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On density topology using ideals in the space of reals

Amar Kumar Banerjee?, Indrajit Debnath?

?Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India

Abstract. In this paper we have introduced the notion of 7-density topology in the space of reals introduc-
ing the notions of upper J-density and lower 7-density where 7 is an ideal of subsets of the set of natural
numbers. We have further studied certain separation axioms of this topology.

1. Introduction and Preliminaries

The idea of convergence of real sequences was generalized to the notion of statistical convergence in
[9,27]. For K C IN, the set of natural numbers and n € IN let K,, = {k € K : k < n}. The natural density of the

set K is defined by d(K) = lim,—e @, provided the limit exists, where |K,,| stands for the cardinality of the
set K,,. A sequence {x,},cn of real numbers is said to be statistically convergent to x if for each € > 0 the set
K(e) = {k € N : |xx — xo| > €} has natural density zero.

After this pioneering work, in the year 2000 the theory of statistical convergence of real sequences were
generalized to the idea of 7-convergence of real sequences by P. Kostyrko et al. [18] using the notion of
ideal T of subsets of IN, the set of natural numbers. A subcollection 7 c 2N is called an ideal if A,B € T
implies AUB € T and A € I,B c Aimply B € 1. T is called nontrivial ideal if 7 # {¢} and N ¢ 7. [ is
called admissible if it contains all the singletons. It is easy to verify that the family 7; = {A ¢ IN : d(A) = 0}
forms a nontrivial admissible ideal of subsets of IN. If 7 is a nontrivial ideal then the family of sets
F(I)={McIN:IN\M e I}is a filter on IN and it is called the filter associated with the ideal 7 of IN.

A sequence {x, },en of real numbers is said to be 7-convergent [18] to xo if the set K(€) = {k € IN : |xx—xo| >
€} belongs to I for each € > 0. A sequence {x,},en of real numbers is said to be 7-bounded if there is a real
number M > 0 such that {k € IN : |x4| > M} € 7. Further many works were carried out in this direction by
many authors [2, 3, 22].

Demirci [8] introduced the notion of 7-limit superior and inferior of real sequence and proved several
basic properties.

Let 7 be an admissible ideal in IN and x = {x,,},en be a real sequence. Let, B, = {b € R: {k : x; > b} ¢ T}
and Ay = {a € R: {k: xx <a} ¢ I}. Then the 7-limit superior of x is given by,

Y _ | supB, ifBy#¢
I 11msupx—{ o if By = o
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and the 7-limit inferior of x is given by,

I —liminfx = { g;fo gg; : Z;
Further Lahiri and Das [21] carried out more works in this direction. Throughout the paper the ideal 7 will
always stand for a nontrivial admissible ideal of subsets of IN.

We shall use the notation m* for the outer Lebesgue measure, m, for the inner Lebesgue measure, £ for
the o-algebra of Lebesgue measurable sets and m for the Lebesgue measure. Throughout R stands for the
set of all real numbers. The symbol T; stands for the natural topology on R. Wherever we write R it means
that R is equipped with natural topology unless otherwise stated. By ‘Euclidean F, and Euclidean G set’'we
mean F; and G;s set in IR equipped with natural topology. The symmetric difference of two sets A and B is
(A\B)U(B\ A) and it is denoted by AAB. For x € R and A C R we define dist(x, A) = inf{|x — a| : a € A}. By
‘a sequence of closed intervals {J,},en about a point p’we mean p € (e J4-

The idea of density functions and the corresponding density topology [4}[13, 17, [24] 25| 32] were studied
in several spaces like the space of real numbers [26], Euclidean n-space [29], metric spaces [20], abstract
measure spaces [23] etc. Goffman et al. [11}12] and H.E. White [30] studied further on some properties of
density topology on the space of real numbers.

For, E € L and x € R the upper density of E at the point x denoted by d~(x, E) and the lower density of
E at the point x denoted by d_(x, E) are defined in [30] as follows:

m(E N 1)
m(I)

1
d (x,E) = lim (sup{ :Iis a closed interval, x € I,0 < m(I) < E})
n—oo

d_(x,E) = lim (inf{% : Iis a closed interval, x € I,0 < m(I) < %})

If d_(x,E) = d~(x,E) = y we say E has density y at the point x and denote y by d(x, E). Moreover x € Ris a
density point of E if and only if d(x, E) = 1. Let us take the family

Ty={E€ L:d(x,E)=1forall x € E}

Then ¥, is ordinary density topology on R [12] and it is finer than the usual topology Ty;. Any member of
T, is called a d-open set.

The idea of metric density was studied by Martin [23] in a totally finite measure space as follows. Let
(X, S,m) be a totally finite measure space in which m(X) = 1 and m is complete. For a subset E of X the
outer measure m*(E) of E is defined to be m*(E) = inf{m(F) : E C F € S}. Let 2 be a collection of sequences
{K,} of sets from S such that for each p € X there exists at least one sequence {K,} € % satisfying (i) p € K,
for each n and (ii) m(K,,) — 0 as n — 0. Any sequence {K,} € /¢ satisfying condition (i) and (ii) is said to
be convergent to p. Let J# (p) denote the collection of sequences in .’#* which converge to p. Then, for E C X
and for any point p in X the upper outer density of E at p denoted by D™*(E, p) and the lower outer density
of E at p denoted by D*(E, p) are defined by equations

x _ . m*(ENK,)
D™*(E, p) = sup{limsup —m(K,,) {Kulwen € F (p))
and “ENK,)
* . .. m n) .
DX(E,p) = infllim inf — 7= K) {Kulnew € Z (p)}.

When D*(E, p) = D_.(E, p), we say that the outer density of E exists at p and it is denoted by D*(E, p).
If E is measurable, we omit the word ‘outer’and call it respectively the upper and lower density of E at p
and we denote these by D™(E, p) and D_(E, p). If D~(E,p) = D_(E, p) we say that the density of E exists at p
and denote the common value by D(E, p).
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In the recent years the notion of classical Lebesgue density point were generalised by weakening the
assumptions on the sequences of intervals and consequently several notions like (s)-density point by M.
Filipczak and J. Hejduk [10], J-density point by J. Hejduk and R. Wiertelak [14], S-density point by
F. Strobin and R. Wiertelak [28] were obtained. Significant works on density topology are also seen in
[5 16,131} 33-35].

In this paper we have tried to generalize the classical Lebesgue density point using the notion of ideal 7
of subsets of naturals. We have given the notion of 7-density in the space of reals introducing the notions
of upper 7-density and lower 7-density. In Section |3| we have proved Lebesgue 7-density Theorem and
in Section [ we have given 7-density topology on the real line. We have shown that 7-density topology is
finer than the density topology on the real line. We have also studied the idea of 7-approximate continuity
and it is proved that J-approximately continuous functions are indeed continuous if the real number space
is endowed with 7-density topology. The existence of bounded 7-approximately continuous functions has
been given using Lusin-Menchoff condition for 7-density. In the last section we have proved that 7-density
topology is completely regular.

2. 7-density

Definition 2.1. For E € L, p € Rand n € N the upper 1-density of E at the point p denoted by I —d (p, E) and
the lower I-density of E at the point p denoted by I — d_(p, E) are defined as follows: Suppose {J,}nen be a sequence
of closed intervals about p such that

F(Jn)={neN:0<m(,) <1} eF)
For any such {],},en we take

_m(J,NE)
()

Then {x,}nen is a sequence of non-negative real numbers. Now, if

foralln € N.

By, ={beR:{k:x.>b}¢ I}
and
Ay ={aeR:{k:x<a} ¢TI}

we define,

I —d (p,E) = supf{sup By, : {Julnen such that #(]J,) € F (1)}
= sup{Z —limsup x, : {Ju}ne~ such that (J,) € F (1)}

and

I —d_(p,E) = inflinf Ay, : {Julnen such that Z(J,) € F (1)}
= inf{Z — liminf x, : {J,,}uen such that .7(J,) € F(I)}.

In the above two expressions supremum and infimum are taken over the class of sequences {],},en satisfying the
condition that .7 (],,) € ¥ (I') and it is to be understood that {],,}nen’s are closed intervals about the point p. Now, if
I —d_(p,E) =1 —d (p,E) then we denote the common value by I — d(p, E) which we call as I-density of E at the
point p.

A point pg € R is called an J-density point of E € Lif I —d(py, E) = 1.
If a point py € R is an 7-density point of the set R \ E, then py is called an 7-dispersion point of E.

Remark 2.2. The notion of I-density point is more general than the notion of density point as the collection of
intervals about the point p considered in case of I-density is larger than that considered in case of classical density
which is illustrated in the following example.
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Example 2.3. Let us consider the ideal 14 of subsets of IN where 1 is the ideal containing all those subsets of IN
whose natural density is zero and I y;,, the ideal containing all finite subsets of IN. Now, for any point x € R consider
the following collections of sequences of intervals:

Tz = Wntnen : {nlis a sequence of closed intervals about x such that 7 (],) € ¥ (I fin)} and
Gx = ({nlnen : {Jn}is a sequence of closed intervals about x such that 7 (],) € ¥ (I 1)}

We claim that . G G.. Since any finite subset of N has natural density zero so I gy C 1. Clearly, {J}nen € Jx
implies (]) € F (L fin). So, N\ .7 () € I fin which implies that N \ .7 (],,) € I 4. Thus, .7 (],,) € ¥ (L4). Hence,
{Jnlnen € Gx. S0, Jx C Gr.

Now in particular let us take the following sequence {K,}nen of closed intervals about a point x.

K, = [x— i, X+ anj] for n # m* where m € N
[x —n,x +n] for n = m* where m € N
We observe that for n # m?, m(K,) = 2n2+1 < % and for n = m?, m(K,)) = 2n ¢ % Therefore, ./ (K,) = {n €e N :
0 < m(Ky) < 1} = {n: n # m? for some m € N} € F(I4). But since N\ .#(Ky,) = {n : n = m* where m € N} is
not a finite set so it does not belong to I r;,. Therefore, Jx & Gy

Let us take the set E to be the open interval (—=1,1) and the point x to be 0. Let {Ky}yen € Go \ Jo be taken as

above. Now if x,, = % then

L ifn = m? wherem € N
m

; _{1 if n # m* where m € N
W=

Now let us calculate lim sup and lim inf of the sequence {x,}.

limsup x,, = infsup x; = 1 and liminfx, = supinfx; = 0.
n k>n n k=n

Consequently, lim,, x, does not exist. Next we will show that 0 is 1 s-density point of the set E.

Given any sequence of closed intervals {],},en about the point 0 such that #(J,) € F (I 1) we have {n e N : [, C
E} e F(1,). Forif Z(J,) = {k1, ko, ,ky, -} (say). Then there exists ng € IN such that for k, > ky,, Ji, C E. Thus,
{n:Jn CE}D L (Ju) \ k1, ko, -+ kny}. Since N\ {ky, ko, -+ kn} € F (L) s0

y(]n)\{kl/kZ/”'/kn()}:y(]n)m(N\{klrkZI"'/kno})ef(fd)'

Now if, |, C E then r, = mr(,{z‘]:f) = % =1 Thus, {n:r, =1} D {n: J, C E}. Therefore, {n:r, =1} € F(Iy).

Therefore, B, = (—o0,1) and A,, = (1,00) and so, I — limsupr, = supB,, = 1and 14 —liminfr, = infA,, = 1.
This is true for all {J,}nen € Go. Hence,

I4—d (0,E) = supf{sup By, : {Julnen such that #(J,) € F (L 4)} =1
and
T;—d_(0,E) =inf{inf A,, : {Ju}nen such that #(J,) € F (L)} = 1.

Hence I 4 —d(0, E) exists and equals to 1. So, 0 is an I 4-density point of the set E.
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Note 2.4. It is evident that for any sequence of intervals {J,}new such that #(J,) = {n € N : 0 < m(J,) < %} €
F (L fin) we have m(J,) — 0 as n — oo. For, let (],) € F (L fin). This implies N \ 7(],) is a finite set say
{n1,ny,--+ ,ng}. Take Ny = max{ny, ny,--- ,m}. Then n € Z(],) for every n > Ny. Let € > 0 be arbitrary. Then
there exists N, € IN such that 1\% < €. If we choose N3 = max{N1, N»} then for every n > N3 we have n € .7(],) and

% < 1%2 So, m(J,) < % < N% < Niz < € which implies m(J,) — 0 as n — oo. Also note that if ideal 1 = 1 g;, then for
any bounded real sequence {x,},

I ¢ —limsupx, = limsupx, and Iy, —liminfx, =liminfx,

So when I = I sy, the definition of upper and lower density points take the forms

I ¢y —d™(p,E) = sup{Z si, — limsup x, : {Ju}new such that 7 (J,) € F (I fin)}
= sup{limsup x, : {Ju}nen such that Z(],) € F (L fin)}
= sup{limsup x, : {Ju}wen € 2 (p)}
=D7(E,p), theupper metric density
Similarly,

I fin —d_(p,E) = inf{Z ¢, — liminf x,, : {Ju}nen such that 7 (J,,) € F (I fin)}
= inf{liminf x, : {J,}en such that 7 (],,) € F (I fin)}
= inf{lliminf x, : {Ju}uen € X (p)}
=D_(E,p), the lower metric density

Thus in particular if I = I g, our definition of I-density coincides with definition of metric density as introduced
by 123 and I f;,, — d(p, E) = D(E, p). Also it was mentioned in [23|] that for the family of all regular sequences of
intervals converging to x we get ordinary density.

The following theorem was given by K. Demirci [8].
Theorem 2.5. For any real sequence x, I —liminfx < 7 — lim sup x.
Here we are proving some important results which will be needed later in our discussion.
Theorem 2.6. For any Lebesgue measurable set A C R and any point p € R,
I—d (pA)<TI-d(pA).

Proof. Let {Ii}ren be any sequence of closed intervals about the point p such that . (i) € ¥ (J). Let us take
m(ANI,)
m(ll‘l)

the real sequence x, = . Then clearly, 7 — liminfx, < 7 — limsup x,. So,

I —d_(p,A) =inf{7 —liminfx, : {I,},en such that 7 (I,) € F (1)}
<inf{7 —limsupx, : {I;}sen such that .7 (I,,) € F (1)}
< sup{f —limsup x, : {I,}sen such that .(I,) € F (1)}
=71 —-d(pA).

O
The following theorem is useful to prove our next results.
Theorem 2.7 ([21). If x = {x,}new and y = {Yu}new are two I-bounded real number sequences, then

(i) I -limsup(x+y) <7 —limsupx +J —limsupy
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(if) 7 —liminf(x +y) > 7 —liminfx + 7 — liminfy
Proposition 2.8. Given an I-bounded real sequence {x,},en and a real number c,
(i) 7 —liminf(c + x,) = c+ 7 —liminfx,
(if) Z —limsup(c +x,) =c+ 1 —limsupx,

Proof. (i) Itis obvious that 7 —lim inf(c+x,) > c+ 7 —liminfx,. Now we are to show that 7 —liminf(c+x,) <
c+ 71 —liminfx,. Let y, = c + x,. Then I —liminfx, = 7 — liminf(y, — ¢) > 7 - liminfy, — c. Therefore,
I —liminfy, < c+ I —liminfx,. So, we can conclude that 7 — liminf(c + x,,) = ¢ + 7 — liminf x,,. The proof
of (ii) is analogous. [

Proposition 2.9. For any real sequence x = {x,}neN,
(i) I - limsup(—x) = —(J —liminfx)
(if) J - liminf(—x) = —( - limsupx)

Proof. (i) Letus take By = {b e R: {k:x > b} ¢ I} and Ay ={a € R: {k: xx <a} ¢ I}. Then clearly,
B(_x) =—A,.

Therefore, 7 — lim sup(—x) = sup B_y) = sup(—Ay) = —inf A, = =7 — liminf(x). In a similar manner we
can prove (i)). O

Lemma 2.10. For any two disjoint Lebesgue measurable subsets A and B of R and any point p € Rif I —d(p, A)
and I —d(p, B) exist, then I —d(p, A U B) existsand I —d(p, AUB) =1 —d(p,A) + 1 —d(p, B).

Proof. Let {Ix}ren be any sequence of closed intervals about the point p such that 7 (Ix) € ¥(Z). Now let
us take the real sequences {x,}seN, {Vn}neN, {Znlnen defined as x, = mﬁ%’l), = "ﬂﬁﬁ?f)”) and z, = %
Then each of {x,}neN, {Yn}neN, {Zn}new is bounded and hence 7-bounded. Since A and B are disjoint sets, we

have for any n € Z(Iy), m((AUB) N I,) = m(AN1L,) + m(BN1,). So, z, = x, + y, for n € #(Ix). Hence,

I —d (p, AU B) =sup{ — limsup z, : {I,}nen such that #(I,) € ¥ (1)}
= sup{J — limsup(x, + ¥u) : {In}nen such that .7 (I,,) € ¥ (1)}
<sup{f —limsupx, + 7 —limsup y, : {I,},en such that #(I,,) € F (1)}
< sup{Z —limsup xy, : {I}yen such that #(I,) € F (1)}
+ sup{Z — limsup yy : {In}nen such that .#(I,) € F (1)}
=1 -d@pA+I-d({pB)
=1-d-(pA)+1—-d_(p,B) (1)
= inf{J — liminfx, : {I,},en such that (I,) € ¥ (1)}
+inf{7 - liminfy, : {I,}nen such that .7 (I,,) € ¥ (1)}
<inf{Z —liminfx, + 7 — liminfy, : {I,},en such that .(I,) € ¥ (1)}
<inf{Z - liminf(x, + yy) : {I,}sen such that #(1,) € 7 (1)}
= inf{J — liminfz, : {I,},en such that .”(I,,) € ¥ (1)}
=7 —-d_(p,AUB).
Also, by Theorem 2.6, 7 —d~(p, AUB) > I —-d_(p, AUB). Therefore, 7 —d(p, AUB) existsand 7 —d~(p, AUB) =

I—-d_(p,AUB) = I —d(p, AUB). From (1) itis clear that 7 —d(p, AUB) < I —d(p, A)+1 —d(p, B) < I —d(p, AUB).
Hence, I —d(p,AUB) =1 —d(p,A)+1 —d(p,B). O

Lemma 2.11. For any two Lebesgue measurable subsets A and B of R and any point p € R if I — d(p, A) and
I —d(p,B) existand A C B, then I —d(p, B\ A) existsand I —d(p, B\ A) =1 —d(p,B) - 1 —d(p, A).
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Proof. Since A and B are measurable sets, for any sequence of closed intervals {I;}ren about the point p such
that .7 () € ¥ (1) we have for n € Z(Iy), m((B\ A) N I,) = m(B N I,) — m(A N I,). Consider x, and y, as in

previous lemma. Take p, = %. So, pu = yn — x,. It is easy to see that {p,},en is bounded and hence
an J-bounded sequence. So,

I —d_(p,B\ A) =inf{] - liminfp, : {I,},en such that .#(I,) € F (1)}
= inf{7 — liminf(y, — xy) : {Is}sen such that .7 (I,) € 7 (1)}
> inf{7 —liminfy, — 7 — limsup x, : {{;}nen such that .7 (I,,) € ¥ (1)}
> inf{7 - liminfy, : {I,}sen such that 7 (I,) € (1)}
—sup{Z — limsup x;, : {I,}nen such that #(I,,) € ¥ (1)}
=1-d-(p,B)-1—-d (pA)
=1-d(p,B)-1—-d(pA)
=sup{Z — limsup y, : {I}nen such that .7 (I,,) € F (1)}
—inf{Z —liminfx, : {I,},en such that .(I,,) € ¥ (1)}
> sup{ — limsup y, — 7 — liminfx, : {I,},en such that .#(I,,) € 7 (1)}
> sup{Z — limsup(y, — x,) : {In}nen such that .7 (I,) € F (1)}
= sup{Z — limsup(p,) : {I,}nen such that .7 (I,) € F (1)}
=7 —-d(p,B\A).
Therefore, 7 —d(p, B\ A) existsand 7 —d~(p, B\ A)=1 —d_(p, B\A)=71 —d(p,B\ A). So, I —d(p,B\ A) >
I —-dp,B)—1—-d(p,A)>1—d({p B\ A). Hence, I —d(p,B\A)=1—-d(p,B)—1 —d(p,A). O

Theorem 2.12. For any measurable set H, I-density of H at a point p € R exists if and only if I —d (p,H) + I —
d(p,H) =1.

Proof. Let {Ix}ren be any sequence of closed intervals about the point p such that .7(Iy) € ¥ (1) and let H
be a measurable subset. Let x,, = mh0H) ond Yn = mLOH) Then Xy + Yn = 1 VYn € 7 (). Both {x,}en and

m(ly) m(I,,)
{Ynlnen are 7-bounded sequences.
Necessary part: Let 7-density of a measurable set H at the point p exists. Now

T-d (p,H)= T -d_(p,H)
= inf{Z — liminfx, : {I,},en such that .#(I,)) € F(I)}
= inf{7 — liminf(1 — y,) : {Ix}xen such that .7 (I,,) € F (1)}
=inf{l — 7 — limsup y, : {Ix}nen such that .#(I,) € F (1)}
=1-sup{Z - limsup y, : {I,}sen such that . (I,,) € ¥ (1)}
=1-7-d (p,H.

Sufficient part: Let 7 —d~(p, H) + 1 —d~(p, H°) = 1. Then,

I-d(pH=1-1-4d (p,H)

1 —sup{Z — limsup yy : {Is}uen such that #(I,) € F (1)}

=inf{l1 — 7 —limsup y, : {I,}nen such that #(I,) € F (1)}
inf{1 + 7 — liminf(-y,) : {I,}sen such that .7 (I,,) € F (1)}

= inf{7 — liminf(1 — y,) : {I,}nen such that #(I,) € F(I)}

= inf{Z — liminfx, : {I,},en such that .#(I,) € F(I)}

— T —d_(p,H).

Hence, 7-density of H at p exists. [
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3. Lebesgue 7 —density theorem
Let H C R be a measurable set. Let us denote the set of points of R at which H has 7-density 1 by @7 (H).
Theorem 3.1. For any measurable set H C R, ©r(H) \ H C H° \ ©7(H°).

Proof. 1t is obvious that ®r(H) \ H C H°. Now we show if x € ©7(H), then x ¢ ©7(H°). Suppose if possible,
x € Or(H)NOr(H®). Then I —d(x,H) =1 and I —d(x, H°) = 1. But this leads to a contradiction to Theorem
2.12. Therefore, ©7(H) N ©r(H°) is an empty set. Thus, ©7(H) \ H C H°\ ©7(H"). O

Here we prove an analogue of classical Lebesgue density theorem by the idea presented in [25] (Theorem
3.20).

Theorem 3.2. For any measurable set H C R, m(HA®7(H)) = 0 where HA®r(H) stands for the symmetric
difference of H and © r(H).

Proof. 1t is sufficient to show that for a measurable subset H of R, H \ @7 (H) is a null set, since ©7(H) \ H C
H\ ©®7(H°) and H* is measurable. Let us assume that, without any loss of generality, H is bounded because
if H is unbounded, it can be written as | ;- ; H, where each H, is bounded.

For p > 0 let us take

Cu=(xeH:T—d(x,H) <1-p). )

Then, for y; < u» we have Cy, ¢ C,, and H \ Oz (H) = Uy>0 Cu. We are to show that m*(C,) = 0. Let, if
possible m*(C,) > 0 for some u > 0. Since C;, C H and H is bounded, so C,, is bounded. Then there exists a
bounded open set G O C, such that (1 — u)m(G) < m*(C,). Let ¥ be the family of all closed intervals I such
that I ¢ G and m(H NI) < (1 — u)m(I). Then for each x € C;, d] € ¥ such that x € ] and m(J) < € for arbitrary
small € > 0. So, C, is covered by ¥ in the sense of Vitali. For any disjoint sequence {Ix}ten of elements of 7,

m*(Cu (1) = m*(|_J(Cun 1) < 2 m*(Cy NI < Zm(H NI

keN keN keN keN
<(1-w ) mI) < (= pm(G) < m*(Cy).
keN
Therefore,
m*(Cu\ |10 > 0. 3)
keN

We construct a disjoint sequence {Jx}xen of elements in F as follows. Let ag = SUp s m(]). Choose J; € ¥
such that m(J;) > 3. Take 1 = {J € ¥ : [N ]1 = ¢}. Then F; is nonempty, since m*(C, \ J1) > 0, by (3).
Let a1 = sup;cz m(]). Choose J> € #; such that m(J) > F. Take Fo = {J € F1: J N ], = ¢}. Then 7, is
nonempty, by (3). Likewise we choose Ji, J2, ..., J,. By induction, let us take #, = {J € Fm1 : [ N ], = ).
Then ¥, is nonempty, by (3). Let a, = sup{m(]) : | € F,}. Choose J,+1 € F, such that m(J,41) > "‘7
Take B = C; \ Uken Jk- Then, by (3), m*(B) > 0. Since Jx C G Vk € N, it follows that Jyen Jk € G. Thus

Ype1 m(Jx) < m(G) < co. Therefore, A1y € N such that };2 m(Ji) < @. For k > ng let Qi denote the
interval concentric with J; such that m(Qx) = 4m(Ji). Now, Y.;2, . m(Qx) = 4 X.i2,, .1 m(J¥) < m*(B). So, the
family of intervals {Qx}i>n, does not cover B.

Letustakeb € B\ U,‘:;noﬂ Qk. Then, b e C,, \ UZil Jk- Since, ¥ is a Vitali cover of C;, dan interval | € ¥,
such that b € [ and b is the center of J. Clearly for some k > ng, ] N Ji # ¢. Because if | N Ji = ¢ Vk > ng, then
since ] € F, JN i =¢fork =1,2,...,n9. Hence, ] N [ = ¢ Yk € N. Thus, | € F, ¥n € IN which implies
that m(J) < a, < 2m(J41)¥n € N. Again, since Y2, m(Jx) < m(G) < oo, so for given any € > 0 3 ky € N such
that Y2, m(Ji) < e. But, X2 m(Ji) > Y2, (57). So we get a contradiction.

So, let ky be the least positive integer for which J N Ji, # ¢. Then, kg > ny and | € Fg,—1. Therefore,

m(J) < ag,—1 < 2m(Ji,) = @ Now for b € J and | N J, # ¢ we have the following two cases.
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1. Ifb e Jior thenb € Qko'

2. If b ¢ Ji,, then also we claim b € Q,.

Since b is the center of ], let us take | = [b — @,b + @]. Let x4, be the center of Ji,. Then take

m(Jky) m(Jiy)
Jio = [k — =52, Xk + —5 21

Consequently, Qk, = [xx, — 2m(Jk,), Xk, + 2m(J,)].

Letx € J N Ji,.Then, |b— x| < m(]) (

m(]ko) + m(ékﬂ) = gm(]ko) < zm(]ko)

(D (]ko) <
2

Ib = x| < 10— x| + | = x| < ==

Hence, b € Q, which implies that b € [J;Z,, ,; Q«. This leads to a contradiction to our choice of b in
B\ U,‘znoﬂ Qx. So, m*(C,,) = 0 for each u > 0. Therefore, m(H \ @7(H)) = 0. O

The statement of this theorem may also be stated as follows: ‘Almost all points of an arbitrary measurable
set H are the 7-density points of H'.

4. I-density topology

Definition 4.1. A measurableset E C Ris I —dopeniff I —d_(x,E)=1Vx € E.
Let us take the collection Ty = {A CR:Ais 7 —d open}.

Theorem 4.2. The collection Ty is a topology on RR.

Proof. By voidness, ¢ € T;. Since R € L, so for E = R and any r € R let {[i}ren be any sequence of
closed intervals about the point r such that .(I,,) € F (). It is clear that R N Iy = I for all k. Therefore

X = mfﬂ“?pik) =1 for all k € N. Then

Ay =laeR:{k:x  <a} ¢ I} =(1,0).

Thus, 7 —d_(r,R) = inf{inf A, : {I,},en such that .#(I,) € F(J)} =1 Vr € R. Therefore, R € T;.

Next, let A be an arbitrary indexing set and {Ay}sea be a collection of sets in Ty. We are to show,
Usen Aa € Ty. Clearly A, is measurable and 7 — d open for each a € A. First we have to show, [ J,cp Aq is
measurable. Let us take A = |, ep Aa-

Let us take a pointp € A. Sop € A, for some a € A. Since A, is I —d openso I —d_(p, A,) = 1. Therefore,

m(AuNI, ) _

L
m(l})

= 1. This means that for any

there exists a sequence {I},en of closed intervals about p such that .#(I})) € ¥ (Z) and 7 —lim inf,

mAaNI) AN . . . AN
Thus, 7 — lim inf, ) V<1 - limsup,, M(Tlﬁ)) < 1implies I — lim, m(TIﬁ))

€ > 0 there exists 19 € N such that V n € .#(I) and n > ny we have

m(Ax N 1P)

l1-€e<
m(I})

<l+e.
m(AanL})
m(IZ)

Aisbounded, by Vitali Covering Theorem for R, A contains a measurable set G such that m*(A\G) < e m(G).
Therefore, A is measurable. If A is unbounded, then A can be written as A = Uf:l A, where each A, is
bounded and measurable. Therefore, A is measurable.

Now we will show that forallp € A, 7 -d_(p,A) = 1. If p € A, then p € A, for some a. So,
I —-d (p,Ay) =1. Since, I —d_(p,A) > I —d_(p,As) = 1. Therefore, 7 —d_(p,A) =1 VYp € A. Hence,
A =UgenAs € Tr.

So for some suitable k we have > 1—e¢. Since A, is measurable so A, N If is measurable subset of A. If
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Finally, for any two set A,B € Ty we are to show AN B € T;. Since both A and B are measurable,
A N B is measurable. Now, for any p € A N B we are to show that 7 —d_(p,A N B) = 1. It is sufficient to
show that 7 —d_(p, AN B) > 1Vp € AN B. Let {I}ren be any sequence of closed intervals about a point p

such that .7 (I;) € F(I). Let us define a,, = mr(rﬁgl)”), b, = mfﬁ%") and p, = %. Then for all n € (1),

mANL)+mBNIL)-mANBNI,) <m(,)
So,

m(ANI,) N m(B N I,) <1+ m(ANBNI,)
m(In) m(In) m(Iﬂ)
Hence, a, + b, <1+ p,. Taking 7 — liminf on both sides we have

I —liminf{a, + b,} < 7 —liminf{1 + p,} =1+ 7 - liminfp,.
Thus,

inf{7 — liminf{a, + b,} : {I,},en such that .#(I,,) € ¥ (1)}
<1+inf{7 — liminfp, : {I,},en such that .7 (I,,) € F(1)}.
Since,
I —liminfa, + 7 —liminfb, < I — liminf{a, + b,}.
So,

inf{7 —liminfa, + 7 — liminfb, : {I,,},en such that #(I,) € F (1)}
<inf{J - liminf{a, + b,} : {I,,},en such that #(I,,) € F (1)}
<1+ inf{7 — liminfp, : {I,},en such that .7 (I,,) € F(1)}.

Hence,

inf{7 —liminfa, : {I,,},en such that #(I,) € ¥ (1)}
+inf{J — liminfb, : {I,},en such that .#(I,,)) € ¥ (1)}
<inf{f - liminfa, + 7 — liminfb,, : {I,},en such that .7(I,,) € ¥ (1)}
<1 +inf{7 — liminfp, : {I,},en such that .7 (I,,) € F(1)}.

Therefore,
I—-d-(pA)+7T—-d_(p,B)<1+71—-d_(p,ANB).

Now since A,B € Ty wehave 7 —d_(p, AN B) > 1. So, T is a topology on R. [

The topology Tr is called the I-density topology on R and the pair (R,T;) is the corresponding
topological space.

Theorem 4.3. The family Ty is a topology on the real line finer than the natural topology ;.

Proof. Let us take an open set U in Ty;. Since any Ty-open set in R can be written as countable union of
disjoint open intervals, so without any loss of generality, let U be an open interval (4, b) where 4,b € IR and
a < b. We are to prove that U is 7 — d open. Clearly U is Lebesgue measurable. Now given any point p

in U suppose {J,},en be any sequence of closed interval about p such that .(J,,) € ¥ (). Then there exists
ng € N such that for n > ng and n € .7(J,,) we have J, c U. So for n > ng and n € .7(J,,), x, = mg’g?ﬂ;l) =1.
Therefore, (k€ N : x, =1} > Z(J,) N (IN\ {1,2,--- ,1,}). Thus, {k € N : x, = 1} € F(I). So, Ay, = (1,0) and
I —d_(p,U) =inf{inf A, : {Ji}rew such that 7 (I,) € F(I)} = 1. Hence, U is I — d open. Thus, any set that is
open in natural topology Ty on R is also 7 — d open. So the topology <7 is finer than the topology Ty;. O
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Definition 4.4. A set F C R is said to be 1 — d closed if F® is 1 — d open.

Definition 4.5. A point x € R is called an I — d limit point of a set E C R (not necessarily measurable) if and only
if I —d~(x,E) > 0 where instead of taking measure m outer measure m”* is taken.

Theorem 4.6. In the space (R, Tr) given any Lebesgue measurable set E C R, m(E) = 0 if and only if Eis 1 —d
closed and discrete.

Proof. Necessary part: Let m(E) = 0. Then for any point p € R and any sequence {I,},en 0f closed intervals

about p such that .”(I,) € ¥ (1) take x,, = mr(,f’&:f). Thenx, =0¥neN. So, By, ={beR:{k:x>b} ¢ I} =
(=00,0). Thus, I —d (p, E) = sup{sup By, : {I}kew such that #(Iy) € ¥ (1)} = 0. Hence, p is not an 7 —d limit
point of E. So, E has no 7 — d limit points. Therefore, E is 7 — d closed and discrete.

Sufficient part: Let E be 7 —d closed and discrete. Then E has no 7 —d limit pointsand so 7 —d~(p,E) = 0
Vp € R. Thus 7 —d(p,E) = 0 Vp € R. But, by Lebesgue 7-density theorem, 7 — d(p,E) = 1 for almost all

p € E. Therefore, m(E) =0. O

Remark 4.7. Though Q is neither open nor closed in (R, Tyy) and since m(Q) = 0, by Theorem 4.6, it is 1 — d closed
in (R, Tz). So a natural question arises whether a subset of R exists which is neither I —d open nor I —d closed. In
the following example we have shown that such sets do exist in (R, Tr).

Example 4.8. There exists a subset of R which is neither I — d open nor I —d closed. Here we are giving a
construction of a collection of such sets in R. Let us take an open interval I = (x1,x7) where x1,x, € Q and x1 < x;.

Since I is open in (R,Ty) it is T — d open. Now, let b = (leﬂ Then b is the center of I and b € Q. Take
J = [b - @,b + "‘24;’“'] Then J Cc I. Let I' = I\ (J N Q°). We claim that I’ is neither I — d open nor I —d

closed. Let {It}ren be a sequence of closed intervals about b € I' such that #(Iy) € F(I). Take, x; = m}%;;) For
largek € S (Ix), Ir N I") € Q. Thus m(Iy NI') = 0. Thus, By, = {b € R: {k: x> b} ¢ I} = (—00,0). Therefore,
I —d (b,I') = sup{sup By, : {Ix}ken such that #(Iy) € F(I)} = 0. Thus, I —d_(b,I') = 0 and so b is not an
I -density point of I'. Hence, I’ is not I — d open.

Now, to show I is not I —d closed we are to show (I')° is not I —d open. Wesee, (I')° = (=00, x1]U(JNQ)U[x2, o).
Let {Jilren be any sequence of closed intervals about the point x1 such that .7 (J,) € ¥ (I) where in particular we
choose Ji = [x1 - 237,3(1] Vk € IN. Take, z; = %X))) where 0 < m(Jy) = 507 < 1 Yk. So (i) = N € F(I).
Then, m(Ji, N (I')°) = 0 Vk implies zx = 0 Vk. So, inf{T — liminfzy : {Jx}xen such that #(Jx) € ¥ (1)} = 0 which
implies I —d_(x1, (I')°) = 0. Therefore, x1 is not an I-density point of (I')°. So, (I') is not I — d open.

5. 7I-approximate continuity

The notion of approximate continuity introduced by A. Denjoy is connected with the notion of Lebesgue
density point. Since the idea of classical Lebesgue density point has been generalized to J-density point,
subsequently in this section, we should obtain the notion of 7-approximate continuity.

Definition 5.1 (cf.[4]). A function f : R — R is called I-approximately continuous at xo € R if there exists a set
Ey, € Lsuch that T —d(xo, Ex)) = 1 and flg, is continuous at xo.

If the function f is 7-approximately continuous at every point of R then we simply say f is 7-approximately
continuous. We use the notation 7 — AC to denote J-approximate continuity of f. If ‘ f is J-approximately
continuous at x’'we simply write (in short) ‘f is 7 — AC at x".

Now we prove the following results with suitable modification of classical proofs.

Theorem 5.2. If f,g: R — Ris I — AC at x, then the functions f + g, f -gand a - g foranya € Rare I — AC at
xo. If g(x) # 0 for any x € (xo — 6, xg + 0) where 6 > 0 then % is I — AC at xg.
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Proof. At first we show for any two Lebesgue measurable subsets A and B of R and a point xp in R if
I —d(xp,A) =1and I —d(xg, B) = 1 then I —d(xy, AN B) = 1. It is sufficient to show 7 —d_(xo,ANB) > 1.
Let {I}ren be any sequence of closed intervals about xq such that .7 (Ix) € (7). Then for k € .(I;) we have

m(ANIy) + m(B N Ix) <14 m((A N B) N I)
m(Ix) m(ly) m(ly)

m(ANI) _ m(Bnl) 7, = m((ANB)NI
m) 7Tk = Tm@) 1k )

Let us take x; = = ). So, zx = x¢ + yx — 1. Thus,

I —liminfz, > I — liminf(x, + y, — 1)
> 7 —liminf(x, + y,) — 1
> I —liminfx, + 7 —liminfy, — 1.

Hence,

inf{7 —liminfz, : {I,} such that #(I,,) € ¥ (1)}
> inf{7 - liminfx, + 7 —liminfy, — 1 : {I,} such that .”(I,,)) € ¥ (1)}
> inf{J — liminfx, : {I,} such that .#(I,,) € ¥ (1)}
+inf{Z — liminfy, : {I,} such that .”(I,) € ¥ (1)} - 1.
So,
I —d_(xg,ANB) =inf{Z — liminfz, : {I,} such that & (I,,) € F (1)}
>71- d_(xo,A) + 7 - d_(XO, B)-1
=1+1-1=1.
Now since f and g are 7 — AC at xo, so there exists two sets E¢ and E,; in R such that x, is an Z-density
point of both Ef and E,; and hence I —d(xo, Ef N E;) = 1. Also fIEf and gIEy are continuous at xy. So,
(f + Dlesne, = flesne, + glEsE, -

Hence, (f +g) is 7 — AC at x. Again,

(f - Dlesne, = flesnE, - glesE,-

Hence, (f - g) is 7 — AC at x¢. Similarly foranya € R, (a- f) is 7 — AC at xy.
Moreover, since g(x) # 0 for any x € (xo — 6, x¢ + 0) where 6 > 0, so g| E,N(xo-8,x0+0) F 0 and continuous at
xop. Then (%)lg ,Nxo—d,x+0) 18 continuous at xg and xp is an Z-density point of E; N (xo — 6, xo + 6). Hence % is

I —-ACatxy. O
Theorem 5.3. If f is I — AC at x and g is continuous at f(xo) then (g o f)is I — AC at xo.

Proof. By hypothesis, there exists a subset Ef of R such that 7 — d(xo, Ef) = 1 and f|g, is continuous at
xo. Now (g0 f)lg, = g o flg,. Since composition of two continuous functions is continuous so (g o f)Ig, is
continuous at xg. Thus, (go f)is 7 — ACatxy. O

We state here the Lusin’s Theorem for our future purpose.

Theorem 5.4 ([25]). A real valued function f on R is measurable if and only if for each € > 0 there exists a set E
with m(E) < € such that the restriction of f to R \ E is continuous.

Theorem 5.5. A function g : R — R is measurable if and only if it is I — AC almost everywhere.
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Proof. Necessary part: Let g be measurable. For € > 0, by Lusin’s Theorem, there exists a continuous
function ¢ such that m({x : g(x) # ¢¥(x)}) < e. Let E = {x : g(x) # (x)}. Since E is measurable so E°
is measurable. By Theorem 3.2, almost every point of E° is a point of 7—density of E° and glg- = ¢ is
continuous. So g is 7 — AC at almost every point of E°. Thus gis I — AC except on E where outer measure
of E is less than €. So, g is I — AC almost everywhere, since € > 0 is arbitrary.

Sufficient part: Suppose g is 7 — AC almost everywhere. We show g is measurable. For r € R let
E, = {x : g(x) < r}. Itis sufficient to show that E, is measurable. Without any loss of generality let E, be
uncountable. Let B={x € R:gis 7 — AC at x}. Then

E, = (E,NB)U(E, \ B).

From hypothesis m(R \ B) = 0. Since m is a complete measure so E, \ B € L. Itis enough to show E,NB € L.
Let t € E, N B. Since t € B so there exists a set D; € L such that I —d(t,D;) = 1 and f|p, is continuous at .
Without any loss of generality D; can be chosen inside E, N B. Therefore

E,NB= U D:.

teE,NB

If possible, let E, N B be not measurable. Then there exists an Euclidean F,; set P and Euclidean G5 set H
such that PCc E, "B C H and

m(P) = m,(E, N B) < m*(E, N B) = m(H).
Thus m(H \ P) > 0. By Theorem 3.2, almost every point of H \ P is a point of 7-density of H \ P. Since
m(H \ P) = m*((E, N B) \ P), so m*((E, N B) \ P) > 0. There exists ty € (E, N B)\ P c H\ P such that
I —d(ty,H\ P) = 1. Now fy € (E, N B). So there exists set Dy, C E, N B such that 7 — d(ty, D;,) = 1. We claim
that m(Dy, \ P) > 0. For, if possible, let

m(Dy, \ P) = 0. 4)
Then 1 —d(ty, Dy, \ P) = 0. Now H = Dy, U (H \ Dy,). So, by Theorem 2.13,

I —d(ty,H\ Dy,) =0, since I —d(ty,Dy,) = 1. (5)
Here

H\ P = (D, \ P)U((H\P)\Dy).
Now from (4) and (5) we have

I —d(to,H\ P) = I —d(to,Ds, \ P) + I —d(to,(H\ P)\ Dy,) = 0.

This is a contradiction. Now m(D;, \ P) > 0 implies m,(Dy, \ P) > 0. Then m,((E, N B) \ P) > 0. This
contradicts to the fact that m(P) = my(E, N B). ThusE,NBe L. O

Definition 5.6 ([24]). The set of all continuous functions defined on interval I is called as the null Baire class of
functions. If the function g(x) defined on I is not in the null class but is representable in the form

9x) = lim g,(x ©)

where all the functions g,(x) are continuous then g(x) is said to be a function of the first Baire class. In general the
functions of Baire class m € IN are functions which are not in any of the preceeding classes but can be represented as
the limit of sequence of functions of Baire class (m — 1) as in (6).

In this way all the classes of functions with finite indices are defined. We denote these classes by 8y, B1, ..., By, ...
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Theorem 5.7 ([24]). Let I be a fixed interval and g : I — R be a function of class not greater than my and let 1 be a
function of class not greater than my whose values lie in I. Then (g o V) is a function of class < my + my.

Theorem 5.8 ([24]). Let I be a fixed interval. Then g : I — R is a function of Baire class not greater than the first if
and only if for arbitrary a € R the sets C* = {x : g(x) < a} and C, = {x : g(x) > a} are of type Euclidean F,.

Theorem 5.9. Given any fixed interval I if g : I — Ris T — AC function, then g belongs to first Baire class.

Proof. Since gis I — AC, so by Theorem 5.5, g is measurable. First let us take g to be bounded. Then there
exists a positive number M such that |g(x)| < M for x € I. Now for a € I define

G(x)=f g(t)dt.

Then G : I — R is a continuous function. We claim for each r € I,

. G@r+k) -G
111’1’1 _—
k—0 k

=9 (7)

i.e., given any € > 0 there exists 6 > 0 such that |} fr H g(t)dt — g(r)| < e whenever k < 0. Since g is 7 — AC
on I, so for r € I there exists B, C I such that 7 — d(r, B,) = 1 and gl, is continuous at r. So for each k > 0

1 r+k 1 r+k
i [ ao-aw|=[ [ 00 -gone
r+k
<z ] o= gou ®)

1 1
i [ we-gwie g [ - gy
[r,r+k]NB, [r,r+k]\B,

Now for given any € > 0 we choose 6 > 0 such that the following hold:

1. Since g, is continuous at 7, so for t € B, N (r — 6,7 + 6) we have |g(t) — g(r)| < 5.

2. Since I —d(r,B,) = 1,s0 I —d(r, BS) = 0 and so for some k < 6 we have w < I

For k < 6 from (8) we obtain

r+k
‘%f g(Bydt — g(r) S%'g'm([r,i’+k])+%2M-m([r,r+k]\B,)
1 e 1 ek )
=e.

Similarly calculating for k < 0 we obtain (7). Thus for each r € I we have

1y _
g(r)z}g%w zgngggn{c(pf%)_c(r)}‘

Now let G,,(r) = n{G(r + %) — G(r)}. Then G, is continuous, since G is continuous. Therefore g is in first
Baire class.

Now if g : I — R is unbounded then let & : R — (0,1) be a homeomorphism. So, h and h™! are
continuous. Also by Theorem 5.3, hog:I — (0,1)is 7 — AC and (k o g) is bounded. So by the first part
(h o g) is in first Baire class. Now g = h™! o (h o g). Hence by Theorem 5.7, g is in first Baire class. [
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The next lemma is based on the idea presented in [32](Theorem 3.1) and the condition presented in this
lemma will be called the condition (J,) of J. M. Jedrzejewski.

Lemma 5.10. Let {G,}uen be any decreasing sequence of Lebesque measurable sets such that for some xy € R,
I —d(xy,Gy) =1 Vn € IN. Then there exists a decreasing sequence {s,},eN 0f positive real numbers converging to
zero such that

(o]

Avy = |G\ (0 = 50,0 + 5)) and T = d(xo, Ay)) = 1.

n=1

Proof. Let {0,},en be a strictly decreasing sequence such that0 < 6, <1V¥n € Nand 6, = 0asn — co. Now
since 7 —d(xp,G,) =1Vn € N, so I —d_(x9,G,) =1and I —d (xy, G,) = 1. Clearly,

inf {I liming G2 0 10
m(ly)

:{L}nen such that .7 (I,,) € T(I)} =1
and

m(Gn N Ik) .

sup {J — limsup ‘Al }pew such that Z(I,) e F (1) p = 1.
m(ly)

So for any sequence of closed intervals {I;};eny about xg such that .7 (Iy) € ¥ (I) we have

. .m(Gy N . m(G, N Iy)
<7I- —= <7 - — <
1 <7 - liminf ) S I —limsup m()
Therefore, 7 — lim inf; % = I —limsup, % =1 — limy % = 1. So for given any € > 0 and for
eachn € N,
m _ |, m(GyN L) 3
Ce _{k'—m(lk) >1-epeF ().

Now for € = 9, there exists k, € IN such that, fork > k,, and k € C((S"),

m(Gy N I)

>1-0,.
m(Ix)

We choose k,’s so that {k,}sen is increasing and the sequence {m(li, )} en is decreasing. Thus consider a
subsequence {I,}, .- of the sequence {Ix},_.» and put
n=on on

sn = Oym(ly,,,) for n € N and ky41 € Cé”).

. 1 . . . . . .
Since 6, — 0 and m(Iy, ) < T/ SO 8y — 0 as n — oo. Since 0, is decreasing and m(ly,) is decreasing, s, is

decreasing. Without any loss of generality we can assume that m(Iy) is decreasing for k € C((S:). For 6 > 0
there exists 1y € IN such that 36, < 6 for n > ny. Moreover there exists [1 € IN such that m(ly) < m(lx, ) for

k>liand k e ng). Now fixk >y and k € ng). So there exists n1 > 1y such that

np+1

m(l, ..) < m(l) < m(ly, ).

ny+1
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Since {m(Ix)},, is decreasing sequence, so k > k,,. Thus for fixed n = n; we have

(1)
eC o

m ((Gm \ (xo — Sy, X0 + Snl)) N Ik) _m ((Gn1 NI\ (xo — SnysXo + Snl))

m(ly) m(Iy)
m(Gp, NIx) — 2s,,
m(Ix)
3 m(Gp, N 1) B 2s,,
m(Iy) m(Iy) (10)
26”1m(1kn +1)
>1-0, — ————
m(Ix)
>1 =0, — 20y,
=1-35,,
>1-0.

So, since for all k € N

m(Ax, NIx)  m((Gyy \ (X0 = Sy, X0 + Sy ) N i)
m(ly) m(Iy) ’

we have

- m((Gy, \ (X0 = Sy, X0 + 8ny)) N L) B - m(Ay, N 1) B
{k. ) >1 5}C{k'—m(lk) >1 6}.

Moreover, since 7 is an admissible ideal,

{k : m((Gp, \ (X0 = Sny, X0 + Sny)) N i)

>1—5}3cg:>m(N\{1,2,~~ h) € F (D).

m(Ix)
Hence, {k : m(ix(‘}glk) >1- 6} € F(I). Therefore, {k :1-6< % <1+ 6} € F(I)and so J —limy m(f&(}kr;lk) =
1. Clearly for any sequence of closed intervals {I}ren about xg such that #(Ix) € ¥ (I) we have
Ay, N L) . m(Ax, N Ir) . m(Ay, N k)
J —liminf ————= =7 —limsup ——— =7 - lim —————~ =1
e () ¢ P () AR

Thus 7 —d_(xo, Ax,) =1 —d(x0,Ax,) = 1. So, I —d(xy, Ay,) = 1. This completes the proof. [

Theorem 5.11. Given any fixed interval I, g : I — R is I — AC function if and only if for each p € R both the sets
CH ={x:g(x) <puland C, = {x: g(x) > u} belongs to the topology T .

Proof. Necessary part: Let the function g be 7 — AC. Then by Theorem 5.9, g is in the first Baire class. So by
Theorem 5.8, for each p € R, C* and C, are of type Euclidean F,. So, both C* and C, belongs to £. Now
we are to show that for each x € C#, 7 —d(x,C*) = 1.

Let us fix p € R and let us take xg € C*. Then g(xg) < u. So, u — g(xp) > 0. Since g is 7 — AC at xo,
so there exists E € L such that 7 — d(xy, E) = 1 and g|¢ is continuous at xo. Hence, for given any € > 0
there exists 0 > 0 such that x € (xo — 6,xp + 6) N E implies g(xp) — € < g(x) < g(xo) + €. In particular if we

choose ¢p = %@0) for some M € N and M > 1, then g(xg) = u — Mey. So for suitably chosen 6y > 0 and for
x € (x9 — 69, X0 + 09) N E we have

g(x) < g(x0) + €0 = u — Mey + €9 < u.

Thus, (xo — 00, X0 + 69) N E C C*. Since xg is an J-density point of (xo — 0o, X0 + 0¢) and E, so it is 7-density
point of (xo — 8¢, x9 + 09) N E. Therefore, I — d(xo, C*) = 1.
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Sufficient part: Let xo € I. Without any loss of generality, we choose xj in I without being the end points
of I. Let {€,}nen be a decreasing sequence of positive real numbers converging to zero. For each n € IN let
Ap = {x : g(x) < g(xo) + €,} and B, = {x : g(x) > g(x0) — €,}. By hypothesis, A,,B, € T;. LetC, = A, N B,
¥n € IN. Then C, = {x : |g(x) — g(x0)| < €,}. We observe C, € Ty. Since xg € C,, so I —d(x,Cy) =1
¥n € N. Since {C,}uen is a decreasing sequence of measurable sets, so by lemma 5.10, there exists a strictly
decreasing sequence {s,},en of positive real numbers converging to zero such that

Ay = @i\ (x0 = 51, %0 +5,)) and T = d(xo, Ay,) = 1.

n=1

Then Ay, € L. Now we are to show that g| 4, 18 continuous at xo. For fixed € > 0 there exists 119 € IN such
thate, <€ Vn > ng. Now if x € Ay, N (X9 — Spy, X0 + Sny), then x € Uf,":noﬂ(cn \ (xo — Sp, X0 + Su)). So there
exists n1 > ng such that x € C,,,. Let us choose 6 = s,,,. Then for x € Ay, N (xo — 6, x0 + 0) we havex € C,, i.e.,
|g(x) — g(x0)] < €4, < €. Therefore g| Av is continuous at xp. Hence gis 7 — AC at xy.

O

Definition 5.12 (cf.[16]). A function g : R — Ris called I-approximately upper semi-continuous at a point xo € R
if for every a > g(xo) there exists a set Ey, € L such that T — d(xo, Ey)) = 1 and g(x) < a for every x € Ey,.

Moreover, g is called T-approximately upper semi-continuous if it is I-approximately upper semi-continuous at
every point x € R. Similarly we define I-approximately lower semi-continuity.

Theorem 5.13. A function g : R — R is I — AC if and only if it is T-approximately upper and I-approximately
lower semi-continuous.

Proof. Necessary part: Let g be 7 — AC at xp € R. So there exists E € L such that 7 — d(xy,E) = 1 and
gle is continuous at xg. So given any € > 0 there exists 6 > 0 such that, whenever x € (xo — 6,x0 + ) N E,
g(x0) — € < g(x) < g(xp) + €. Now for every ¢ € R and ¢ > g(xg) choose € > 0 such that g(xo) + € < c. For this
€ > 0 we choose 6 > 0 such that for every x € (xo — 6, x9 + 0) N E we have g(x) < g(xo) + € < c. Moreover x
is an 7-density point of (xg — 6,xp + 6) N E. Thus g is 7-approximately upper semi-continuous at xp. Since
choice of xg € R is arbitrary, g is J-approximately upper semi-continuous at every x € R. Similarly it can
be shown that g is 7-approximately lower semi-continuous at every x € R.

Sufficient part: Let g be J-approximately upper and 7-approximately lower semi-continuous. For any
ae€Rlet C* = {x € R: g(x) < a}. Now take xgp € C*. Then g(xg) < a. Since g is J-approximately upper
semi-continuous at xg so there exists E,, € L such that 7 —d(xy, E,,) = 1 and, V x € E,, g(x) < a. Let us take

EXO = {xo} UE,,. Then EXU € L. Now define
Vi =y € By, : T —d(y, Ey,) = 1).
Then V,, is 7 — d open and V,, € T7. Moreover,
yeV, = yefx0 = g(y) <a = yeC.
Thus V,, ¢ C* Since choice of x is arbitrary, so V, ¢ C* for all x € C*. Therefore, C* = |J,cc« Vx where
Vy € Tr. Consequently, C* € T;.

In a similar approach we can show for any g € R, Cg = {x € R : g(x) > g} € T7. Thus by Theorem 5.11, it
can be concluded gis 7 — AC. OO

We now proceed to prove the main result of this section.
Theorem 5.14. A function g : (R, T1) — (R, Ty) is continuous if and only if g is I — AC at every x € R

Proof. Necessary part: Let g : (R, T7) — (IR, Ty1) be continuous at xg. So given any T;-open set V containing
g(xp) there exists 7 — d open set U containing xy such that xo € U ¢ g~}(V). Since U is 7 — d open set and
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x9 € U, I —d(xp, U) = 1 and so gl is continuous at xo. Hence gis 7 — AC at xj. Since choice of x is arbitrary,
so gis I — AC at every x.

Sufficient part: Let g be 7 — AC. Then by Theorem 5.11, for any u € R we have C* = {x : g(x) < u}
and C, = {x : g(x) > u} where both C* and C, are in T7. Then let g be 7 — AC at x for some xo € R. Let
V be an open set in (R, Ty;) containing g(xp). Without any loss of generality let V = (g(x0) — €', g(xo) + €)
for some €,¢” > 0. We are to show that there exists a set U € Ty containing xo such that g(U) c V. Let
C* = {x: g(x) < g(xo) + €} and C, = {x : g(x) > g(xg) — €’}. Then

C*NCy = {x: g(xo) — € < g(x) < g(xo) + €}.

Let C* N Cy = U. Then U € T;. Observe that xg € U. Now any x € U implies g(x) € (9(xo) — €, g(xo) + €).
Therefore g(U) C V. Hence g is continuous at xo. This completes the proof. [

6. Lusin-Menchoff Theorem

The Lusin-Menchoff theorem plays a vital role in proving complete regularity of density topology [36]].
In this paper, since we attempt to prove complete regularity of 7-density topology, we try to prove analogue
of Lusin-Menchoff theorem for 7-density.

Definition 6.1 ([17]). A topological space is called Polish if it is separable and completely metrizable.
Example 6.2. (R, Ty) is a Polish space.

Definition 6.3 ([17]). A topological space X is called perfect if all of its points are limit points or equivalently it
contains no isolated points.

If P is a subset of a topological space X then P is called perfect in X if P is closed and perfect in its relative
topology. The following theorem is known as Cantor-Bendixon theorem.

Theorem 6.4 ([17]). Let X be a Polish space. Then X can be written uniquely as X = P U C, where P is a perfect
subset of X and C is countable open.

The above result holds good if we take any closed set instead of X. Now we state the Perfect set Theorem
for Borel sets.

Theorem 6.5 ([17]). Let X be a Polish space and A C X be Borel. Then either A is countable or else it contains a
Cantor set.

Now we will prove some lemmas which will be needed later in this section.

Lemma 6.6. Let B be a Borel set. Then for x € B such that T — d(x, B) = 1 there exists a Ty perfect set P such that
x€PcCB.

Proof. For x € B, I —d(x,B) = 1 implies 7 —d~(x,B) = I —d_(x,B) = 1. For {I,},en being any sequence of
closed intervals about x such that .(I,,) € ¥ (I) we have

inf {I — lim inf M : {I;}nen such that .(I,,) € 7"(]')} =1
m(Ix)
and
sup {I - limsup % :{I;}nen such that .(I,,) € 7:(])} =1.
k

So for any sequence of closed intervals {I;};eny about x such that . (Iy) € ¥ (1), we have

m(B N Ix) < 7 —limsup m(B N Iy) <

1 <7 -liminf
m(I) m(lx)
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So, I — limsup m}iﬁgk) =1. For givene > 0let A. = {n : mf(?f)") >1- e}. Then A, € F(I). Forn € A,
m(B N I,)

) >1-¢€ = m(l, N B) > (1 —e)m(l,) = m(l, N B) > 0. (11)

Let us take a sequence {J,,}nen = {[cn, dn]}nen Of pairwise disjoint intervals such that dist(x, ,) = Oasn — oo
and without any loss of generality assume m(J, N B) > 0 Vn € A.. So, J, N B is not countable Vn € A..
Since both [, and B are Borel sets, so, |, N B is Borel. Now since (R, T;) is a Polish space, by Theorem 6.5,
Vn € A, there exists a Ty-perfect set P, such that P, C [, N B. Since J,,’s are pairwise disjoint, so {Py,}sea. is
a collection of pairwise disjoint Ty;-perfect set.

Now let P = {x} U (U,;ca, Pn). Thenx € P C B.
We claim that P is Ty-perfect set.

First we show P has no isolated points. Now since for i € A each P; is Ty-perfect, so P; has no isolated
point. Hence | J;c4_ P; has no isolated point. Now we show x is not an isolated point of P. Let N(x) be any
open neighbourhood about x. Then for some ng € A, J,, N (N(x) \ {x}) # ¢. Then for n6 > ng and ng) € Ac
there exists a Ty-perfect set Pn(/) such that Pn(/) N (N(x) \ {x}) is nonempty. Hence P N (N(x) \ {x}) is nonempty.
So, x is not an isolated point of P. Therefore, P has no isolated points.

Next we show P is Ty;-closed. Let {s,},en be a sequence in P such that s, — s. We are to show s € P. We
have the following two cases:

Case(i) Let there be finitely many s, in each P; for i € A.. Then without any loss of generality we may
assume that s; € P; for each i € A.. We claim, s = x. For large i € A,,

Is — x| <|s —si| +|s; — x| < |s — s;i| + dist(x, Py). (12)

Here i’ in the subscript of Py is the immediate predecessor of i in A.. Also since dist(x, J,) = 0asn — oo, so
dist(x,P;) — 0 asi — 0. So, as i — oo, from (12) we can conclude s = x. Hence s € P.

Case(ii) If at least one of P, say P; contains infinitely many of s, then suppose that there exists a subsequence
{Sn ke Of {Sn}nen such that {s,,} C P;. Since s,, — x and P; is Ty-perfect so, s € P;. Therefore, s € P.

Hence, P is Ty-closed. Consequently, P is Ty-perfect. [

Lemma 6.7. Let B be a Borel set. Then for every countable set C such that cI(C) € Band I —d(x,B) = 1¥x € C
there exists a Ty perfect set P such that C C P C B. Here cl(C) stands for Ty-closure of C.

Proof. Let us take C = {x; : i € N} € B. Now put B; = BN [x; — 5, X + 5] for i € N. Then B; is a Borel set
containing x; for each i. We claim that 7 — d(x;, B;) = 1. Now since 7 — d(x;,B) = 1so I —d_(x;,B) = 1 and
I —d (x;, B) = 1. For {I,,},en being any sequence of closed intervals about x; such that . (I,,) € ¥ (1) we have

inf {I “liming B g such that (L) € T(I)} =1
m(ly)
and
sup {I — lim sup % :{L}uen such that #(I,,) € T(I)} =1.
k

So for any sequence of closed intervals {I;};eny about x such that . (Iy) € ¥ (1) we have

m(B N Ii)
m(Ix)

m(B N Iy)

1 <7 -liminf _—
m(Iy)

<7 -limsup <L

So, I — limsup m;ﬁ?k;k) = 1. For givene > 0 let A, = {n : % >1- e}. Then Ac € F(1).

Since B; C B, dny € IN such that Yun > ny and n € Ac we have m((B \ B;) N I;) = 0. Therefore, Y1 > ny and

B In Bi In Bi In Bi In
neAe,%:%.So,{n:%>1—e}=A€\{1,2,---,nO}ET(I). So,{n:l—e<%<l+e}e
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F(Z) and I — limg % = 1. Clearly for any sequence of closed intervals {}ren about x; such that
L) € F(I) we have

mBOL) _ o mBinl) _,
ml) e P ) mly

Thus 7 —d_(x;,B;)) = I —d (x;,B;) = 1. So, I —d(x;,B;) = 1 for each i € N. By Lemma 6.6 there exists a
Ty-perfect set P; such that x; € P; C B; for each i € N.

Now let P = cl(C) U (U;ew Pi). Then clearly C ¢ P C B.

We claim, P is Ty-perfect.

It is clear that ;o Pi has no isolated points. Now if x € C. Then x = x; for some i and x; € P; where P; is
Ty-perfect. So, x is not an isolated point of P. Again if x € cI(C) \ C then there exists a sequence {z,},en € C
such that z, — x. Then any open neighbourhood N(x) about x contains some z; # x. Consequently, x is not
an isolated point of P.

So, P has no isolated points.

Next we are to show P is Tj;-closed. Let {s,},en be a sequence in P such thats, — s. To show s € P. We
have the following three cases:

Case(i): If c/(C) contains infinitely many of s,,, then suppose {s,, }ken is a subsequence of {s,},en such that
{sn kenw C cl(C). Since s, — x and cl(C) is Ty-closed so s € cl(C). Hence, s € P.

Case(ii): If atleast one of P; contains infinitely many of s, then suppose {s,, }Jxen is a subsequence of {s,},en
such that {s,, }ren C P;. Since s,, — x and P; is Ty-perfect so, s € P;. Hence s € P.

Case(iii): Let there be finitely many s, in each P; for i € IN. Then without any loss of generality we may
assume that s; € P; for each i € IN. Since m(P;) < m(B;) < 2%1 for each i € IN, therefore, |x; — si| < 2,% for each
i € N. Now for each k € IN,

m(B; N Ix) _

7 —liminf =7 —lim
k k

1
Wi = sl < i = el + [s = sl < 5= + I8 = sl-
From the above inequality it can be concluded that x; — s as k — oo. Therefore, s € cl(C), since x; € C Vi.
Thus,s € P. [

Lemma 6.8. Let H be a Lebesgue measurable set. Then for every Ty closed subset Z of H such that T —d(x,H) = 1
Vx € Z there exists a Ty-perfect set P such that Z c P C H.

Proof. Since H is a measurable subset of R, so there exists an Euclidean F, set A C H such that m(H \ A) = 0.

For x € R, let {[i}xen be any sequence of closed intervals about x such that .7(I) € F(I). Let I, = mHOL)

m(ly)
and a; = m}gﬁ;i"). Then,

_mHNL) m((AVHN\NA)NL) mANL)  m((H\A)N )

=Ty T (T T (k)
_ m(A ﬁIk) -4
mly
Hence,

I —d_(x,A) =inf{Z — liminfay : {It}xen such that #(Iy) € F (1)}
inf{Z7 — liminf h : {Ix}ren such that .7 (I;) € F(I)}
I —-d (x,H)

=1.

Similarly, 7 —d~(x, A) = 1. Therefore, 7 —d(x, A) = 1 Vx € Z. Since both A and Z are Borel sets,soB=AUZ
is Boreland Z ¢ B ¢ H. Also J —d(x,B) =1 Vx € Z, since A C B. Since (IR, Ty) is a Polish space, so by
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Theorem 6.4, Z = P; U C where P; is Ty-perfect and C is countable set. Now since Z is T;-closed we have
c(C)cZc Band 7 —d(x,B) =1Vx € C. By Lemma 6.7, there exists a Ti;-perfect set P, such that C c P, C B.
Therefore, Py UC C Py UP, C B. Take P = P; U P,. Then P is Ty-perfectand ZCc PCBCH. [J

Now we prove an analogue of Lusin-Menchoff Theorem for 7-density.

Theorem 6.9. Let H be a measurable set. Then for every Ty closed set Z such that Z ¢ Hand I —d(x,H) = 1
Vx € Z there exists a Ty perfect set P such that Z C P C Hand I —d(x,P) =1Vx € Z.

Proof. By hypothesis and Lemma 6.8, there exists Ty-perfect set K such that Z ¢ K ¢ H. Now define,

H,={zeH:-L <dist(z,Z) < 1} forn e N

n+1 n

and let
Hy ={z e H :dist(z,Z) > 1}.

Then, H = Z U (U,~, Hy). Without any loss of generality let us assume that each H, is nonempty. Since dist
function is continuous, so H,’s are measurable for each n € IN U {0}. So for every n € IN U {0} we can find a
closed set F,, ¢ H, such that m(H,, \ F,)) < 2,,% By Cantor Bendixon theorem, since every closed set can be
expressed as a union of a perfect set and a countable set, for each 7 there exists Ty;-perfect set P, C F, C H,
such that m(H, \ P,) < 2}7 Put,

P =KU Uz Pn).
Then P is nonempty Ty-perfect set such that Z C P C H.

Now we are to show that 7 —d(x,P) =1 Vx € Z.
For x € Z, by hypothesis 7 — d(x, H) = 1. Since H = Z U (U, -, H,). So

H\P:(Z\P)U[{QHH}\P]:{QHH}\P

(o8]

O(Hn \P) = []Hn\(Ku P
n=0 n=0

m=1

(o)

U ((Hn \K) 0 (Hy, \ 0 Pm)]
m=1

n=0

e8]

U[(Hn \K)n (ﬁ(Hn \Pm)]],

n=0 m=1

Let {Ii}xen be any sequence of closed intervals about x such that . (Iy) € ¥ (). From here k will be chosen
from .7 (I). So, we have

o)

N (H\P) = U{Ik N (H \ K) N [ﬂ(Hn \Pm>]]. (13)
m=1

n=0
Now for a fixed k there are two possibilities:

1. dny € Nsuchthaty NH, = ¢ forn <nbuty NH,, # ¢

2. [y N H, = ¢ ¥ n. In this case we put 1 = oo.
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For case (2) the R H.S. in (13) is empty set.

. . m(IkﬂP)
I —d_(x,P) =inf{ I — liminf ————=
(x,P) =1 { imi ()
— inf {f—hminfM
m(ly)
=7 —d_(x,H)
=1

So m(Iy N (H \ P)) = 0. Therefore, mg’z?k?) = my%:f ). Hence,

{I}xew such that .Z(Iy) € 7:([)}

: {It}xen such that .7 (I}) € 7:(])}

Similarly, 7 —d~(x,P) = 1. Hence, 7 —d(x,P) = 1.

For case (1) from (13) we have

mwﬂm=U@mﬁmmﬂﬂwmmm. (14)
n=ny m=1

Thus,

m(Ikﬂ(H\P))Sim{lkﬂ(Hn\K)ﬂ{

n=ny

< Y m, \ Py

n=nyg

=1 1
<22n+1:ﬁ'

n=ny

o)
m=1

(15)

Now we will consider the following two subcases:

Subcase (i): Let us assume for each k, n; < co.

We claim that as k — oo then 1 — co. To show given N € N

there exists kg € IN such that if k > ky then 1, > N.

For given any large N € N letky = N+1. If k > ko, then m(I}) < % < % AlsolyNH,, # ¢. Lety € L NH,,.

Since x, y € I, so
1
Ix —yl <m(ly) < o
0

Moreover since x € Zand y € Hy,,

Ix =yl > dist(Hy,, Z) >

I’Zk+1‘

1
ni+1

1
<k

From equation (16) and (17) we have
since — < |x — y| < m(Iy) by (16).

ng+1
Now for k > ky,

m{NH) _ m@0P)  mll 0 (H\P)
m) — m(k) m(Ix)
m(I N P) N ng+1
m(lx) 2n

(16)
17)
= ﬁ, which implies that n; > N. Also note that m(Iy) > ﬁ,
(18)
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Therefore, 7 — lim inf miik(;;;_l) < 7 —liminf "lg’(‘gf), by (18). So,

I —d_(x,P) =inf {I — lim inf % : {Ix}kew such that #(Iy) € T(I)}
k
> inf{ 7 — liminf M : {Ii}ken such that .7 (Iy) € F(I)
m(ly)
=7 —-d_(x,H)
=1.

So,1<f1-d_(x,P)<I—-d (x,P)<1. HenceZ —d(x,P)=1.
Subcase (ii): Let {k € #(Ix) : nx = oo} be an infinite subset of .7 (Ix). Say, {k € 7 (Ix) : nx = oo} = {k1 <
ky < --- <k < ---}. So, there exists a subsequence {k;} of {k} such that ny, = co and k; = o0 as [ — oo.

So, Iy, N H, = ¢ ¥Yn. Hence m(ly, N (H\ P)) = 0. So, % = % Thus, by subcase (i) we can write
1 1
7 —liminf % < I —liminf % Therefore,
I,NP
I —d_(x,P)=inf {I — liminf % : {Ii}xen such that .7 (I}) € ?‘(I)}
IkNH
> inf {I — liminf % : {It}ren such that .7 (I}) € T(I)}
=71 —-d_(x,H)
=1

So,1<71 —-d_(x,P) <1 —-d (x,P) <1. Hence 7 —d(x, P) = 1. This completes the proof. [

7. Some separation axioms

The purpose of this section is to provide some information about separation axioms for the space (R, Tr).
Since by Theorem 4.3, Ty C T we obtain immediately the following result.

Proposition 7.1. The space (R, 1) is a Hausdorff space.

In the next theorem we obtain a bounded 7 — AC function. Given any two sets A and B we use the
notation A C e Btomean A € Band 7 —d(x,B) =1 Vx € A (cf. [4]).

Theorem 7.2. Let H be a subset of R of type Euclidean Fy such that I —d(x, H) = 1 Vx € H. Then there exists an
I — AC function g : R — R such that

(10<gx)<lforxeH
2)gx)=0  forx¢ H.

Proof. If H = ¢, then g(x) = 0 Vx € R and so g is 7 — AC. Let H be a nonempty Euclidean F, set. So,
H = U, K, where each K, is nonempty T;—closed set. Now we construct a family of T; closed sets
{Qp : pe Rand B > 1} such that Qp, C ® Qp, if f1 < pr and H = gs1 Qp-

Let Q; = Kj. Since Q; € H where H is measurable and Q; is T;-closed setand 7 —d(x, H) = 1 V¥x € Qy, so
by Theorem 6.9, 4 Ty; closed set B, such that Q1 € B, c Hand 7 —d(x,B;) =1Vx € Q1. SoQ; Ce By, C e H.
Now take Q, = K; UB;. Then Q; C o Q, C o H. We proceed inductively. Suppose I Ty; closed set
Q, satisfying Q,—1 C ® Q, C ® H and K, € Q,. Then by Theorem 6.9, 3 T; closed set B,.; such that
Qn CeBy CoH. Let Qui1 = Kys1 UByi1. Then Q, C @ Q41 C @ H and Kyi1 € Qpv1. By induction we
obtain the collection {Q,},en such that K,, € Q,, Yn € IN and Q,, € H VYn € IN. Therefore,

H= U Q.. (19)

nelN
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Now by Theorem 6.9, for each I € N U {0} and n > 2! we define a T;;—closed set Q;«T such that
2l ol

. So we have the following cases:
Forl=0wegetQi Ce(QrCe(Q3Ce ---
Forl=1weget(Q; COQ% COQZCOQ% Ce(Q3Ce -
Forl=2wegetQiCeQsCeQ:CeQrCeQ,CeQyCeQsCe -
and so on.
Suppose for fixed Iy we choose Q Vn > 2 such that Q n Ce Q(n+1) Since QZILO = Q%. So by (20) and
Theorem 6.9, we have Q 2z Ce Q 21 and szﬁll Ce Qf{ﬁ' ” ’

Therefore, Q n Ce Q 21 Ce Q(n+1) In particular we get
2l

Q1C°"'C'Q%C'"‘C°Q%C°"'C°Q%C""C°Q£C°"'C°Q%5"‘C’Q2"'

For each real number g > 1 we define

Qs=1{)Qz

426

Moreover, since each Q s is Ty— —closed, so Qp is Ty—closed. Now if f; < 2 we can choose sufficiently
large Iy so that for some 19 E IN we have 2’°ﬁ1 <ng<(m+1)< 2’052 Observe that Q(n0+1) - Q Vi = fo.

Hence Q; nOH C Nz >ﬁ2 = Qg,- S0, Qp, € Qx 0 C @ Qe C Qp,. Consequently, Qp, C ® Qﬁz Thus
Tl
H={Q
p>1

We define g : R — R where

— 1 if xeH
— inf{:xeQp) 1 21
g(x) { 0 if x¢H 1)

Since f > 1s0 g(x) <1 Vx € R. Now take x € H. From (19), we see d some ny € IN such that x € Q,,. So,
inf{B : x € Qp} < 1y which means g(x) > ;- > 0. So,0 < g(x) <1Vx € H.

Next we are to prove g is 7 — AC. We first show that g is continuous on H¢. Let xg € H°. Soby (19), xo € Q5,
Vn. Take in particularn = N and then xo € QY. Since Qy is Ty closed 46 > 0 such that QnN(xo—06, x0+06) = ¢.
Now since Qg, C Qp, for 1 < B2, therefore for § < N we get Qg N (xo — 6,x0 + 6) = ¢. Thus if < N and
x€(xg—0,% +0),thenx € Q;. Thus inf{f : x € Q} = N and so g(x) < % for x € (xg — 6, x9 + ). Since choice
of N is arbitrary, so g(xp) = 0 Yxo € H. So, g is continuous on H°.

Now we prove g is upper semi-continuous at any xo € H. Let g(xp) = Al Then for A < A" we observe
that xo € Q4. Since Q, is Ty closed, so for sufficiently small 6 > 0 we have (xo — 6, x0 + 6) € Qf. Thus for
any x € (xg — 6, % + ), since inf{B : x € Qg} > A, we have g(x) — g(xo) < § — Al So we are done.

Now we show g is T-approximately lower semi-continuous at points x € H. Let xp € H and suppose
g(xp) = 5. For any a < g(x) let Ca = {x : g(x) > a}. It is enough to show I —d(xp, C,) = 1. Since a < 5 1 , there
exists O > 0 such that a < 175 +26 A Now we observe A = inf{f : xo € Qg}. So clearly xo € Qx+s. From the
properties of the family {Qg : ﬁ > 1} we have Q45 C ® Qi425. Therefore I — d(x, QM%) = 1. We claim that
Qa+25 € C,. For any x € Qj425 we have inf{ : x € Qg} < A +26. That means g(x) > /\+20 Since /\:T > @, SO

g(x) > a. Consequently, x € C,. Hence Q125 C C,. So, I —d(xp, C,) = 1. Hence, g is T-approximately lower
semi-continuous.

Thus g is 7 — AC function. O
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We now show (IR, Ty) is completely regular. To prove this theorem we need the following lemma.
Lemma 7.3. Let Py, P,, G be pairwise disjoint subsets of R such that
(i) PPUP,UG=R
(ii) P1UGand P, U Gare I —d open and of type Euclidean F.
Then there exists an I — AC function g such that
(i) g(x) =0forx € Py
(i) 0 <gx)<1lforxeG
(iii) g(x) =1 for x € Ps.

Proof. Since P; U G and P, U G both are Euclidean F, and also (P; U G)° = P, and (P, U G)° = Py, so by
Theorem 7.2, there exists two J — AC functions g; and g, such that

0<gi(x) <1forxe P, UGand g1(x) =0 forx € Py
0 < g2(x) £ 1forx € Py UG and g,(x) =0 for x € P,.
Now take, ¢ : (R X R) \ {(0,0)} = [0, 1] where ¢(x1, xp) = bl Then,

a1 [+x]
P(0,x2) =0forx, #0
I’U(Xl,O) =1forx; #0
0 < Y(x1,x2) <1forx; #0,x #0.

Then 1 is continuous except at {(0,0)}. We consider, g(x) = 1(g1(x), g2(x)). Since modulus function is
continuous, so by Theorem 5.3, |g1(x)| and |g2(x)| are 7 — AC. Moreover |g1(x)| + |g2(x)| # O for all x. Hence,
by Theorem 5.2, gis 7 — AC.

Then for x € Py, g(x) = (0, g2(x)) = 0, since g2(x) # 0 and for x € Py, g(x) = ¢¥(g1(x),0) = 1, since g1(x) # 0.

Finally for x € G, g1(x) # 0 and g»(x) # 0. So, g(x) = %. Thus 0 < g(x) < 1forx € G.
|

Theorem 7.4. The space (R, Tr) is completely regular.

Proof. Let F be I —d closed set in IR and py ¢ F. Since every I — d open set is measurable, F is measurable.
Let H be an Euclidean Gs-set such that F ¢ H, m(H \ F) = 0 and py ¢ H. Let us put P; = H,P, = {po} and
G = R\ (P1UPy). Then, PUG = R\ {po} = (=00, pg) U(po, o). Since each of (—oo, pp) and (py, o0) are Euclidean
F,-set so their union is Euclidean F,-set. Moreover, (—oo, pp) and (po, o0) are Ty open so I — d open. Again,
P, UG =R\ H is Euclidean F,-set, H being an Euclidean G;s-set. We observe R\ H = (R \ F) \ (H \ F). Since
R\ Fis 7 —dopenand m(H\ F) =0so R\ His I —d open. By Lemma 7.3, there exists an 7 — AC function
g : R — R such that

1. gx) =0forxe Hand HD F
2.0<g(x)<lforxeG
3. g(x) =1forx=pp

Therefore, g(x) = 0 on F and g(pg) = 1. So, by Theorem 5.14, g is a continuous function on (IR, T;). Hence,
(R, T7) is completely regular. [
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