+ 3µτ

[
β′′0,m(α, 0)q0 + β

′′

1,m(α, 0)q1

+ β′′2,m(α, 0)q2

]
+ τ

[
β′0,m(α, 0)q0 + β

′

1,m(α, 0)q1

]
.

(27)

On simplifying the above equation, we obtain:

q3 = −
pm−3

µ3 −

[(
1
µ3 +

1
µ2

)
pm−2 −

(
µ + 1
µ2

)
β′′1,m(α, 0)

β′′2,m(α, 0)
(µpm − pm−1) −

τ
µ3

β′1,m(α, 0)

β′′′2,m(α, 0)

[
(µ + 1)pm − pm−1

]] β′′′2,m(α, 0)

β′′′3,m(α, 0)

−
pm

µ2

β′′0,m(α, 0)(1 − µ2) − β′0,m(α, 0)τ

β′′2,m(α, 0)

 β′′′2,m(α, 0)

β′′′3,m(α, 0)
−

3τ
µ2

[
β′′0,m(0)q0 + β

′′

1,m(0)q1 + β
′′

2,m(0)q2

] 1
β′′′3,m(α, 0)

−
τ
µ3

[
β′0,m(0)q0 + β

′

1,m(0)q1

] 1
β′′′3,m(α, 0)

.

(28)

By using the endpoint properties of the curves, we get the following constraints for G3 continuity:

q0 = pm

q1 =
(
µ+1
µ

)
pm −

1
µpm−1

q2 =
1
µ2 pm−2 −

(
µ+1
µ2

) [ β′′1,m(α,0)
β′′2,m(α,0)

]
(µpm − pm−1)

−
τ
µ3

[
β′1,m(α,0)
β′′2,m(α,0)

] [
(µ + 1)pm − pm−1

]
+ 1
µ2

[
β′′0,m(α,0)(1−µ2)−β′0,m(α,0).τ

β′′2,m(α,0)

]
pm

q3 = −
pm−3

µ3 −

[(
1
µ3 +

1
µ2

)
pm−2 −

(
µ+1
µ2

) β′′1,m(α,0)
β′′2,m(α,0) (µpm − pm−1) − τ

µ3

β′1,m(α,0)
β′′2,m(α,0)

[
(µ + 1)pm − pm−1

]]
β′′′2,m(α,0)
β′′′3,m(α,0)

−
pm

µ2

[
β′′0,m(α,0)(1−µ2)−β′0,m(α,0)τ

β′′2,m(α,0)

]
β′′′2,m(α,0)
β′′′3,m(α,0) −

3τ
µ2

[
β′′0,m(α, 0)q0 + β′′1,m(α, 0)q1 + β′′2,m(α, 0)q2

]
1

β′′′3,m(α,0)

−
τ
µ3

[
β′0,m(α, 0)q0 + β′1,m(α, 0)q1

]
1

β′′′3,m(α,0) .

(29)

On substituting µ = 1 and τ = 0, we get (13). Hence, G3 continuity constraints are reducible to C3 continuity
constraints.

4.2.1. Applications based on geometric continuity
The augmentation of classical Bézier curves is done with the help of newly defined GBT-Bézier curves

which are extensively used to understand the mathematics involved in CAD/CAGD. Moreover, geometric
continuities of these curves provide leverage in computer animation, curve tracing, and alphabet formations
as discussed in figure 12- 15. While working with complex shapes that follow geometric continuity, multiple
curves are composed together. Figure 12 lays out the composition of G0 continuous curves for the same.
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Figure 12: Composition of G0 continuous curves

Figure 13 (a) demonstrates the modeling of cubic G1 continuous curves. The curves in black color are
outlined at α = 0.9. Blue color manifests G1 continuous curves calculated using equation (15) for α = -1, µ =
0.8 and curves in red satisfy G1 continuity for α = -1 and µ = 2. A ball and line segments at the grip of the
hockey sticks are drawn to add details to the figure. Likewise in Figure 13 (b), cursive alphabet “B” (initial
letter for “Bézier”) is sketched. Initial curve is formed at α = 0.9 in black color, which is composed of a
curve drawn in red color after substituting α = -1.5 and µ = 2 in equation (15). Curves in magenta and blue
are traced for the control points fetched after satisfying equation (15) at α = -1.5 and µ = 2. A little swirl
using black color is added at the end of the last curve to complete the formation.

(a) Hockey formation (b) Alphabet formation

Figure 13: G1 continuous curves

Figure 14 (a) consists of cat formation for which α is taken as 0.9 to draw the curves represented using
black color. Red arcs are formed at α = 0.9. The G2 continuity is achieved as the curves in red color, conjunct
the curve in blue for α = 0.95, µ = 2, and τ = -3. The tail of the cat is drawn to polish the final figure. In figure
14 (b), the given shuttle shows G2 continuity at the cork as the two curves in red and blue associate with
each other. The initial curve is formed at α = 0.9. Conditions of G2 continuity are satisfied by the curves in
red color for α = 0.86, µ = 4 and τ = 2. Similar values are used to get the control points for the curve traced
in blue color. Horizontal lines are drawn to beautify the image.
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(a) Cat formation (b) Shuttle formation

Figure 14: G2 continuous curves
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Figure 15: G3 continuous curves

Figure 15 (a) demonstrates the composition of two curves of degree 6 that are G3 continuous. For τ = 2
and µ = 4, varying values of α are considered. Solid lines indicate the variation in the first curve for α taken
as 0.9, 0, -1, and -2 for which red, blue, magenta, and black colors are used respectively. The dotted lines
indicate the second curve under consideration which is obtained after applying G3 continuity conditions.
Figure 15 (b) represents an enlarged version (without control polygon) of G3 continuous curves taken in
Figure 15 (a).

Figure 16 compares classical Bézier, T-Bézier [11], GT-Bézier [18], GBT-Bézier [19] and new GBT-Bézier
curves represented by green, red, black, blue and magenta color respectively. For positive values of various
shape parameters as given in 16 (a), it is observed that new GBT-Bézier curves approximate better than
classical and GT-Bézier curves till the midpoint of segment BC. Beyond that, it appears to be more suitable
for structures that require smoother bends. Parallel to that, figure 16 (b) demonstrates that for the negative
values of shape parameters, new GBT-Bézier curve approximates better than the GT-Bézier, GBT-Bézier and
T-Bézier curves once the midpoint of the segment BC is crossed. Though T-Bézier curves appear to be the
closest to control polygon as we trace the segment AB in 16 (a), these are not C1 continuous curves for all
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Figure 16: Comparing cubic Bézier curves formed by using different basis functions

λ, µ ∈ [−2, 1]. Hence these can’t be used for the curve modeling that demands parametric continuities higher
than C0 for all λ, µ ∈ [−2, 1]. It has to be noted that for different requirements of curve tracing, different basis
functions serve the purpose accordingly. Bases that use more than one parameter, are symmetrical only
when all the parameters have identical values. On the other hand, if we use a single parameter, it reduces
the computational cost that links to the curves generated by such bases and the resultant basis functions
are symmetrical throughout. Hence new GBT-Bézier curves provide an advantage in this context as well.
For further comparison between the earlier available basis functions [15] can be referred.

5. Conclusion

New generalized blended trigonometric Bézier-like functions have been formulated in this paper. Basic
properties of classical Bézier curves are satisfied by the new GBT-Bézier curves with additional flexibility to
alter the shape of the curves without changing the control polygon. With the increasing value of parameter
α, the curves are traced closer to the control polygon.
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Figure 17: Comparison between new GBT and GT Bézier curves
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It is evident from Figure 17 that the new GBT-Bernstein basis approximates the curves better for α = 0.9
as compared to the basis formulated by [3] for α = β = 3.5.
The conditions for parametric and geometric continuity have been constructed for the composition of newly
generated GBT-Bézier curves. Multi-fold formations presented as applications to the proposed basis reveal
that the new basis functions can be used for CAG/CAD modeling.
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the curve modeling, Math. Comput. Simulation 194 (2022), 744–763.
[4] U. Bashir, M. Abbas, M. N. H. Awang, J. M. Ali, A class of quasi-quintic trigonometric Bézier curve with two shape parameters, Sci. Asia
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