
Filomat 38:2 (2024), 393–404
https://doi.org/10.2298/FIL2402393P

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This paper mainly studies some properties of normal matrix and gives the relation between the
general solution of related matrix equations and normal matrices.

1. Introduction

Let A ∈ Cn×n. B ∈ Cn×n is said to be the Moore-Penrose inverse matrix of A if

A = ABA, B = BAB, (AB)H = AB, (BA)H = BA.

The matrix B always exists by [1, 2] and is uniquely determined by the above equations. We denote it by
A†.

A is said to be group invertible if there exists B ∈ Cn×n such that

A = ABA, B = BAB, AB = BA.

The matrix B is called group inverse matrix of A, which is uniquely by above equations [3]. We denote it
by A#.

A is said to be regular if there exists B ∈ Cn×n such that A = ABA. The matrix B is called an inner inverse
of A. The inner inverse matrix of A is not unique , and A{1} is used to denote the set of all inner inverses of
A.

Let A ∈ Cn×n be a group invertible matrix. Then A is called an EP matrix if A# = A†. It is known that
A is EP if and only if AA† = A†A. For the study of EP matrices, we can also refer to [1]. A is called a SEP
matrix if A# = A† = AH. And A is called a normal matrix if AHA = AAH. In [5], some properties of normal
matrices and the conditions for the establishment of SEP matrices are introduced. The rest study of normal
matrix can be found in [6–8].

In this paper, we continue to study normal matrices. In Section 2, we construst inner inverse matrices to
characterize normal matrix. In Section 3, with the help of EP matrices, we discuss some new characteriza-
tions of normal matrices. In Section 4, we use invertible matrices to describe normal matrices. In Section 5,
we research the relationship between the consistency of matrix equations and normal matrices. In Section
6, by means of the form of the general solution of the matrix equations, we obtain some interesting results
about normal matrices.
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2. Some characterizations of normal matrices and SEP matrices by constructing inner matrices

Theorem 2.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if

AAH(A#)H = AHA(A†)H.

Proof. ” =⇒ ” Assume that A is normal matrix. Then, by [5, Lemma 1.3.3], we have A is an EP matrix, which
implies A# = A†. Since A is normal, AHA = AAH. Hence AAH(A#)H = AAH(A†)H = AHA(A†)H.

”⇐= ” Suppose that AAH(A#)H = AHA(A†)H. Multiplying the equality on the left by A†A, we have

A†A2AH(A#)H = AAH(A#)H.

So AA† = AAH(A#)HA† = A†A2AH(A#)HA† = A†A2A†, this infers A is an EP matrix. Now we have

AAH = AAH(A#)HAH = AHA(A†)HAH = AHA2A† = AHA.

Hence A is a normal matrix.

Theorem 2.1 inspires us to give the following result on normal matrix.

Theorem 2.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if
(
(A#)H, A#

− En

)
∈(

AAH

A

)
{1}.

Proof. ” =⇒ ” Assume that A is a normal matrix. Then, by Theorem 2.1, we have AAH(A#)H = AHA(A†)H. It
follows that (

AAH

A

) (
(A#)H, A#

− En

) (AAH

A

)
=

(
AAH(A#)HAAH + AAH(A#

− En)A
A(A#)HAAH + A(A#

− En)A

)
.

Noting that
AAH(A#)HAAH + AAH(A#

− En)A = (AHA(A†)H)(AHA) + AAH(A#
− En)A =

AHA2 + AAHA#A − AAHA = AHA2 + AAH
− AHA2 = AAH,

and
A(A#)HAAH + A(A#

− En)A = A(A†)HAHA + A − A2 = A2 + A − A2 = A.

Hence (
AAH

A

) (
(A#)H, A#

− En

) (AAH

A

)
=

(
AAH

A

)
.

One gets
(
(A#)H, A#

− En

)
∈

(
AAH

A

)
{1}.

”⇐= ” From the assumption, we have(
AAH

A

) (
(A#)H, A#

− En

) (AAH

A

)
=

(
AAH

A

)
,

this gives

AAH(A#)HAAH + AAH(A#
− En)A = AAH. (1)

A(A#)HAAH + A(A#
− En)A = A. (2)

Multiplying (2) on the right by A†A, we have

A(A#)HAAH = A(A#)HAAHA†A.

Multiplying the last equality on the left by A†AHA†, one yields AH = AHA†A. Hence A is EP. It follows from (1)
that A2AH = AAHA, this gives AAHAH = AHAAH and

AHA(A†)H = AHA(A#)H = AHAAH(A#)H(A#)H = AAHAH(A#)H(A#)H = AAH(A#)H.

Hence A is normal by Theorem 2.1.
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It is well known that A is a normal matrix if and only if AH is a normal matrix. Hence Theorem 2.2 leads
to the following corollary.

Corollary 2.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if
(
A#, (A#)H

− En

)
∈(

AHA
AH

)
{1}.

Noting that SEP matrix is always normal. Hence Corollary 2.3 implies the following theorem which
characterizes SEP matrix.

Theorem 2.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if
(
AH, (A#)H

− En

)
∈(

AHA
AH

)
{1}.

Proof. ” =⇒ ” Assume that A is SEP. Then A is normal and A# = AH. Hence
(
AH, (A#)H

− En

)
∈

(
AHA
AH

)
{1}

by Corollary 2.3.

”⇐= ” From the assumption, one has
(
AHA
AH

) (
AH, (A#)H

− En

) (AHA
AH

)
=

(
AHA
AH

)
, this gives

AHAHAHA + AH((A#)H
− En)AH = AH. (3)

e.g. AHAHAHA = AHAH. Hence A is SEP by [5, Theorem 1.7.2].

Theorem 2.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if
(
A, A#

− En

)
∈(

AAH

A

)
{1}.

Proof. ” =⇒ ” Assume that A is a SEP matrix. Then A is normal and A# = AH. By Theorem 2.2, we have(
(A#)H, A#

− En

)
∈

(
AAH

A

)
{1}, this gives

(
A, A#

− En

)
∈

(
AAH

A

)
{1}.

”⇐= ” From the assumption, we have(
AAH

A

) (
A, A#

− En

) (AAH

A

)
=

(
AAH

A

)
,

this gives (
AAHA2AH + AAH(A#

− En)A
A3AH + A − A2

)
=

(
AAH

A

)
.

Hence, we have A3AH = A2. Therefore A is SEP by [5, Theorem 1.7.2].

3. Constructing EP matrices to characterize normality

The following lemma can be proved by a routine verification.

Lemma 3.1. Let A ∈ Cn×n be a group invertible matrix. Then
1) AAH(A#)H is EP with (AAH(A#)H)† = AA†A†;
2) AHA(A†)H is EP with (AHA(A†)H)† = AHA#(A†)H.

Theorem 2.1 and Lemma 3.1 imply the following theorem.
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Theorem 3.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AA†A† =
AHA#(A†)H.

Noting that normal matrix is EP. Then (A†)H = (A#)H, so Theorem 3.2 gives the following corollary.

Corollary 3.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AA†A† =
AHA#(A#)H.

Lemma 3.4. Let A ∈ Cn×n be a group invertible matrix. Then
1) (AHA#(A#)H)+ = AA†AHA†A2(A†)H;
2) AHA#(A#)H is group invertible with (AHA#(A#)H)# = AHA†A2(AA#A†)H;
3) (AA#)† = A†A2A†.

Proof. 3)
(AA#)(A†A2A†) = AA† = (A†A2A†)(AA#);

(AA#)(A†A2A†)(AA#) = (AA#);

(A†A2A†)(AA#)(A†A2A†) = (A†A2A†).

Hence, we have (AA#)† = A†A2A†.

Lemma 3.1, Corollary 3.3 and Lemma 3.4 lead to the following theorem.

Theorem 3.5. Let A ∈ Cn×n be a group invertible matrix. Then the following conditions are equivalent:
1) A is a normal matrix;
2) AAH(A#)H = AA†AHA†A2(A†)H;
3) AAH(A#)H = AHA†A2(AA#A†)H.

Observing the condition 2) of Theorem 3.5, we yield the following corollary.

Corollary 3.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AH(A#)H =
A†AHA†A2(A†)H.

Applying the involution on the equality of Corollary 3.6, we have the following corollary.

Corollary 3.7. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AA# =
A†AHA†A2(A†)H.

Theorem 3.8. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if AA# =
A†AHA(A†)H.

Proof. ” =⇒ ” Assume that A is normal. Then A is EP and A†A2 = A. This infers AA# = A†AHA(A†)H by
Corollary 3.7.

” ⇐= ” If AA# = A†AHA(A†)H, then A is EP because (AA#)H = AA#. It follows that AAH = A(AA#)AH =
A(A†AHA(A†)H)AH = AHA. Hence A is normal.

Noting that Lemma 3.4 and (A†AHA(A†)H)† = AHA#AA†(A#)HA. Then Theorem 3.8 leads to the following
corollary.

Corollary 3.9. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if A†A2A† =
AHA#AA†(A#)HA.
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4. Constructing invertible matrices to characterize normality

In fact, if A is a group invertible matrix, we have (A+ En −AA#)(A# + En −AA#) = En, then A+ En −AA#

is invertible with (A + En − AA#)−1 = A# + En − AA#. Hence Lemma 3.1 gives the following lemma.

Lemma 4.1. Let A ∈ Cn×n be a group invertible matrix. Then AAH(A#)H + En − AA† is an invertible matrix and
(AAH(A#)H + En − AA†)−1 = AA†A† + En − AA†.

Lemma 4.1 and Theorem 3.2 imply the following theorem.

Theorem 4.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if (AAH(A#)H +
En − AA†)−1 = AHA#(A†)H + En − AA†.

Theorem 4.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if ((A#)HAAH +
En − AA†)−1 = (A†)HA†A#AHA + En − AA†.

Proof. ” =⇒ ” Assume that A is normal. Then, by Theorem 4.2. we have

(AAH(A#)H + En − AA†)−1 = AHA#(A†)H + En − AA†.

Noting that AAH(A#)H + En − AA† = En − AAH((A†)HA† − (A#)H). Then

(En − ((A†)HA† − (A#)H)AAH)−1

= En + ((A†)HA† − (A#)H)(En − AAH((A†)HA† − (A#)H))−1AAH

= En + ((A†)HA† − (A#)H)(AHA#(A†)H + En − AA†)AAH

= En − (A#)HAHA#(A†)HAAH + (A†)HA†AHA#(A†)HAAH.

Since A is normal, we have

(A#)HAHA#(A†)HAAH = (A#)HAHA†(A†)HAAH

= A†(A†)HAAH = A†(A†)HAHA = A†A = AA†

and
(A†)HA†AHA#(A†)HAAH = (A†)HA†A#AH(A†)HAHA = (A†)HA†A#AHA.

Thus

((A#)HAAH + En − AA†)−1 = (En − ((A†)HA† − (A#)H)AAH)−1 = (A†)HA†A#AHA + En − AA†.

”⇐= ” The assumption implies

En = ((A#)HAAH + En − AA†)((A†)HA†A#AHA + En − AA†) =

(A#)HAAH(A†)HA†A#AHA) + En − AA† = (A#)HA#AHA + En − AA†,

it follows that
(A#)HA#AHA = AA†.

Multiplying the equality on the right by A†A, one yields

AA† = AA†A†A.

Thus A is EP, this infers
A† = AA†A† = (A#)HA#AHAA† = (A#)HA#AH.

Now we have
AHA† = AH(A#)HA#AH = AH(A#)HA†AH = A†AH.

Therefore A is normal by [5, Lemma 1.3.2].
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Corollary 4.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if ((A#)HAAH + En −

AA†)−1 = (A†)HA†A# + En − AA†.

Proof. ” =⇒ ” Assume that A is SEP. Then A is normal, by Theorem 4.3, one obtains that

((A#)HAAH + En − AA†)−1 = (A†)HA†A#AHA + En − AA†.

Noting that A is SEP. Then

(A†)HA†A#AHA = (A†)HA†A#A†A = (A†)HA†A#,

so
((A#)HAAH + En − AA†)−1 = (A†)HA†A# + En − AA†.

”⇐= ” From the assumption, we have

En = ((A#)HAAH + En − AA†)((A†)HA†A# + En − AA†)

= (A#)HAAH(A†)HA†A# + En − AA† = (A#)HA# + En − AA†,

it follows that
(A#)HA# = AA†.

Multiplying the equality on the left by A†AH, one yields

A†A# = A†AH.

Thus A is SEP by [5, Theorem 1.5.3].

5. Consistence of matrix equations

Theorem 2.1 leads us to construct the following equation:

AX(A#)H = AHA(A†)H. (4)

Theorem 5.1. Let A ∈ Cn×n be a group invertible matrix. Then A is normal if and only if Eq.(5.1) is consistent and
the general solution is given by

X = AH +U − A†AUA†A,where U ∈ Cn×n. (5)

Proof. ” =⇒ ” If A is normal, then AAH(A#)H = AHA(A†)H by Theorem 2.1, it follows that X = AH is a solution of
Eq.(4).

Noting that
A(AH +U − A†AUA†A)(A#)H = AAH(A#)H = AHA(A†)H.

Hence Formula (5) is the solution of Eq.(4).
Now let X = X0 be any solution of Eq.(4). Then we have

AX0(A#)H = AHA(A†)H.

Multiplying the equality on the left by AA†, we have

AA†AHA(A†)H = AHA(A†)H.

Multiplying the last equality on the right by AHAA#A†, one yields

AH = AA†AH.
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Hence A is EP. Now

A†AX0A†A = A†AX0(A#)HAHA†A = A†(AHA(A†)H)AHA†A = A†AHA2A†A†A

= A†AHAA†A = A†AHA = A†AAH = AH.

Hence
X0 = AH + X0 − A†AX0A†A.

Hence the general solution of Eq.(4) is given by Formula (5).
”⇐= ” From the assumption, we have

A(AH +U − A†AUA†A)(A#)H = AHA(A†)H.

That is AAH(A#)H = AHA(A†)H. By Theorem 2.1, we have A is normal.

Now, we construct the following equation:

(A#)HA†AXA† = A†. (6)

Theorem 5.2. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(6) is given by (5).

Proof. Since
(A#)HA†A(AH +U − A†AUA†A)A† = (A#)HA†AAHA† + (A#)HA†AUA†

−(A#)HA†AA†AUA†AA† = (A#)HAHA† + (A#)HA†AUA† − (A#)HA†AUA† = A†,

Formula (5) is the solution of Eq.(6).
Now, we assume that X = X0 is any solution of Eq.(6). Then

(A#)HA†AX0A† = A†.

Noting that
A†AX0A†A = AH((A#)HA†AX0A†)A = AHA†A.

Then
A†A(X0 − AH)A†A = 0,

it follows that
X0 = AH + (X0 − AH) − A†A(X0 − AH)A†A.

Thus the general solution of Eq.(6) is given by (5).

The following corollary is an immediate result of Theorem 5.1 and Theorem 5.2.

Corollary 5.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if Eq.(4) and Eq.(6)
have the same solution.

Lemma 5.4. Let A ∈ Cn×n be a group invertible matrix. Then A is normal if and only if (A#)(A#)H = (A#)HA†.

Proof. ” =⇒ ” Assume that A is a normal matrix. Then A is an EP matrix by [5, Lemma 1.3.3], this infers A† = A#.
By [5, Lemma 1.3.2], we have

A#AH = A†AH = AHA† = AHA#,

this gives
A#(A#)H = A#AH(A#)H(A#)H = AHA#(A#)H(A#)H = (A#)HAHAHA#(A#)H(A#)H =

(A#)HA#AHAH(A#)H(A#)H = (A#)HA#AH(A#)H = (A#)HA†AH(A#)H = (A#)HA†.
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”⇐= ” Assume that A#(A#)H = (A#)HA†. Then

(A#)HA† = AA†A#(A#)H = AA†(A#)HA†.

It follows that

A† = (A#)HAHA† = (A#)HA†AAHA† = AA†(A#)HA†AAHA† = AA†(A#)HAHA† = AA†A†.

Hence A is an EP matrix, and so A is normal because A#(A#)H = (A#)HA#.

We construct the following equation:

A#(A#)HAXA† = A†. (7)

Theorem 5.5. Let A ∈ Cn×n be a group invertible matrix. Then A is normal if and only if the general solution of
Eq.(7) is given by (5).

Proof. ” =⇒ ” Assume that A is a normal matrix. Then A#(A#)H = (A#)HA† by Lemma 5.4, this implies Eq.(6) is
the same as Eq.(7), so we obtain that the general solution of Eq.(7) is given by Formula (5).

”⇐= ” From the assumption, one yields

A#(A#)HA(AH +U − A†AUA†A)A† = A†,

this gives
A#(A#)HAAHA† = A†.

Multiplying the equality on the left by AA†, we have

AA†A† = A†.

Hence A is an EP matrix, one has

A†A = A#(A#)HAAHA†A = A#(A#)HAAH.

Multiplying the last equality on the left by A, we have

A = (A†)HAAH,

one has AHA = AH(A†)HAAH = A†A2AH = AAH. Hence A is normal.

Theorem 5.5 and Theorem 5.2 lead to the following corollary.

Corollary 5.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if Eq.(6) and Eq.(7)
have the same solution.

6. Normal matrix and the general solution of matrix equations

Observing Theorem 2.1, we can construct the following equation:

A(A†)HX = XA(A#)H. (8)

Theorem 6.1. Let A ∈ Cn×n be a group invertible matrix. Then A is normal if and only if Eq.(8) has at least one
solution in ρA = {A,A#,A†,AH, (A†)H, (A#)H,A†A3A†, (AA#)HA(AA#)H

}.
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Proof. ” =⇒ ” Assume that A is a normal matrix. Then A is an EP matrix and AAH(A#)H = AHA(A†)H = AHA(A#)H

by Theorem 2.1, it follows that
A(A†)HAH = AHA(A#)H.

Hence X = AH is a solution of Eq.(8) in ρA.
”⇐= ” 1) If X = A is a solution, then A(A†)HA = AA(A#)H.Multiplying the equality on the right by AA†, we have

A(A†)HA = A(A†)HA2A†.

Multiplying the last equality on the left by A#, we have

(A†)HA = (A†)HA2A†.

Multiplying the equality on the left by A#AH, we have A#A = AA†. Hence A is an EP matrix. Now we have

A#(A#)H = A#A#A(A†)H = A#A#(A(A†)HA)A# = A#A#(A2(A#)H)A#

= A#A(A#)HA# = A†A(A#)HA† = (A#)HA†.

Hence A is normal by Lemma 5.4.
2) If X = A#, then A(A†)HA# = A#A(A#)H.Multiplying the equality on the right by AA†, we have

A#A(A#)HA†A = A#A(A#)H.

Multiplying the last equality on the left by A†A, we have

(A#)HA†A = (A#)H.

Hence A# = A†AA#, this infers A is EP. Now we have

A(A†)HA# = A#A(A#)H = (A#)H,

and so
A#(A#)H = A#A(A†)HAH = (A†)HA# = (A#)HA†.

Hence A is normal by Lemma 5.4.
3) If X = A†, then A(A†)HA† = A†A(A#)H = (A#)H.Multiplying the equality on the left by AA†, we have

(A#)H = AA†(A#)H,

this gives
A# = A#AA†.

Hence A is EP, this infers X = A† = A# is a solution. Thus A is normal by 2).
4) If X = AH, then A2A† = AHA(A#)H. Multiplying the equality on the left by A†A, we have

A2A† = A†A3A†.

Multiplying the last equality on the right by A#, we have

AA# = A†A.

Hence A is EP, one yields

AAH = A2A†AH = AHA(AA#)H = AHA(AA†)H = AHAAA† = AHA.

Hence A is normal.
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5) If X = (A#)H, then A(A†)H(A#)H = (A#)HA(A#)H. Multiplying the equality on the right by AHAH and on the
left by A†A, we have

A2A† = A†A3A†.

Hence A is an EP matrix, one obtains that

A = A2A† = A(A†)HAH = (A(A†)H(A#)H)(AHAH) = ((A#)HA(A#)H(AHAH) = (A#)HAAH.

Thus
AHA = AH(A#)HAAH = AAH,

which implies A is normal.
6) If X = (A†)H, then A(A†)H(A†)H = (A†)HA(A#)H.
Multiplying the equality on the right by AA† and on the left by A#, we have

(A†)H(A†)HAA† = (A†)H(A†)H.

Applying the involution on the last equality, we have

AA†A†A† = A†A†.

By [4, Lemma 2.11], we have
AA†A† = A†.

Hence A is an EP matrix, this infers X = (A#)H is a solution. Thus A is normal by 5).
7) If X = A†A3A†, then A(A†)HA†A3A† = A†A3A†A(A#)H,
e.g.,

A(A†)HA2A† = A†A3(A#)H.

Multiplying the last equality on the left by A†A, one obtains

A(A†)HA2A† = A†A2(A†)HA2A†.

This gives
A(A†)H = A(A†)HA2A†A# = A†A2(A†)HA2A†A# = A†A2(A†)H,

and
AA# = A2A†A# = A(A†)HAHA# = A†A2(A†)HAHA# = A†A.

Hence A is EP, which implies X = A†A3A† = A is a solution. Hence A is normal by 1).
8) If X = (AA#)HA(AA#)H, then

A(A†)H(AA#)HA(AA#)H = (AA#)HA(AA#)HA(A#)H.

Multiplying the equality on the left by A†A and on the right by A†A†A, one yields

A(A†)H = A†A2(A†)H.

Hence A is EP by 7), which implies

X = (AA#)HA(AA#)H = (AA†)HA(AA†)H = AA†A(AA†) = A.

Thus A is normal by 1).

We can generalize Eq.(8) as follows.

A(A†)HX = YA(A#)H. (9)

Clearly, the general solution of Eq.(9) can be represented by the following theorem.
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Theorem 6.2. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(9) is given byX = PA(A#)H +U − A†AU

Y = A(A†)HP + V − VAA†
,where P, U, V ∈ Cn×n. (10)

Theorem 6.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if the general
solution of Eq.(9) is given byX = P(A#)HA +U − A†AU

Y = A(A†)HP + V − VAA†
,where P, U, V ∈ Cn×n. (11)

Proof. ” =⇒ ” Assume that A is normal. Then A(A#)H = (A#)HA. Hence Formula (10) is the same as Formula
(11). By Theorem 6.2, we obtains the general solution of Eq.(9) is given by Formula (11).

”⇐= ” From the assumption, we have

A(A†)H(P(A#)HA +U − A†AU) = (A(A†)HP + V − VAA†)A(A#)H,

e.g.,
A(A†)HP(A#)HA = A(A†)HPA(A#)H

for all P ∈ Cn×n.
Especially, choose P = En. Then we have

A(A†)H(A#)HA = A(A†)HA(A#)H.

Multiplying the equality on the left by AHA# and on the right by AA†, we have

(A#)HA = (A#)HA2A†.

This gives
A = AA†AH(A#)HA = AA†AH(A#)HA2A† = A2A†,

which implies that A is EP. Hence

(A†)H(A#)HA = A#A(A†)H(A#)HA = A#A(A†)HA(A#)H = (A†)HA(A#)H,

it follows that
(A#)HA = AH(A†)H(A#)HA = AH(A†)HA(A#)H = A†A2(A#)H = A(A#)H.

Thus A is normal.

Theorem 6.4. Let A ∈ Cn×n be a group invertible matrix. Then
1) (A(A†)HX)† = X†AA#AHAA#A†, where X ∈ ρA;
2) (A(A†)HX)# = X#AHA#, where X ∈ τA = {A,A#, (A†)H

};
3) (A(A†)HX)# = X†AA#AHAA#A†, where X ∈ νA = {A†,AH, (A#)H,A†A3A†, (AA#)HA(AA#)H

};
4) (XA(A#)H)† = AA†AHA†AA#X†, where X ∈ ρA;
5) (XA(A#)H)# = AA†AHA†AA#X†, where X ∈ τA;
6) (XA(A#)H)# = AHA†X#, where X ∈ νA.

Proof. Since when X ∈ τA,
XX† = aa†

and when X ∈ νA,
XX† = A†A, (A†)HXX†AA# = (A†)H.
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This gives

(A(A†X)(X†AA#AHAA#A†) = A((A†)HXX†AA#)AHAA#A† = A(A†)HAHAA#A† = AA†.

Also when X ∈ τA,
X†AA#X = A†A

and when X ∈ νA,
X†AA#X = A†A,

it follows that
(X†AA#AHAA#A†)(A(A†X) = X†(AA#AHAA#A†A(A†)H)X = X†AA#X

= (X†AA#X)H = ((X†AA#AHAA#A†)(A(A†X))H;

Noting that AA#XX†AA# = AA#. Then

(X†AA#AHAA#A†)(A(A†X)(X†AA#AHAA#A†) = (X†AA#X)(X†AA#AHAA#A†)

= X†(AA#XX†AA#)AHAA#A† = X†AA#AHAA#A†.

Thus
(A(A†)HX)† = X†AA#AHAA#A†.

Similarly, we can show (2) (6)

By Theorem 6.1 and Theorem 6.4, we have the following theorem.

Theorem 6.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a normal matrix if and only if one of the
following conditions hold.

1) Equation X†AA#AHAA#A† = AA†AHA†AA#X† has at least one solution in ρA;
2) Equation X#AHA# = AA†AHA†AA#X† has at least one solution in τA;
3) Equation X†AA#AHAA#A† = AHA†A# has at least one solution in νA.
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