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Abstract. In this paper, we introduce a new generalization of the min and max matrices called geometric
min matrix and geometric max matrix, respectively. We discuss some of their properties, such as determi-
nants, inverses, factorizations, and identities for their characteristic polynomials. Moreover, their reciprocal
analogs for these newly established matrices are examined.

1. Introduction

Matrix theory is extensively used in a variety of areas including applied mathematics, computer science,
economics, engineering, operations research, statistics, and others. From past to present, different types

of matrices have been defined and examined such as determinant, inverse, and factorizations by the
researchers [18].

The so-called min matrix M is defined as

1 1 1 1
1 2 2 2

(min(G, )i,y = 1 2 3 3, 1)
1 2 3 n

It was first introduced in the second volume of the ground-breaking book of problems by G. Pélya and
Szeg6 [15]. In Problem 30, page 122, we may find the equalities

2
1 0 -+ -+ 0 L1 .
1 1 1 2 2 2
1= -1 23 3| )
1 0 Do e
1 1 1 1 2 3 n
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We understand the first determinant as of a (lower triangular) matrix of order #n. On the same page, in
Problem 32, we find the claim for a possible generalization of (2), namely

A1 A A - Ay
Al Ay Ay - Ar
A1 AZ _A3 .o A3 — alaz"'an , (3)
A1 Ay Az - Ay

where a1, 4y, ..., a, are given constants and Ay = ), a;, fork =1,2,...,n. Clearly the matrix we find in (3)
is a generalization for the min matrix (1). In 2009, Neudecker, Trenkler, and Liu proposed the problem of
finding a necessary and sufficient condition for the matrix

a ay ay -+ M
a dp dp -+ A

A=|% @42 a3 -+ 43 4)
a dp as -+ A4y

to be positive definite, its determinant and inverse, in case of being nonsingular, where a4, a,, .. ., a, are real
numbers [14]. These problems were soon solved by, among others, Chu, Puntanen, and Styan [6]. Namely,
it was proved that

detA = ai(az —a1)(az — az) -+ (an — ap-1)

and
a1+ an -y
- ar +a3 —a3
—as
ATl = ,
—Qap-1
—Qp-1 au1ta, —ay
—Qay ay
where
1 .
o = , fori=1,...,n,
ai — a1

setting ag = 0.
The second equality in (2) is a consequence of the Cholesky decomposition of M:

11 1 1 1 0 -+ -~ 0O\(1 1 -+ - 1

1 2 2 2 1 1 0 1

1 2 3 3| &)
i : <1 o0f]: 101

123 n 1 -+ . 1 1Mo -+ v 0 1

Therefore, the min matrix is positive semidefinite. One can also conclude that the inverse of the min matrix
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is

In the comprehensive monograph [2], Bhatia presents five other proofs for the positive semidefiniteness
of M, providing distinct and sometimes surprising avenues of applying this matrix. As earlier in [3], Bhatia
also generalizes the min matrix to the matrix M(A4,...,A,), for 0 < Ay < --- < A, where the (i, j)-entry is
min(A;, A;). This matrix was coined as generalized min matrix. Among other related matrices we find in [2],
we have the matrix W with entries

1 1/2 1/3 - 1/n

1/2 1/2 1/3 -+ 1/n
( 1..):(mm(l,l)): 13 1/3 13 - 1n |
max(i, j) i'j : : . :

Un Un Un - 1

called “a loyal companion of the Hilbert matrix” by Choi in [5].
In the same fashion that we defined the min matrix, we can also consider the max matrix as

1 2 3 n
2 23 n

(max(i, ),y =| 3 3 3 L @)
n n n o --- n

For several other extensions and applications of the min and max matrices, the reader is referred for
example to [1, 4, 7-13, 16, 17].

The aim of this paper is to introduce a new generalization for the min matrix (1) and present some
properties. We will also present some results for an extension of the max matrix (7) as well as the reciprocals
counterparts.

2. The geometric min matrix
We start this section with the introduction of a generalization of the min matrix (1).

Definition 2.1. For a given number r, the geometric min matrix My, of order n is defined as

1 1 1 1 1 1
r 2 2 2 2 2
72 2r 3 3 3 3
Mn,r — 7’3 27’2 3r 4 4 4 (8)
223 3t 4 o n=1) n-1
o2 33 4t . n=1Dr  n
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In other words, (8) means that the (i, j)-entry of M, , is
» ’ i<i
my = min =1 O
r'j, i>]
The next result is a generalization of (2).

Proposition 2.2. The determinant of the geometric min matrix M,,, in (8) is
n
detM,,, = H (k—(k—-1)r). (9)
k=1

Proof. Using an elementary column operation, we have

1 1 1 1 1 0
r 2 2 2 2 0
r? 2r 3 3 3 0
detM,, = 272 3r 4 4 0
=2 23 3t 4TS L (n=1) 0
22 3 gt s n=1)r n—-(m-1)r

detM,_1,(n—(n—1)r).
A simple inductive argument provides us now (9). O

Notice that if r = kf—l, for some k € {2, ...,n}, then M,,, is singular. Clearly, the converse is also true.
Another important topic of interest in the literature is LU factorizations for this kind of matrices.

Theorem 2.3. An LU factorization of M, is

1 0 o --- 0 o1 1 1 1 1
1 0 0 0 0 2—-r 2—-r --- 2—r 2—r
2 1 .0 oll: o 3-2r - 3-2r 3-2r
I I D=2 (=D~ (-Dr
r r r e r 1 O e e e O n_(n_l)r

n

Namely, the (i, j)-entries of L = (lij)?jzl and U = (”’7)1 1 are

P, iz
l. =
Y 0, otherwise,
and

{i—(i—l)r, jxi

0, otherwise,

respectively.
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Proof. Using matrix multiplication, we get

min(i,j) min(i,j) '
gy = ), P d-@-1)7)
d=1 d=1
min(i,j) ri
= —@d-@d-1r
r
=1
_ ri1+3_1+2_£ 4 3 min (i, j) min(,j) -1
- rorzor o 2 A BT min(i) pmin(i )1
= i—rmr.\ ((Z';) = #min() min (i, = rmx(=30) min (i, R
pmin(i,j

So the proof is complete. [J

Finding the inverses of each matrix L and U is now a straightforward exercise:

1 0 0 -+ --- 0
-r 1 0
L_l_ 0 -r
0
0
0 0 -r 1
and
1 ﬁ 0 0
0 _i 2r1—3
ul= 0 0 _2r1—3 3r1—4
0 0
1
. : (n—l)lr—n
0o .- 0 0 -

As we could expect, the inverse of M,,, is a tridiagonal matrix. The next result provides an explicit
formula for such matrix.

Theorem 2.4. If M, , is nonsingular, then its inverse is the tridiagonal matrix

_2 4
r—=2 r=2

I e 1

r=2 (2r-3)(r-2) 2r-3

r 2’4
_ 2r-3 (3r—4)(2r-3)
1 _
Mn,r - .

(n=2)r*—n 1
(n—=1)r—-n)((n-2)r—(n-1)) (n—l)lr—n
r

n-1)r-n T m—Dr-n

Proof. For the proof, we may simply consider the product U"'L™'. [
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This means that the (i, j)-entry of the inverse of M, ,, say m;j, is

=T i-j=1
1 . .
TN —-i=1
(]—12r—] J
y (i—D)rP=(i+1) L
i = “Geoany L=/ FEN
1 P
T n—Tyr-n’ 1=j=n
0, otherwise.

While the eigenvalues of M, , are not possible to find in a “nice” closed form, even for the particular
case of r = 1 and n = 2 (cf. e.g. [6]), we can provide an elegant recurrence relation for its characteristic
polynomial.

Theorem 2.5. The characteristic polynomial of the geometric min matrix M, , satisfies the recurrence relation
Py(A) = ((n = 1)1 =1+ (r + 1) A) Pyoy(A) = rA?Pyp(A), (10)
with initial conditions

P = A-1,
Po(A) A=1)(A=2)—r.

Proof. We will use strong induction for the proof and properties of the determinants. The cases n = 1,2 are
straightforward. Using elementary row operations, we can find that P,(A) is given by

A-1 -1 -1 -1 -1 -1
-r A=2 -2 -2 -2 -2
0 -Ar A+2r-3 -3+2r --- -3+ 2r -3+ 2r

0 0 —Ar —4 + 37 —4 +3r

2-n+n-3)r 2-n+(mn-3)r

: “Ar A+m=-2r-mn-1) 1-n+mn-2)r
0 0 —Ar A+n-1r—n

Now, if we subtract the (1 — 1)th column to the nth column, then we find that P, (1) equals

A-1 -1 -1 -1 - -1 0

-r A=2 -2 -2 -2 0

0 —Ar A+2r-3 -3+4+2r .- -3+ 2r 0

0 0 —Ar : :

2—-n+m-=3)r 0

: 0 “Ar A+(mn-2)r—-(n-1) -A
0 0 —Ar m-Dr-n+@r+1)A

The Laplace expansion by the last row provides us the recurrence. [

In the last result of this section, we analyse the coefficients of the characteristic polynomial of the
geometric min matrix M,, ;.
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Theorem 2.6. The coefficients of the characteristic polynomial
Py(A) = A"+ kP A 4 kA kD, (11)

of the geometric min matrix M, , satisfy

K = == 1)K = (<1)" detM,,, = (<1)" H Ai,
i=1
K = - m-1nk" D =+ "D + k"2,
with kig() =0.
Proof. From (11), we have
Pouoy (A) = A" 4 kU DAm2 4 g DAn=d o 70 g (12)
and
Puoa (A) = A2 4 kKU PAn3 gD an=t g 2 4 kD (13)
Substituting (11), (12), and (13) in (10), and after some calculations, we have
(n)  _ (n-1) (n-2)
k”, = m-Or-n+@+1k " -1k, ",
() (n-1) (n-1) (n-2)
k', = (m=Dr-mk" + ¢+ k" k"7,
K = (- Dr-mk'™ + ¢+ D -2,
K = (n-1)r-m)k"V + @+ 1k,
(n)  _ (n-1)
k! = (n=1r—n)ky"".

So, we can write it in the general form of

o (n-1)
k' = (n=Dr-nky 7,
kl(n) = (n-1Dr-n) k,(-”_l) +(r+1) kfgl) - rkESZ)'

It can be easily seen from the determinant of the geometric min matrix that
K = (1= 1)r —n)k"™ = (=1)" det M, .
0

3. The geometric max matrix

Analogous to the geometric min matrix, in this section we introduce the geometric max matrix and discuss
similar properties.

Definition 3.1. For a given constant r, the geometric max matrix M, ,, of order n, is defined as

1 2 3 4 oo (n-=1) n
2r 2 3 4 e (n=1) n
312 3r 3 4 o (n=1) n
3 2 .. _
M,, = 4r 4r 4r 4 n—-1) n ) (14)
m=-1Dr"2 m-1Dr3 m-Dr"* m-D¢r> -~ -1 n
nr*1 nr*=2 nr*=3 nr e nrn
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ot, equivalently, the (i, j)-entry is given by

jooig]
ml] - i—j' . .
rli, >

max(i—

= r i9) max @ 7).

The first result is related to the determinant. The proof is similar to the one given for Proposition 2.2.

Proposition 3.2. The determinant of the matrix IM,, , in (14) is

n—1
detM,, =n[[6-6+1n.
s=1
Remark 3.3. For1<s<n-1,

detM,,, =0,

when r = Z5. Hence, in this case M, is singular.

Theorem 3.4. An LU factorization of the matrix M, , and their corresponding inverses are

1 0 0
2r 1
= 312 2r 1
(n-1) TH_Z ’?r“‘; njglrnj nl 0
n— n—. 1n—.
nr 22r zr Sr 1
1 2 3 S n-1 n
0 21-2r 3(1-2r) -~ (@-1)(1-2r) n(1-2r)
00 S (R b R
u — O 0 0 s (n — 1) —TV n—Ty ,
- R =
0 0 nnn_lnr
1 0 0 0
=2r 1 0
L_l _ 0 —%T 1
4 7
0 0 —3r
0
0 0 -2 1
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1
1 .
0 - 2(2r-1) 3r-2 0
2
U—l — 0 0 3(3r-2)
' 0
n-2 1
. (n=1)((n-1)r—(n-2)) nr—(mn-1)
0 n—1
n(nr—(m-1))

We can now establish the inverse of M,, ,.

Theorem 3.5. If M, , is nonsingular, then its inverse is the tridiagonal matrix

1 1
2r-1 2r-1
r o __ 31 1
2r-1 (3r-2)(2r-1) 3r-2
. 20221
-1 3r-2 (4r-3)(3r-2)
Mn,r = p
4r-3
_ nr?—(n—2) 1
((n=1)r—n)((n-2)r—(n-1)) nr—(n-1)
_r —_n1
nr—(n—1) n(nr—(n-1))

429

In the next result, we present an identity for the characteristic polynomial of the geometric max matrix

M,

Theorem 3.6. For n > 3, the characteristic polynomial of the geometric max matrix IM,, , satisfies the following

identity
Qu(A)=(Mn—-A)By1(A) - r/\an—Z ),

with initial conditions

QA = 1-4,
Q@) = 1-1)2-1)-4r,
where B,,—1 (A) is as follows:

1-2r—-(@r+1A A 0 0
rA 2-3r—-(r+1A 0 0
0 rA 0 0
0 0 0 0
0 0 0 0

m=2)—(n-1Dr-(@r+1A A

0 0 rA m-1)—nr—(r+1A

Proof. It can be easily seen that
Bi(A)=1-2r—(r+1)A
and

Bii(A) = (n=1) = nr = (r + 1) ) Bya (A) = rA’B,3 (A) .
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Applying the elementary row and column operations to (14), we obtain the following determinant of a
tridiagonal matrix

1-2r—-@r+1DA A 0 0
rA 2-3r=(r+1A 0 0
0 rA 0 0
0 0 0 0
QA = 0 0 0 0
0 0 A 0
0 0 m-1)—-nr—@F+1A A
0 0 rA n—A
Then, we get
Qu(A) = (n—A)By1 (A) —rA*B,2 (A), (15)

with the initial conditions Q1 (A) =1-Aand Qo (A)=(1-1)2-A)—4r. O

Theorem 3.7. The coefficients of the characteristic polynomial of the geometric max matrix IM,, ,

Qu(A) = A"+ A 4 A2 A+ g, (16)
satisfy

n” = ()"l = (-1)" detM,,,

77(1”) — (_1)n (nbgn—l) _ b(()n—l)) ,

0 = 1=t - mlY),

"= (D (Y = b - ),
where

Buo1 (A) = B DAL 4 b0 A2 4 0 b TA Y, (17)

Proof. By virtue of (15), (17), and 1751") =1, we have
-1)"Qu(A) = (m=A)By1(A)—rA’B, 2 ()
= (=) (B0 A+ DA b DA e U )

—rA2 (B0 A2 4 B0 PAD g DA 4 BN 4 1)
— (n-1) (n-2) -1 (n-1) (n-1) (n-2)
= A"(=b )+ A (nb D = b0 — D)

n-1
A2 (nb D = b0 = D) - A (0 = 50 + by
Therefore, from equality of left and right sides, we get
7781) = (-1 nbén—l)’
77(1n) N (nbgn—l) _ bgq—l)),
a" = 1= (1) (_bin:ll) _ ;,171(171:22)) /

A= D () - b - ).
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Additionally, for A =0, we obtain

1-2r 0 0 0
0 2-3r 0 0
0 0 0 0
0 0 0 0
Bn—l (0) = 0 0 0 0
n-2)-n-1)r 0
0 0 e 0 n-1)-nr
n—1
= (s=(s+1)r),
s=1
and
_ 1
bV = = detM,,,.
n
O

4. Reciprocal matrices

In this last section, we present two types of reciprocal matrices which are extensions of those discussed
in the introduction.

Definition 4.1. The reciprocal matrix of M, , is defined by

1 1 1 1 1 1

1 i i oo

2r 2 % n-2 n-1 n
1 1 1 4 1 1
3r2 3r 3 n=2 n=1 n
1 1 1 1 1 1
Hn,r = 43 4r2 4r n—2 n-1 n
1 1 1 .o 1 11
(n=Drm2  (n=-Dr3  (n-1)rm* n-1)yr n-1 n
1 1 1 . 1 1 1
=1 nr=2 nyn=3 nr? nrn

We present the next results without proof in order to avoid repetitions of the previous techniques.

Theorem 4.2. An LU factorization of the matrix H and the inverses of each factor are

1 0 0 0 0 0 0
= 1 0 0 0 0 0
1 2
3 ¥ % 0 0 0 O
ul o 3 1 0 0 0
L= 4 2 3 4 ,
5¢ 55 2 v 0 0 0
1 2 3 4 n-2 1 0
(-2 (n-Dr=3  (n=-Dr*  (n-1)r"-> (n=1)r
1 2 3 _4 n-2 n=1 1
nr=1 nr=2 nr=3 nrn—4 nr? nr
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1 1 1 1 1
0 13 134 I =
4 r ?31’2 2(111—1) r 217131'2
r— 7—. r—.
0 0 =55 U B
r— r—
u=19 0 0 pETT= “wo |
1 (n.—l)r—(n—Z) 1 (n.—l)r—(n—Z)
0 0 0 (n-1)% r (n-1) ( rl)
1 nr—(n-
0 0 Loy
1 0 0 0 0
1
-1 1 0 0 0
2
a0 F 0 0
3 7
0 -3 0 0
-1
0 0 0 —elg
_2311 0 0 0
4 6
0 2711 _3r12 0 0
9
. 0o 0 0 0
(n=1)%r n(n—=1)r
0 0 0 n-Dr—n-2) nr—z(n—l)
0 0 0 0 —m_”(nr_l)
Theorem 4.3. The inverse matrix of H,,, is of the form
_2r_ _2r
2r-1 2r-1
2 4(3r°-1) 6r
T2-1 @r2)@2r-1) 32
_ 6 18(2r2-1)
-1 3r-2 (4r-3)(3r-2)
HTL,Y = .
(71—1)2(717’2—(71—2)) n(n—-1)r
r—-D)(n—-1r—(m—2))  nr—(n-1)
n(n-1) n2r
T nr—m-1) nr—(n—1)

We may also define an reciprocal analogous concept for M, ,.

Definition 4.4. The reciprocal matrix of My, , is defined as

1 1 1 1 1 1 1
1 1 1 1 1 1 1
r 2 2 2 2 2 2
1 1 1 1 1 1 1
2 2r 3 3 3 3 3
1 L 1 1 1 1 1
r 2r2 3r 4 4 4 4
Hyy=l1 1 1 1 1 1 1,

r 213 312 4r 5 5 5
1 1 1 1 1 1 1
=2 23 3yt 4ynd (n=2)r (n-1)  (n-1)
4 1 1 1 .. 1 _1_ 1
-t 22 33 gyt n-2)r2  (n-1)r n

432

(18)
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and with another representation

1 . .
% 1]
h:: = 1 . .
ij { r‘}fj’ i>]
_ 1
rmax(i—j,O) min (1/ ]) .

Theorem 4.5. The determinant of H, , is

)r—s
detH = H( A )

Notice that, for2 <s<mn,
detH =0,
when r = %5, Hence, in this case H is singular.

Theorem 4.6. An LU factorization of H,, and the inverses of each factor are:

1 0 0 0 0 0 O
11 0 o0 0 00
}2 % 1 0 0 0 O
1 1 1
L=()_=|% & . 1 c o
Pig=a — (& & & 1 0 0 of
i1 44 P
=2 =3 ,,n_—4 =5 ; 1 0
1 1 1 1 i 17
yn—l rn—2 ,/Vl—3 7?1—4 7’2 r
1 1 1 1 1
0 _%H _ﬁh _1%2_ _1%2_
! 3 1 2
T T o
(yl])ljl 12 r 12 r
i i ' 1 (n—l)—(n—Z)r 1 (n—l)—(n—Z)r
0 0 0 U T meDm=2) [z - (n—l)(nl—Z) n_(n_rl N
0 0 0 0 T a(n=1) r
&, izj
Xij = ’
0, otherwise
(i-=1) S
1(111)1 lr V’ ]Zl>1
Yij = 1, i=j=1,
0, otherwise
1 0 0 0 0
—% 1 0 0 0
_1
[ (x'»)n 0 P 0 O
Vit o0 -1 o of
0 0 0 -= 1

433
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2
VB L
— T3
0 0 or_ T, 0 0
1 n _ 2r-3
u- = (yij)i,jzl B
(n-1)(n-2) (n-1)
0 0 0 : (nn—Z)r—n(n—lr) - (;—nlig—};l
nn—1)r
0 0 0 e 0 (n-1)r-n
That is
1 Ca
- i—j=1
X,‘]‘ = 1, i= ]
0, otherwise,

i(i=1)r L
E=TA

1, i=j=1
Yii = ii-1)r o
=T Al
0, otherwise.

Proof. From the matrix multiplication, we have

min(i,j) min(i,j)
LU = Z XidlYaj = XinY1j + Z XidYdj
d=1 d=2
BRI L B WY IR
T il = ridd(d-1) r

1 ") g a1y
i1 dd-1r

ri-1 7i
=2

i L_zmi“x“j)rd_'l_rd_*l
Sl g -1 d )

So our first assertion is proven and the other equations can be shown similarly. [J

Theorem 4.7. If H,, , is nonsingular, the inverse of the matrix H,,, is the tridiagonal matrix:

_r_ _2r
r—=2 r=2
2 MP3) e
r-2  (2r-3)(r-2) 2r-3
6 18(12-2)
( “)n _ 2r-3 (Br—4)(2r-3)
1] ij=1 - . 4
(n=1*((1=2)r~n) n(n=1)r
(n=Dr-n)(n—2)r—(n-1))  (n-Lr-n
_ _n(n-1) nn—1)r

((n=1)r—n) ((n=1)r—n)

434
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or, in other words,

ij

TG’ i-j=1
1jr . .
- -, -i=1
(=1 /=t
-4, i=j= 1
= =2
hy; = iZ((i—lng—(iH)) .
TED-y L <I=]<n
n(m-1)r i=i=n
C—Dyr-m” =]=
0, otherwise

From Theorems 2.4 and 4.7, one can get the following relation between the matrices H~! and M.

Corollary 4.8. The matrices H™' and M~ are related as:

r S 4 —
he = —Emﬁ, l—]—l
1] — o .
/ —ijm;;, otherwise.
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