

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The weighted numerical radius in Hilbert C*-modules

Xiujiao Chia,*, Pengtong Lia

^aSchool of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, PR China

Abstract. In this paper, we introduce the definition of the weighted numerical radius $\Omega_{\nu}(x)$ for $x \in \mathcal{E}$ by using the linking algebra of a Hilbert C*-modules \mathcal{E} , which extends the definition of numerical radius $\Omega(x)$ given by Zamani [Math. Inequal. Appl. 24 (2021), 1017-1030]. Among other results, we show that $\Omega_{\nu}(x)$ is a norm on \mathcal{E} such that

$$\frac{1}{2}||x||_{\mathcal{E}} \leq \max\{\nu, 1-\nu\}||x||_{\mathcal{E}} \leq \Omega_{\nu}(x) \leq ||x||_{\mathcal{E}},$$

where $0 \le \nu \le 1$. In addition, some relevant results are discussed.

1. Introduction and Preliminaries

Hilbert C^* -modules are generalizations of Hilbert spaces that allow the inner product to take values in a C^* -algebra instead of in the complex field. The theory of Hilbert C^* -modules has applications in the study of locally compact quantum groups, complete maps between C^* -algebras, non-commutative geometry, and K-theory [6, 7, 11, 13].

Several mathematicians have studied the fundamental properties of numerical radius for bounded adjointable operators on Hilbert C^* -modules [5, 8, 10]. Although some inequalities in Hilbert C^* -modules can be proved using standard methods, the different structure of Hilbert C^* -modules seems to require different definitions of some concepts that are natural extensions of some standard definitions to study some inequalities in Hilbert C^* -modules.

Suppose \mathcal{A} is a unital C^* -algebra and \mathcal{E} is a right \mathcal{A} -module. \mathcal{E} is a *pre-Hilbert* \mathcal{A} -module if \mathcal{E} is equipped with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle_{\mathcal{E}} : \mathcal{E} \times \mathcal{E} \to \mathcal{A}$ such that the following properties hold:

- (1) $\langle x, x \rangle_{\mathcal{E}} \ge 0$ for all $x \in \mathcal{E}$ and $\langle x, x \rangle_{\mathcal{E}} = 0$ if and only if x = 0.
- (2) $\langle x, y + z \rangle_{\mathcal{E}} = \langle x, z \rangle_{\mathcal{E}} + \langle y, z \rangle_{\mathcal{E}}$ for every $x, y, z \in \mathcal{E}$.
- (3) $\langle x, ya \rangle_{\mathcal{E}} = \langle x, y \rangle_{\mathcal{E}} a$ for every $a \in \mathcal{A}$, $x, y \in \mathcal{E}$.
- (4) $\langle x, y \rangle_{\mathcal{E}} = \langle y, x \rangle_{\mathcal{E}}^*$ for every $x, y \in \mathcal{E}$.

For every $x \in \mathcal{E}$, we define $||x||_{\mathcal{E}} = ||\langle x, x \rangle_{\mathcal{E}}||^{\frac{1}{2}}$. If \mathcal{E} is complete with $||\cdot||_{\mathcal{E}}$, it is called a *Hilbert A-module* (or a *Hilbert C*-module* over \mathcal{A}). For every $a \in \mathcal{A}$, we have $|a| = (a^*a)^{\frac{1}{2}}$, and the \mathcal{A} -valued norm on \mathcal{H} is defined

2020 Mathematics Subject Classification. Primary 46L05; Secondary 47A30, 47A12, 46B20

Keywords. Hilbert C*-modules; linking algebra; weighted numerical radius; operator inequality

Received: 05 March 2023; Revised: 21 July 2023; Accepted: 25 July 2023

Communicated by Dragan S. Djordjević

Research supported by National Natural Science Foundation of China (No.11671201).

* Corresponding author: Xiujiao Chi

Email addresses: chixiujiao5225@163.com (Xiujiao Chi), pengtongli@nuaa.edu.cn (Pengtong Li)

by $|x| = \langle x, x \rangle_{\mathcal{E}}^{\frac{1}{2}}$. Further, it was shown in [6, Proposition 1.1] that we also have the following version of the Cauchy-Schwarz inequality:

$$\langle y, x \rangle_{\mathcal{E}} \langle x, y \rangle_{\mathcal{E}} \le ||x||_{\mathcal{E}}^2 \langle y, y \rangle_{\mathcal{E}}, \quad x, y \in \mathcal{E}.$$

Let \mathcal{E} and \mathcal{F} be two Hilbert \mathcal{A} -modules. We say that the operator $T:\mathcal{E}\to\mathcal{F}$ is *adjointable* if there is another one $T^*:\mathcal{F}\to\mathcal{E}$ such that $\langle Tx,y\rangle_{\mathcal{E}}=\langle x,T^*y\rangle_{\mathcal{E}}$ for any $x\in\mathcal{E}$ and $y\in\mathcal{F}$. The operator T^* is called the *adjoint operator* of T. Note that an adjointable operator is automatically \mathcal{A} -linear and bounded. The family of all adjointable operators from \mathcal{E} to \mathcal{F} is designated as $\mathrm{End}_{\mathcal{A}}^*(\mathcal{E},\mathcal{F})$ abbreviated as $\mathrm{End}_{\mathcal{A}}^*(\mathcal{E})$ if $\mathcal{F}=\mathcal{E}$. Let $\mathbb{K}(\mathcal{E},\mathcal{F})$ be the closed linear subspace of $\mathrm{End}_{\mathcal{A}}^*(\mathcal{E},\mathcal{F})$ spanned by $\{\theta_{x,y}:x\in\mathcal{E},y\in\mathcal{F}\}$, where $\theta_{x,y}(z)=x\langle y,z\rangle_{\mathcal{E}}$. The elements of $\mathbb{K}(\mathcal{E},\mathcal{F})$ are often referred to as "compact" operators. We write $\mathbb{K}(\mathcal{E})$ for $\mathbb{K}(\mathcal{E},\mathcal{E})$. Given a Hilbert C^* -module \mathcal{E} , the *linking algebra* $\mathcal{L}(\mathcal{E})$ is defined as a matrix algebra of the following form

$$\mathcal{L}(\mathcal{E}) = \left[\begin{array}{cc} \mathbb{K}(\mathcal{A}) & \mathbb{K}(\mathcal{E}, \mathcal{A}) \\ \mathbb{K}(\mathcal{A}, \mathcal{E}) & \mathbb{K}(\mathcal{E}) \end{array} \right].$$

Then $\mathcal{L}(\mathcal{E})$ has a canonical embedding as a closed subalgebra of the adjointable operators on the Hilbert C^* -module $\mathcal{A} \oplus \mathcal{E}$ via

$$\left[\begin{array}{cc} X & Y \\ Z & W \end{array}\right] \left[\begin{array}{c} a \\ x \end{array}\right] = \left[\begin{array}{c} Xa + Yx \\ Za + Wx \end{array}\right],$$

which makes $\mathcal{L}(\mathcal{E})$ a C^* -algebra [12, Lemma 2.32 and Corollary 3.21]. Each $x \in \mathcal{E}$ induces the mappings $r_x \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{A},\mathcal{E})$ and $l_x \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{E},\mathcal{A})$ given by $r_x(a) = xa$ and $l_x(y) = \langle x,y \rangle_{\mathcal{E}}$, respectively, such that $r_x^* = l_x$. For any $x,y \in \mathcal{E}$, we have $l_{x+y} = l_x + l_y$ and $r_{x+y} = r_x + r_y$. In addition, for every $a \in \mathcal{A}$, $x \in \mathcal{E}$, we also have $l_{ax} = \overline{\alpha}l_x$ and $r_{ax} = \alpha r_x$. The mapping $x \to r_x$ is an isometric linear isomorphism from \mathcal{E} to $\mathbb{K}(\mathcal{A},\mathcal{E})$ and $x \to l_x$ is an isometric conjugate linear isomorphism from \mathcal{E} to $\mathbb{K}(\mathcal{E},\mathcal{A})$. Moreover, each $a \in \mathcal{A}$ induces a mapping given by $T_a(b) = ab$ for $T_a \in \mathbb{K}(\mathcal{A})$. The mapping $a \to T_a$ defines an isomorphism between \mathcal{A} and $\mathbb{K}(\mathcal{A})$. Therefore, we may write

$$\mathcal{L}(\mathcal{E}) = \left\{ \left[\begin{array}{cc} T_a & l_y \\ r_x & T \end{array} \right] : a \in \mathcal{A}, x, y \in \mathcal{E}, T \in \mathbb{K}(\mathcal{E}) \right\}$$

and identify the *C**-subalgebras of compact operators with the corresponding corners in the linking algebra:

$$\mathbb{K}(\mathcal{A}) = \mathbb{K}(\mathcal{A} \oplus 0) \subseteq \mathbb{K}(\mathcal{A} \oplus \mathcal{E}) = \mathcal{L}(\mathcal{E}), \ \mathbb{K}(\mathcal{E}) = \mathbb{K}(0 \oplus \mathcal{E}) \subseteq \mathbb{K}(\mathcal{A} \oplus \mathcal{E}) = \mathcal{L}(\mathcal{E}).$$

For more information on Hilbert C^* -modules and linking algebras, please refer to [6, 7].

Let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators on a Hilbert space \mathcal{H} . Every operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as $T = \mathfrak{R}(T) + i\mathfrak{I}(T)$, where $\mathfrak{R}(T) = \frac{T+T^*}{2}$ and $\mathfrak{I}(T) = \frac{T-T^*}{2i}$ are the real and imaginary parts of T, respectively. For $0 \le \nu \le 1$, we define the weighted real and imaginary parts of $T \in \mathcal{B}(\mathcal{H})$ by $\mathfrak{R}_{\nu}(T) = \nu T + (1-\nu)T^*$. The *numerical radius* and *operator norm* of an element $T \in \mathcal{B}(\mathcal{H})$ are defined by

$$\omega(T) = \sup\{|\langle Tx, x \rangle| : x \in \mathcal{H}, ||x|| = 1\}, ||T|| = \sup_{||x|| = 1} ||Tx||,$$

where $\|\cdot\|$ is the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on \mathcal{H} . These concepts have proven useful in some cases [1, 2, 4, 9, 16, 18]. An important and useful identity for the numerical radius [15] is as follows:

$$\omega(T) = \sup_{\theta \in \mathbb{R}} \| \Re(e^{i\theta}T) \|.$$

Recently, Sheikhhosseini et al. [14] introduced the so-called *weighted numerical radius*: If $0 \le v \le 1$, the weighted numerical radius for $T \in \mathcal{B}(\mathcal{H})$ denoted by $\omega_{\nu}(T)$ is introduced by

$$\omega_{\nu}(T) = \sup_{\theta \in \mathbb{R}} \| \mathfrak{R}_{\nu}(e^{i\theta}T) \|. \tag{1}$$

Suppose \mathcal{A} is a unital C^* -algebra and \mathcal{E} is a right \mathcal{A} -module. Let \mathcal{A}^* be the *dual space* of \mathcal{A} . A *positive linear functional* of \mathcal{A} is a map $\phi \in \mathcal{A}^*$ such that $\phi(a) \geq 0$ whenever $a \geq 0$. Let $\mathcal{S}(\mathcal{A})$ be the set of all positive linear functionals on \mathcal{A} of norm 1. Recall [17] that the *numerical radius* $\Omega(x)$ of $x \in \mathcal{E}$ is defined by

$$\Omega(x) = \sup \left\{ \left| \phi \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) \right| : \phi \in \mathcal{S}(\mathcal{L}(\mathcal{E})) \right\}.$$

It is known that $\Omega(\cdot)$ is a norm on Hilbert C^* -module \mathcal{E} , which is equivalent to the norm $\|\cdot\|_{\mathcal{E}}$. In fact, for every $x \in \mathcal{E}$,

$$\frac{1}{2}||x||_{\mathcal{E}} \le \Omega(x) \le ||x||_{\mathcal{E}}.\tag{2}$$

An important and useful identity for the numerical radius is as follows.

Proposition 1.1. [17, Theorem 2.6] Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Then

$$\Omega(x) = \frac{1}{2} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & e^{-i\theta} l_x \\ e^{i\theta} r_x & 0 \end{bmatrix} \right\|$$

for every $x \in \mathcal{E}$.

Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . For $0 \le v \le 1$, we defined the weighted real and imaginary parts of $\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}$ by

$$\mathfrak{R}_{\nu}\left(\left[\begin{array}{cc} 0 & 0 \\ r_{x} & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & (1-\nu)l_{x} \\ \nu r_{x} & 0 \end{array}\right]$$

and

$$\mathfrak{I}_{\nu}\left(\left[\begin{array}{cc} 0 & 0 \\ r_{x} & 0 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & (1-\nu)il_{x} \\ -\nu ir_{x} & 0 \end{array}\right].$$

Inspired by (1) and Proposition 1.1, we introduce the following definition, which we call the *weighted* numerical radius.

Definition 1.2. Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . For $0 \le v \le 1$ and $x \in \mathcal{E}$, the weighted numerical radius of x is denoted by $\Omega_v(x)$ and is defined as

$$\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\|.$$

Since $\mathcal{L}(\mathcal{E})$ is a C^* -algebra, the operator norm $\|\cdot\|$ on $\mathcal{L}(\mathcal{E})$ is self-adjoint. For any $x \in \mathcal{E}$, we have

$$\Omega_0(x) = \Omega_1(x) = \left\| \left[\begin{array}{cc} 0 & e^{-i\theta} l_x \\ 0 & 0 \end{array} \right] \right\| = \left\| \left[\begin{array}{cc} 0 & e^{-i\theta} l_x \\ 0 & 0 \end{array} \right]^* \right\| = \left\| \left[\begin{array}{cc} 0 & 0 \\ e^{i\theta} r_x & 0 \end{array} \right] \right\| = \left\| \left[\begin{array}{cc} 0 & 0 \\ r_x & 0 \end{array} \right] \right\| = \|x\|_{\mathcal{E}}.$$

For every $x \in \mathcal{E}$, it is easy to see that

$$\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \mathfrak{I}_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_{ie^{i\theta}x} & 0 \end{bmatrix} \right) \right\|.$$

In this paper, we first use the linking algebra $\mathcal{L}(\mathcal{E})$ of a Hilbert \mathcal{A} -module \mathcal{E} to define the weighted numerical radius of $x \in \mathcal{E}$ and denote it by $\Omega_{\nu}(x)$. We then show that $\Omega_{\nu}(\cdot)$ is a norm on \mathcal{E} , which is equivalent to the norm $\|\cdot\|_{\mathcal{E}}$ and the following inequalities

$$\frac{1}{2}||x||_{\mathcal{E}} \leq \max\{\nu, 1-\nu\}||x||_{\mathcal{E}} \leq \Omega_{\nu}(x) \leq ||x||_{\mathcal{E}}$$

hold for every $x \in \mathcal{E}$. Furthermore, for $x \in \mathcal{E}$, $a \in \mathcal{A}$ we prove that

$$\Omega_{\nu}(xa + xa^*) \le 2||a + a^*||\Omega_{\nu}(x).$$

In particular, we find some bounds for Ω_{ν} . The main purpose of this paper is to discuss this definition and the interesting properties that Ω_{ν} satisfies.

2. Main results

In this section, we present some of our main results. We start with the following main properties of Ω_{ν} .

Theorem 2.1. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Suppose $0 \le v \le 1$. Then $\Omega_v(\cdot) : \mathcal{E} \to [0, +\infty)$ defines a norm on \mathcal{E} .

Proof. For $x \in \mathcal{E}$, the nonnegativity follows from the fact $\Omega_{\nu}(x)$ is the supremum of a nonnegative valued function. Assume that $\Omega_{\nu}(x) = 0$ for all $x \in \mathcal{E}$. If we choose $\nu = 0$, then we have

$$\Omega_0(x) = \left\| \begin{bmatrix} 0 & e^{-i\theta} l_x \\ 0 & 0 \end{bmatrix} \right\| = \|x\|_{\mathcal{E}} = 0.$$

Thus x = 0. Hence, we may assume that $v \neq 0$. Then by Definition 1.2,

$$\begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} = 0$$

for any $\theta \in \mathbb{R}$. Taking $\theta = 0$ and $\theta = \frac{\pi}{2}$, we have

$$\begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} = \begin{bmatrix} 0 & -(1-\nu)il_x \\ \nu i r_x & 0 \end{bmatrix} = 0.$$

Thus

$$\left[\begin{array}{cc} 0 & (1-\nu)l_x \\ vr_x & 0 \end{array}\right] - i \left[\begin{array}{cc} 0 & -(1-\nu)il_x \\ vir_x & 0 \end{array}\right] = 2\nu \left[\begin{array}{cc} 0 & 0 \\ r_x & 0 \end{array}\right] = 0.$$

Since $\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} = \|x\|_{\mathcal{E}}$, we get $\|x\|_{\mathcal{E}} = 0$ and therefore x = 0. For the triangle inequality, let $x, y \in \mathcal{E}$. Then

$$\begin{split} \Omega_{\nu}(x+y) &= \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_{x+y} \\ \nu e^{i\theta}r_{x+y} & 0 \end{array} \right] \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{array} \right] + \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_y \\ \nu e^{i\theta}r_y & 0 \end{array} \right] \right\| \\ &\leq \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{array} \right] \right\| + \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_y \\ \nu e^{i\theta}r_y & 0 \end{array} \right] \right\| \\ &= \Omega_{\nu}(x) + \Omega_{\nu}(y). \end{split}$$

Let $\alpha = \mathbb{C}$. There exists $\varphi \in \mathbb{R}$ such that $\alpha = |\alpha|e^{i\varphi}$. For any $x \in \mathcal{E}$, $a \in \mathcal{A}$, we have

$$\begin{split} \Omega_{\nu}(\alpha x) &= \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_{\alpha x} \\ \nu e^{i\theta}r_{\alpha x} & 0 \end{bmatrix} \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}\overline{\alpha}l_{x} \\ \nu e^{i\theta}\alpha r_{x} & 0 \end{bmatrix} \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i(\theta + \varphi)}|\alpha|l_{x} \\ \nu e^{i(\theta + \varphi)}|\alpha|r_{x} & 0 \end{bmatrix} \right\| \\ &= |\alpha|\sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_{x} \\ \nu e^{i\theta}r_{x} & 0 \end{bmatrix} \right\| \\ &= |\alpha|\Omega_{\nu}(x). \end{split}$$

This completes the proof. \Box

Since $\mathcal{L}(\mathcal{E})$ is a C^* -algebra, the operator norm $\|\cdot\|$ on $\mathcal{L}(\mathcal{E})$ is self-adjoint, in the sense that

$$\left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 0 & \nu e^{-i\theta}l_x \\ (1-\nu)e^{i\theta}r_x & 0 \end{bmatrix} \right\|$$

for $x \in \mathcal{E}$. Then we have

Proposition 2.2. Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Then

$$\Omega_{\nu}(x) = \Omega_{1-\nu}(x)$$

for $x \in \mathcal{E}$.

The inequality (2) is an essential inequality for the numerical radius. This inequality has a satisfactory version of the weighted numerical radius that we see below. It turns out that factor $\frac{1}{2}$ is a special case. Furthermore, we note that the term $\max\{\nu, 1 - \nu\}$ appears in many results dealing with operator inequalities and convex functions [3, 19].

Theorem 2.3. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Suppose that $0 \le v \le 1$. Then we have

$$\frac{1}{2}||x||_{\mathcal{E}} \le \max\{\nu, 1 - \nu\}||x||_{\mathcal{E}} \le \Omega_{\nu}(x) \le ||x||_{\mathcal{E}} \tag{3}$$

for any $x \in \mathcal{E}$. In particular, the norm $\Omega_{\nu}(\cdot)$ is equivalent to the norm $\|\cdot\|_{\mathcal{E}}$.

Proof. The first inequality is obvious. For the second inequality, for every $x \in \mathcal{E}$, by Definition 1.2 we have

$$\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| \ge \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\|$$

for any $\theta \in \mathbb{R}$. So, by taking $\theta = 0$ and $\theta = -\frac{\pi}{2}$, we conclude that

$$\Omega_{\nu}(x) \ge \left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \text{ and } \Omega_{\nu}(x) \ge \left\| \begin{bmatrix} 0 & (1-\nu)il_x \\ -\nu ir_x & 0 \end{bmatrix} \right\|.$$

Therefore, by the triangle inequality

$$2\Omega_{\nu}(x) \ge \left\| \begin{bmatrix} 0 & (1-\nu)l_{x} \\ \nu r_{x} & 0 \end{bmatrix} \right\| + \left\| \begin{bmatrix} 0 & (1-\nu)il_{x} \\ -\nu ir_{x} & 0 \end{bmatrix} \right\|$$

$$\ge \left\| \begin{bmatrix} 0 & (1-\nu)l_{x} \\ \nu r_{x} & 0 \end{bmatrix} + i \begin{bmatrix} 0 & (1-\nu)il_{x} \\ -\nu ir_{x} & 0 \end{bmatrix} \right\|$$

$$= 2\nu \left\| \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \right\| = 2\nu \|x\|_{\mathcal{E}}.$$

Replacing ν with $1 - \nu$, we obtain $(1 - \nu)||x||_{\mathcal{E}} \le \Omega_{1-\nu}(x) = \Omega_{\nu}(x)$, which implies that

$$\max\{\nu, 1 - \nu\} ||x||_{\mathcal{E}} \leq \Omega_{\nu}(x).$$

Also, we have

$$\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)e^{-i\theta}l_{x} \\ \nu e^{i\theta}r_{x} & 0 \end{bmatrix} \right\| \\
= \sup_{\theta \in \mathbb{R}} \left\| (1 - \nu)e^{-i\theta}\begin{bmatrix} 0 & l_{x} \\ 0 & 0 \end{bmatrix} + \nu e^{i\theta}\begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \right\| \\
\leq (1 - \nu)\sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & l_{x} \\ 0 & 0 \end{bmatrix} \right\| + \nu \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \right\| \\
= (1 - \nu) \left\| \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \right\| + \nu \left\| \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \right\| = \|x\|_{\mathcal{E}}.$$

This completes the proof. \Box

Since the value of Ω_{ν} depends on the parameter ν , we further investigate the properties of the function $f(\nu) = \Omega_{\nu}$.

Proposition 2.4. Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Suppose that $0 \le v \le 1$ and $x \in \mathcal{E}$. Then the function $f(v) = \Omega_v(x)$ is a convex function on the interval [0,1].

Proof. Let $x \in \mathcal{E}$ and let $0 \le \mu, \nu, t \le 1$, we have

$$\begin{split} & f(t\nu + (1-t)\mu) = \Omega_{t\nu + (1-t)\mu}(x) \\ & = \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{ccc} 0 & (1-t\nu - \mu + t\mu)e^{-i\theta}l_x \\ (t\nu + (1-t)\mu)e^{i\theta}r_x & 0 \end{array} \right] \right\| \\ & = \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{ccc} 0 & t(1-\nu)e^{-i\theta}l_x \\ t\nu e^{i\theta}r_x & 0 \end{array} \right] + \left[\begin{array}{ccc} 0 & (1-t)(1-\mu)e^{-i\theta}l_x \\ (1-t)\mu e^{i\theta}r_x & 0 \end{array} \right] \right\| \\ & \leq t \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{ccc} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{array} \right] \right\| + (1-t)\sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{ccc} 0 & (1-\mu)e^{-i\theta}l_x \\ \mu e^{i\theta}r_x & 0 \end{array} \right] \right\| \\ & = t\Omega_{\nu}(x) + (1-t)\Omega_{\mu}(x) \\ & = tf(\nu) + (1-t)f(\mu). \end{split}$$

Therefore, f is convex on [0,1]. \square

In the following result, we present more elaborated formulas for Ω_{ν} .

Proposition 2.5. Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Suppose that $0 \le v \le 1$ and $x \in \mathcal{E}$. Then

(i)
$$\Omega_{\nu}(x) = \sup_{\alpha^{2} + \beta^{2} = 1} \left\| \alpha \mathfrak{R}_{\nu} \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \end{pmatrix} + \beta \mathfrak{I}_{\nu} \begin{pmatrix} \begin{bmatrix} 0 & 0 \\ r_{x} & 0 \end{bmatrix} \end{pmatrix} \right\|.$$

(ii) $\Omega_{\nu}(x) = \frac{1}{2} \sup_{\theta, \varphi \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1 - \nu)(e^{i\theta} - ie^{i\varphi})^{*} l_{x} \\ \nu(e^{i\theta} - ie^{i\varphi}) r_{x} & 0 \end{bmatrix} \right\|.$

Proof. (i) For any $x \in \mathcal{E}$, we have

$$\begin{split} &\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{array} \right] \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)(\cos\theta - i\sin\theta)l_x \\ \nu(\cos\theta + i\sin\theta)r_x & 0 \end{array} \right] \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \left[\begin{array}{cc} 0 & (1-\nu)\cos\theta l_x \\ \nu\cos\theta r_x & 0 \end{array} \right] + \left[\begin{array}{cc} 0 & -(1-\nu)i\sin\theta l_x \\ \nu i\sin\theta r_x & 0 \end{array} \right] \right\| \\ &= \sup_{\theta \in \mathbb{R}} \left\| \cos\theta \left[\begin{array}{cc} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{array} \right] - \sin\theta \left[\begin{array}{cc} 0 & (1-\nu)il_x \\ -\nu ir_x & 0 \end{array} \right] \right\| \\ &= \sup_{\alpha^2 + \beta^2 = 1} \left\| \alpha \left[\begin{array}{cc} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{array} \right] + \beta \left[\begin{array}{cc} 0 & (1-\nu)il_x \\ -\nu ir_x & 0 \end{array} \right] \right\| \\ &= \sup_{\alpha^2 + \beta^2 = 1} \left\| \alpha \Re_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) + \beta \Im_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) \right\| . \end{split}$$

(ii) For any $x \in \mathcal{E}$, we have

$$\begin{split} &\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| \\ &= \frac{1}{2} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| + \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| \\ &= \frac{1}{2} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| + \begin{bmatrix} 0 & (1-\nu)e^{-i(\theta+\frac{\pi}{2})}il_x \\ -\nu e^{i(\theta+\frac{\pi}{2})}ir_x & 0 \end{bmatrix} \right\| \\ &\leq \frac{1}{2} \sup_{\theta,\phi \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\| + \begin{bmatrix} 0 & (1-\nu)e^{-i\phi}il_x \\ -\nu e^{i\phi}ir_x & 0 \end{bmatrix} \right\| \\ &= \frac{1}{2} \sup_{\theta,\phi \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)(e^{i\theta}-ie^{i\phi})^*l_x \\ \nu (e^{i\theta}-ie^{i\phi})x & 0 \end{bmatrix} \right\| \\ &= \frac{1}{2} \sup_{\theta,\phi \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)l_{(e^{i\theta}-ie^{i\phi})x} \\ \nu r_{(e^{i\theta}-ie^{i\phi})x} & 0 \end{bmatrix} \right\| \\ &\leq \frac{1}{2} \sup_{\theta,\phi \in \mathbb{R}} \Omega_{\nu}((e^{i\theta}-ie^{i\phi})x) = \frac{1}{2} \sup_{\theta,\phi \in \mathbb{R}} |e^{i\theta}-ie^{i\phi}|\Omega_{\nu}(x) \\ &= \frac{\Omega_{\nu}(x)}{2} \sup_{\theta,\phi \in \mathbb{R}} \sqrt{2-2\sin(\theta-\phi)} = \Omega_{\nu}(x), \end{split}$$

and thus

$$\Omega_{\nu}(x) = \frac{1}{2} \sup_{\theta, \varphi \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)(e^{i\theta} - ie^{i\varphi})^* l_x \\ \nu(e^{i\theta} - ie^{i\varphi}) r_x & 0 \end{bmatrix} \right\|.$$

3. Some upper and below bounds for $\Omega_{\nu}(\cdot)$

So far, we have given the basic inequalities for the weighted numerical radius. In this section, we intend to present more detailed inequalities.

Theorem 3.1. Let \mathcal{E} be a Hilbert \mathcal{A} -module and let $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . For $0 \le v \le 1, x \in \mathcal{E}$, the following inequality holds:

$$\frac{(1+|2\nu-1|)(1+\nu)}{4}||x||_{\mathcal{E}} + \frac{1+|2\nu-1|}{8}(\Delta+\Delta') + \frac{(1+|2\nu-1|)}{4}|\Gamma-\Gamma'| \leq \Omega_{\nu}(x),$$

$$\begin{aligned} & \textit{where } \Gamma = \max \left\{ \|x\|_{\mathcal{E}}, \left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right\}, \ \Gamma' = \max \left\{ \|x\|_{\mathcal{E}}, \left\| \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right\}, \\ & \Delta = \left\| \|x\|_{\mathcal{E}} - \left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right\| \textit{and } \Delta' = \left\| \|x\|_{\mathcal{E}} - \left\| \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right\|. \end{aligned}$$

Proof. Since $\Omega_{\nu}(x) = \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ \nu e^{i\theta}r_x & 0 \end{bmatrix} \right\|$, by taking $\theta = 0$ and $\theta = \frac{\pi}{2}$, we have

$$\Omega_{\nu}(x) \ge \left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \text{ and } \Omega_{\nu}(x) \ge \left\| \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\|. \tag{4}$$

So, by (3) and (4), we have $\Omega_{\nu}(x) \ge \frac{1+|2\nu-1|}{2} \max\{\Gamma, \Gamma'\}$. Therefore,

$$\begin{split} &\Omega_{\nu}(x) \geq \frac{(1+|2\nu-1|)(\Gamma+\Gamma')}{4} + \frac{(1+|2\nu-1|)(|\Gamma-\Gamma'|)}{4} \\ &= \frac{1+|2\nu-1|}{4} \left(\frac{1}{2} \left(||x||_{\mathcal{E}} + \left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right) + \frac{1}{2}\Delta \right) \\ &+ \frac{1+|2\nu-1|}{4} \left(\frac{1}{2} \left(||x||_{\mathcal{E}} + \left\| \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right) + \frac{1}{2}\Delta' \right) \\ &+ \frac{(1+|2\nu-1|)(|\Gamma-\Gamma'|)}{4} \\ &= \frac{1+|2\nu-1|}{8} \left(\left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| + \left\| \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right) \\ &+ \frac{1+|2\nu-1|}{4} ||x||_{\mathcal{E}} + \frac{1+|2\nu-1|}{8} (\Delta+\Delta') + \frac{(1+|2\nu-1|)(|\Gamma-\Gamma'|)}{4} \\ &\geq \frac{1+|2\nu-1|}{8} \left(\left\| \begin{bmatrix} 0 & (1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} + \begin{bmatrix} 0 & -(1-\nu)l_x \\ \nu r_x & 0 \end{bmatrix} \right\| \right) \\ &+ \frac{1+|2\nu-1|}{4} ||x||_{\mathcal{E}} + \frac{1+|2\nu-1|}{8} (\Delta+\Delta') + \frac{(1+|2\nu-1|)(|\Gamma-\Gamma'|)}{4} \\ &= \frac{(1+|2\nu-1|)(1+\nu)}{4} ||x||_{\mathcal{E}} + \frac{1+|2\nu-1|}{8} (\Delta+\Delta') + \frac{(1+|2\nu-1|)(|\Gamma-\Gamma'|)}{4} ||\Gamma-\Gamma'|. \end{split}$$

Thus

$$\frac{(1+|2\nu-1|)(1+\nu)}{4}||x||_{\mathcal{E}} + \frac{1+|2\nu-1|}{8}(\Delta+\Delta') + \frac{(1+|2\nu-1|)}{4}|\Gamma-\Gamma'| \leq \Omega_{\nu}(x).$$

Theorem 3.2. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $\mathcal{L}(\mathcal{E})$ be the linking algebra of \mathcal{E} . Let $0 \le v \le 1$, $a \in \mathcal{A}$ and $x \in \mathcal{E}$. Then

$$\Omega_{\nu}(xa + xa^*) \le 2||a + a^*||\Omega_{\nu}(x).$$

Proof. For any $b \in \mathcal{A}$ and $y \in \mathcal{E}$, we have

$$r_{xa}(b) = (xa)b = x(T_a(b)) = r_x T_a(b)$$

and

$$l_{xa}(y) = \langle xa, y \rangle_{\mathcal{E}} = a^* \langle x, y \rangle_{\mathcal{E}} = a^* (l_x(y)) = T_{a^*} l_x(y).$$

Hence $r_{xa} = r_x T_a$ and $l_{xa} = T_{a^*} l_x$. Therefore, let $\theta \in \mathbb{R}$,

$$\begin{split} & \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_{xa+xa^*} & 0 \end{bmatrix} \right\| \\ & ve^{i\theta}r_{xa+xa^*} & 0 \end{bmatrix} \right\| \\ & = \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}(T_{a^*}l_x + T_al_x) \\ ve^{i\theta}(r_xT_a + r_xT_{a^*}) & 0 \end{bmatrix} \right\| \\ & = \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}T_{a+a^*}l_x \\ ve^{i\theta}r_xT_{a+a^*} & 0 \end{bmatrix} \right\| \\ & = \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ ve^{i\theta}r_x & 0 \end{bmatrix} \right\| \begin{bmatrix} T_{a+a^*} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} T_{a+a^*} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ ve^{i\theta}r_x & 0 \end{bmatrix} \right\| \\ & \leq \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ ve^{i\theta}r_x & 0 \end{bmatrix} \right\| \left\| \begin{bmatrix} T_{a+a^*} & 0 \\ 0 & 0 \end{bmatrix} \right\| \\ & + \left\| \begin{bmatrix} T_{a+a^*} & 0 \\ 0 & 0 \end{bmatrix} \right\| \left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_x \\ ve^{i\theta}r_x & 0 \end{bmatrix} \right\| \\ & \leq 2\Omega_{\nu}(x) \left\| \begin{bmatrix} T_{a+a^*} & 0 \\ 0 & 0 \end{bmatrix} \right\| = 2\|a + a^*\|\Omega_{\nu}(x). \end{split}$$

so

$$\left\| \begin{bmatrix} 0 & (1-\nu)e^{-i\theta}l_{xa+xa^*} \\ \nu e^{i\theta}r_{xa+xa^*} & 0 \end{bmatrix} \right\| \le 2||a+a^*||\Omega_{\nu}(x).$$

Taking the supremum over $\theta \in \mathbb{R}$ in the above inequality, we deduce that

$$\Omega_{\nu}(xa + xa^*) \le 2||a + a^*||\Omega_{\nu}(x).$$

As a direct consequence of Theorem 3.2, we obtain the following result.

Corollary 3.3. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $0 \le v \le 1$. Let $a \in \mathcal{A}$ and $x \in \mathcal{E}$. If $xa = xa^*$, then

$$\Omega_{\nu}(xa) \leq ||a + a^*||\Omega_{\nu}(x).$$

Remark 3.4. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $0 \le v \le 1$. Let $a \in \mathcal{A}$ and $x \in \mathcal{E}$. Replace a by ia in Theorem 3.2, we obtain

$$\Omega_{\nu}(xa-xa^*)\leq 2||a-a^*||\Omega_{\nu}(x).$$

Thus

$$\Omega_{\nu}(xa \pm xa^*) \leq 2||a \pm a^*||\Omega_{\nu}(x).$$

Using Proposition 2.5, we obtain the following upper bound for the weighted numerical radius of elements in a Hilbert \mathcal{A} -module.

Theorem 3.5. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $0 \le v \le 1$. Then

$$\Omega_{\nu}(x) \leq \frac{\sqrt{2+4\nu(\nu-1)}}{2} \inf_{\varphi \in \mathbb{R}} \left(\left\| \begin{bmatrix} 0 & e^{-i\varphi}l_{x} \\ e^{i\varphi}r_{x} & 0 \end{bmatrix} \right\|^{2} + \left\| \begin{bmatrix} 0 & ie^{-i\varphi}l_{x} \\ -ie^{i\varphi}r_{x} & 0 \end{bmatrix} \right\|^{2} \right)^{\frac{1}{2}}$$

for every $x \in \mathcal{E}$.

Proof. Let $\alpha, \beta \in \mathbb{R}$ such that $\alpha^2 + \beta^2 = 1$. Then clearly

$$\begin{aligned} & \left\| \alpha \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} + i(2\nu - 1) \left(\alpha \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - \beta \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right) \right\| \\ & = \left\| c \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + d \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right\|, \end{aligned}$$

where $c = \alpha - \beta(2\nu - 1)i$ and $d = \beta + \alpha(2\nu - 1)i$. Using triangle and Cauchy-Schwarz inequalities, respectively, we have

$$\begin{aligned} & \left\| c \begin{bmatrix} 0 & l_{x} \\ r_{x} & 0 \end{bmatrix} + d \begin{bmatrix} 0 & il_{x} \\ -ir_{x} & 0 \end{bmatrix} \right\| \\ \leq & \left\| c \right\| \begin{bmatrix} 0 & l_{x} \\ r_{x} & 0 \end{bmatrix} + d \right\| \begin{bmatrix} 0 & il_{x} \\ -ir_{x} & 0 \end{bmatrix} \\ \leq & \left\| \left[c \right]^{2} + \left\| c \right]^{\frac{1}{2}} \left(\left\| \begin{bmatrix} 0 & l_{x} \\ r_{x} & 0 \end{bmatrix} \right\|^{2} + \left\| \begin{bmatrix} 0 & il_{x} \\ -ir_{x} & 0 \end{bmatrix} \right\|^{2} \right)^{\frac{1}{2}}. \end{aligned}$$

A simple calculation implies $|c|^2 + |d|^2 = 2 + 4\nu(\nu - 1)$. Hence, we have

$$\begin{split} & \left\| \alpha \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} + i(2\nu - 1) \left(\alpha \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right) - \beta \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right) \right\| \\ &= 2 \left\| \alpha \begin{bmatrix} 0 & (1 - \nu)l_x \\ \nu r_x & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & (1 - \nu)il_x \\ -\nu ir_x & 0 \end{bmatrix} \right\| \\ &= 2 \left\| \alpha \Re_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) + \beta \Im_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) \right\| \\ &\leq (2 + 4\nu(\nu - 1))^{\frac{1}{2}} \left(\left\| \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right\|^2 + \left\| \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right\|^2 \right)^{\frac{1}{2}}. \end{split}$$

By Proposition 2.5(1), taking the supremum over all $\alpha, \beta \in \mathbb{R}$ such that $\alpha^2 + \beta^2 = 1$, then

$$\Omega_{\nu}(x) \leq \frac{\sqrt{2+4\nu(\nu-1)}}{2} \left(\left\| \left[\begin{array}{cc} 0 & l_x \\ r_x & 0 \end{array} \right] \right\|^2 + \left\| \left[\begin{array}{cc} 0 & il_x \\ -ir_x & 0 \end{array} \right] \right\|^2 \right)^{\frac{1}{2}}.$$

Replacing *x* by $e^{i\varphi}x$, we get the desired result. \square

In the next theorem, we obtain another upper bound for the weighted numerical radius of elements in a Hilbert \mathcal{A} -module.

Theorem 3.6. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $0 \le v \le 1$. Then

$$\begin{split} \Omega_{\nu}(x) &\leq \frac{1}{2} \inf_{\varphi \in \mathbb{R}} \left(\left\| \begin{bmatrix} 0 & e^{-i\varphi}l_x \\ e^{i\varphi}r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & ie^{-i\varphi}l_x \\ -ie^{i\varphi}r_x & 0 \end{bmatrix} \right\|^2 \\ &+ \left\| \begin{bmatrix} 0 & ie^{-i\varphi}l_x \\ -ie^{i\varphi}r_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & e^{-i\varphi}l_x \\ e^{i\varphi}r_x & 0 \end{bmatrix} \right\|^2 \end{split}$$

for every $x \in \mathcal{E}$.

Proof. For $\alpha, \beta \in \mathbb{R}$, we have

$$\begin{split} & \left\| \alpha \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} + i(2\nu - 1) \left(\alpha \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - \beta \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right) \right\| \\ & = 2 \left\| \alpha \mathfrak{R}_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) + \beta \mathfrak{I}_{\nu} \left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix} \right) \right\| \\ & = \left\| \alpha \left(\begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right) + \beta \left(\begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right) \right\| \\ & \leq |\alpha| \left\| \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} + |\beta| \left\| \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right\| \\ & \leq (\alpha^2 + \beta^2)^{\frac{1}{2}} \left(\left\| \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right\|^2 + \left\| \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right\|^2 \right)^{\frac{1}{2}}. \end{split}$$

Taking the supremum over $\alpha^2 + \beta^2 = 1$, then by Proposition 2.5(1),

$$\Omega_{\nu}(x) \leq \frac{1}{2} \left(\left\| \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} \right\|^2 + \left\| \begin{bmatrix} 0 & il_x \\ -ir_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & l_x \\ r_x & 0 \end{bmatrix} \right\|^2 \right)^{\frac{1}{2}}.$$

Now, replacing x by $e^{i\varphi}x$, we can obtain

$$\begin{split} \Omega_{\nu}(x) &\leq \frac{1}{2} \inf_{\varphi \in \mathbb{R}} \left(\left\| \begin{bmatrix} 0 & e^{-i\varphi} l_x \\ e^{i\varphi} r_x & 0 \end{bmatrix} + i(2\nu - 1) \begin{bmatrix} 0 & ie^{-i\varphi} l_x \\ -ie^{i\varphi} r_x & 0 \end{bmatrix} \right\|^2 \\ &+ \left\| \begin{bmatrix} 0 & ie^{-i\varphi} l_x \\ -ie^{i\varphi} r_x & 0 \end{bmatrix} - i(2\nu - 1) \begin{bmatrix} 0 & e^{-i\varphi} l_x \\ e^{i\varphi} r_x & 0 \end{bmatrix} \right\|^2 \right)^{\frac{1}{2}}. \end{split}$$

References

- [1] S.S. Dragomir, A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal. 1 (2007), 154–175.
- [2] M. Goldberg, E. Tadmor, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263–284.
- [3] Z. Heydarbeygi, M. Sababheh, H. R. Moradi, A convex treatment of numerical radius inequalities, Czech. Math. J. 72 (2022), 601-614.
- [4] M.S. Hosseini, B. Moosavi, Some numerical radius inequalities for products of Hilbert space operators, Filomat, 33 (2019), 2089–2093.
- [5] M.S. Hosseini, M.E. Omidvar, B. Moosavi, H.R. Moradi, Some inequalities for the numerical radius for Hilbert C*-modules space operators, Georgian Math. J. 28 (2021), 255–260.
- [6] É.C. Lance, Hilbert C*-Modules: A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series 210. Cambridge University Press, Cambridge, 1995.
- [7] V.M. Manuilov, E.V. Troitsky, Hilbert C*-modules, In: Translations of Mathematicaln Monographs. 226, American Mathematical Society, Providence, RI, 2005.
- [8] M. Mehrazin, M. Amyari, M.E. Omidvar, A new type of numerical radius of operators on Hilbert C*-module, Rend. Circ. Mat. Palermo II. Ser 69 (2020), 29–37.
- [9] M. Mehrazin, M. Amyari, A. Zamani, Numerical radius parallelism of Hilbert space operators, Bull. Iranian Math. Soc. 46 (2020), 821–829.
- [10] B. Moosavi, M.S. Hosseini, Some inequalities for the numerical radius for operators in Hilbert C*-modules space, J. Inequal. Spec. Funct. 10 (2019), 77-84.
- [11] W.L. Paschke, Inner product modules over B*-algebras, Trans. Am. Math. Soc. 182 (1973), 443-468.
- [12] I. Raeburn, D.P. Williams, Morita equivalence and continuous-trace C*-algebras, Mathematical Surveys and Monographs 60, AMS, Philadelphia, 1998.
- [13] M.A. Rieffel, Induced representations of C*-algebras, Adv. Math. 13 (1974), 176–257.
- [14] A. Sheikhhosseini, M. Khosravi, M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13 (2022), 1–15.
- [15] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Studia Math. 178 (2007), 83-89.

- [16] A. Zamani, M.S. Moslehian, Q. Xu, C. Fu, Numerical radius inequalities concerning with algebraic norms, Mediterr. J. Math. 18, 38
- [17] A. Zamani, Numerical radius in Hilbert C*-modules, Math. Inequal. Appl. **24** (2021), 1017–1030.
 [18] A. Zamani, P. Wójcik, Another generalization of the numerical radius for Hilbert space operators, Linear Algebra Appl. **609** (2021), 114–128.
- [19] A. Zamani, The weighted Hilbert–Schmidt numerical radius, Linear Algebra Appl. 675 (2023), 225–243.