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Abstract. Let D be a bounded regular domain in Rn (n ≥ 3) containing 0, 0 < α < 2, and σ < 1. We take
up in this article the existence and asymptotic behavior of a positive continuous solution for the following
semi-linear fractional differential equation

(−∆|D)
α
2 u = a(x)uσ(x) in D\{0},

with the boundary Dirichlet conditions

lim
|x|→0
|x|n−αu(x) = 0 and lim

x→∂D
δ(x)2−αu(x) = 0,

where (−∆|D)
α
2 is the fractional Laplace associated to the subordinate killed Brownian motion process in

D and δ(x) = dist ( x, ∂D) denotes the Euclidean distance between x and ∂D. The function a is a positive
continuous function in D\{0}, which may be singular at x = 0 and/or at the boundary ∂D satisfying
some appropriate assumption related to Karamata class. More precisely, we shall prove the existence and
global asymptotic behavior of a positive continuous solution on D\{0}. We will use some potential theory
arguments and Karamata regular variation theory tools.

1. Introduction

In the present work, we consider the following semilinear singular fractional problem
(−∆|D)

α
2 u = a(x)uσ(x), x ∈ D\{0}, ( in the distributional sense, )

u > 0 in D\{0},
lim
|x|→0
|x|n−αu(x) = 0,

lim
x→∂D

δ(x)2−αu(x) = 0,

(1.1)
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where D is a bounded C1,1
−domain inRn, n ≥ 3, 0 < α < 2, σ < 1, δ(x) = dist ( x, ∂D) denotes the Euclidean

distance between x and ∂D and the positive continuous function a is required to satisfy some conditions
related to the Karamata classK0 defined as follows

Definition 1.1. [11] A function L defined on (0, η], η > 0 belongs to the Karamata classK0 if

L(t) := c exp
(∫ η

t

v(s)
s

ds
)
,

where c > 0 and v ∈ C([0, η]) with v(0) = 0.

As a standard example of a function L belonging toK0, we quote

L(t) = c
p∏

k=1

(lnk(
ψ

t
))−νk ,

where p ∈ N∗, (ν1, ν2, ... νp) ∈ Rp, c > 0, ψ is a sufficiently large positive real number and lnk(x) =
ln o ln o ... o ln x (k times).
Recently, Fractional Dirichlet problems find a big interest by many researchers due to their real-world
applications in many domains such as finance, engineering, science, economics, thermal elasticity, etc. As
a motivation of our study, we give a short historical account. Both fractional Dirichlet problem and its
elliptic counterpart have been widely studied, we cite works [1, 2, 6, 8, 12, 14, 16, 21]. Namely, in [1], Bachar
et al., using Karamata’s theory and Schauder’s fixed point theorem, showed the existence of a continuous
positive solution of the following problem

(−∆)u = 1(x)uσ(x), x ∈ D\{0},
u > 0 in D\{0},
lim
|x|→0
|x|n−2u(x) = 0,

lim
x→∂D

u(x) = 0,

where σ < 1 and 1 is required to satisfy suitable assumptions related to the Karamata classK0.
In [14], Mâagli and Zribi, investigated the existence, the uniqueness, and the asymptotic behavior of a
positive continuous solution of the following fractional problem

(−∆|D)
α
2 u = k(x)uσ(x), x ∈ D,

u > 0 in D,
lim

x→∂D
δ(x)2−αu(x) = 0,

where σ < 1 and k is a positive measurable function in D satisfying, for x ∈ D,

1
c
δ(x)−λL(δ(x)) ≤ k(x) ≤ cδ(x)−λL(δ(x)),

with c > 0, λ < α + (2 − α)(1 − σ) and L ∈ K0 defined on (0, η], η > diam(D). This result is already
an improvement of work [8] for the case where the nonlinear term φ(.,u) implies as a typical example
φ(x,u) = k(x)uσ(x), σ < 0.
In this work, we shall prove the existence and give a global behavior of positive continuous solutions to
our problems (1.1). We remark here that we are essentially inspired by the works [1] and [14]. In fact, we
will extend the result of [1] to problem (1.1). We point out that Bachar et al.’s proofs in [1] carry over to
some proof’s here, quite nicely.
Throughout this paper, we suppose that the function a satisfies the following hypothesis.
(H) a is a positive continuous function in D\{0} satisfying

a(x) ≈ |x|−λL1(|x|)δ(x)−ξL2(δ(x)), (1.2)



S. Salah et al. / Filomat 38:2 (2024), 449–472 451

where λ < (n − 2 + α)(1 − σ) + ασ, ξ < α and L1, L2 ∈ K0 defined on (0, η), η > d, d = diam(D).
We remark that under the hypotheses (H) we have,∫ η

0
s(n−2+α)(1−σ)+ασ−λ−1L1(s) ds < ∞ and

∫ η

0
sα−ξ−1L2(s) ds < ∞.

Hereinafter, for two nonnegative functions f and 1 defined on a set Ω, the notation f (x) ≈ 1(x) for x ∈ Ω
means that there exists c > 0 such that 1

c1(x) ≤ f (x) ≤ 1(x), for all x ∈ Ω.
Further, for σ < 1, we put Θ the function defined on D\{0} by

Θ(x) := |x|min(0, α−λ1−σ )(L̃1)
1

1−σ (|x|)δ(x)min(1, α−ξ1−σ )(L̃2)
1

1−σ (δ(x)), (1.3)

where L̃1(t) and L̃2(t) are defined on (0, η) as follows

L̃1(t) :=


1, if λ < α,∫ η

t
L1(s)

s ds, if λ = α,
L1(t), if α < λ < (n − 2 + α)(1 − σ) + ασ.

L̃2(t) :=


1, if ξ < α − 1 + σ,∫ η

t
L2(s)

s ds, if ξ = α − 1 + σ,
L2(t), if α − 1 + σ < ξ < α.

Our main result is the following

Theorem 1.2. Let σ < 1 and assume that the function a satisfies (H). Then problem (1.1) has at least one positive
continuous solution u ∈ D\{0} satisfying

u(x) ≈ Θ(x), for x ∈ D\{0}. (1.4)

Our approach to prove Theorem 1.2 relies on potential theory tools associated to the operator (−∆|D)
α
2

developed in some recent papers. Also Karamata’s theory and the functional class Kα called fractional Kato
class, plays a key role in our study.
The outline of this paper is organized as follows. In the next Section, we recall some potential theory
tools pertaining to the fractional operator. Then we collect a basic properties of functions in Kα and in the
class K0. In Section 3, we state some technical lemmas and we prove the asymptotic behavior of potential
functions. The last section is devoted to establish existence of solutions of problem (1.1) and will give an
example to illustrate our results.
We close this section by giving the following notation. For all s, t ∈ R we denotes s ∨ t = max(s, t) and
s ∧ t = min(s, t). Further, We point out that B(D) is the set of all measurable functions on D and B+(D)
is the subset of non-negative measurable functions on D. Analogously, C(D) is the class of all continuous
functions in D and let C0(D) be the subclass of C(D) consisting of functions which vanish continuously on
∂D. The letter c will denote a generic positive constant which may vary from line to line and d denotes the
diameter of D.

2. Preliminaries

This section is dedicated to the presentation of the main tools that we will use throughout the paper.

2.1. Green’s function

In this paragraph, we recall sharp inequalities for the Green function GD
α (x, y). The following estimates

are stated in [18]

GD
α (x, y) ≈

1
|x − y|n−α

(
1 ∧

δ(y)δ(x)
|x − y|2

)
, x, y ∈ D. (2.1)



S. Salah et al. / Filomat 38:2 (2024), 449–472 452

For α = 2, we refind the estimation, stated in [20], for the classical Green function

GD(x, y) ≈
1

|x − y|n−2

(
1 ∧

δ(y)δ(x)
|x − y|2

)
, x, y ∈ D.

Moreover, by [8], we have

GD
α (x, y) ≈ |x − y|α−2GD(x, y). (2.2)

Proposition 2.1. [8, Proposition 4] Let x, y ∈ D. Then

GD
α (x, y) ≈

δ(x)δ(y)
|x − y|n−α

(
|x − y|2 + δ(x)δ(y)

) , (2.3)

and

δ(x)δ(y) ≤ c GD
α (x, y).

Moreover, if |x − y| ≥ r then

GD
α (x, y) ≤ c

δ(x)δ(y)
rn+2−α . (2.4)

Recall that for each f ∈ B+(D), the potential kernel V f is defined by

V f (x) =
∫

D
GD
α (x, y) f (y) dy, x ∈ D.

We now briefly recall known notions. Let X = (D,F,Ft,Xt, θt,Px) an n−dimensional Ft−Brownian motion,
and T = (D,G,Tt,Px) is an α

2−stable subordinator starting at zero, 0 < α < 2, independent of X for every
Px. It well known that Yt = XTt is a rotationally invariant α−stable process whose infinitesimal generator is
−(−∆)

α
2 and YD the one killed on exiting D. The subordinate killed Brownian motion ZD

α corresponding to
the fractional power −(−∆|D)

α
2 as the process obtained by subordinating the killed Brownian motion XD at

τD, the first exit time of X from D, via Tt. From [4, page 187 − 198], the kernel x→
∣∣∣x − y

∣∣∣α−n
is α−harmonic

function in Rn⧹
{
y
}

with respect to Y and the function x 7→ |x|α−n is α−superharmonic with respect to Y. By
[7, Remark 2.1], the function h(x) = |x|α−n in D, and 0 outside D is α−superharmonic in D with respect to
YD. Since, from [9] and [19], we know that the killed subordinate process ZD

α has a shorter lifetime than the
subordinate killed process YD. Then, the function h(x) is α−superharmonic with respect to ZD

α .Moreover, it
is worth to recall that for every f ∈ B+(D),V f is α−superharmonic function in D with respect to ZD

α .
Let f ∈ B+(D). By [9], we have V f , ∞ if and only if

∫
D δ(y) f (y) dy < ∞. Furthermore, as in the classical

case, it was shown in [9, 10], that, for any f ∈ B+(D) such that f , V f ∈ L1
loc(D), we have in the distributional

sense

(−∆|D)
α
2 V f = f , in D (2.5)

Remark 2.2. We remark that the above result remains true in D⧹ {0}. More precisely, for any f ∈ B+(D⧹ {0}) such
that f , V f ∈ L1

loc(D⧹ {0}), we have

(−∆|D)
α
2 V f = f , in D⧹ {0} , in the distributional sense. (2.6)

Indeed, it is enough to extend the function f by 0 for x = 0 and use (2.5).

The potential kernel V satisfies the complete maximum principle (see for intense [4, Chapter 2, Proposition
7.1]). The following Lemma is due to [8].

Lemma 2.3. Let h ∈ B+(D) and v be a nonnegative α−superharmonic function. Let w be a Borel measurable function
in D such that V(h|w|) < ∞ and v = w + V(hw). Then w satisfies

0 ≤ w ≤ v.
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2.2. Kato class Kα(D)
In this paragraph, we gather some properties of functions belonging to the Kato class Kα(D), for more

details, we refer the reader to [6, 8, 14]. Let us recall the definition of Kα(D).

Definition 2.4. A Borel measurable function q in D belongs to the Kato class Kα(D) if q satisfies the following
condition

lim
r→0

(
sup
x∈D

∫
D∩B(x,r)

δ(y)
δ(x)

GD
α (x, y)|q(y)| dy

)
= 0. (2.7)

As a typical example of functions in Kα(D), we quote q(x) = δ(x)−λ, λ < α.

Now, we state the following result which is a consequence of [8, Proposition 10].

Proposition 2.5.
Let q be a function in Kα(D). Then for any α−superharmonic function h in D with respect to ZD

α , we have for x0 ∈ D

lim
r→0

(
sup
x∈D

1
h(x)

∫
D∩B(x0,r)

GD
α (x, y)|q(y)|h(y) dy

)
= 0. (2.8)

Remark 2.6. If q ∈ Kα(D), then the function x 7→ δ(x)α−1q(x) is in L1(D), see [8, Corollary 2].

Next, we state the following interesting proposition.

Proposition 2.7. Let q ∈ Kα(D), then the function v(x) defined by

v(x) := |x|n−α
∫

D
GD
α (x, y)|y|α−nq(y) dy is in C0(D).

Proof. Let q ∈ Kα(D), ϵ > 0 and x0 ∈ D. Since h(x) =

|x|α−n, x ∈ D
0, x < D

is an α−superharmonic function in D

with respect to ZD
α , then using (2.8), there exists r > 0 such that

sup
z∈D
|z|n−α

∫
D∩B(0,r)

GD
α (z, y)|y|α−n

|q(y)| dy ≤
ϵ
8

and

sup
z∈D
|z|n−α

∫
D∩Bc(0,r)∩B(x0,r)

GD
α (z, y)|y|α−n

|q(y)| dy ≤
ϵ
8
.

We distinguish tow cases

Case 1. Let x0 ∈ D and x ∈ B(x0, r
2 ) ∩D. Then

|v(x) − v(x0)| ≤ |x|n−α
∫

D
|GD

α (x, y)|y|α−n
|q(y)|| dy + |x0|

n−α
∫

D
|Gα

D(x0, y)|y|α−n
|q(y)|| dy

≤ 2 sup
z∈D
|z|n−α

∫
D∩B(0,r)

GD
α (z, y)|y|α−n

|q(y)| dy

+ 2 sup
z∈D
|z|n−α

∫
D∩Bc(0,r)∩B(x0 ,r)

GD
α (z, y)|y|α−n

|q(y)| dy

+

∫
D∩Bc(0,r)∩Bc(x0 ,r)

∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x, y)

∣∣∣∣|y|α−n
|q(y)| dy

≤
ϵ
2
+

∫
D∩Bc(0,r)∩Bc(x0 ,r)

∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x, y)

∣∣∣∣|y|α−n
|q(y)|dy.



S. Salah et al. / Filomat 38:2 (2024), 449–472 454

Let y ∈ D0 = D ∩ Bc(0, r) ∩ Bc(x0, r), then

|x − y| ≥ |y − x0| − |x − x0| ≥
r
2

and |y| ≥ r,

so, using (2.4), we obtain

|x|n−αGD
α (x, y)|y|α−n

≤ c
dδ(y)α−1δ(y)2−αdn−αrα−n

(r)n−α+2

≤ cdn−2α+3r2α−2n−2δ(y)α−1

≤ cδ(y)α−1.

By Remark 2.6, it follows
|x|n−αGD

α (x, y)|y|α−n
|q(y)| ≤ c δ(y)α−1

|q(y)| ∈ L1(D0).

Since |x|n−αGD
α (x, y) is continuous on (B(x0, 2r) ∩D) ×D0, we get, by Lebesgue’s

dominated convergence theorem,

lim
x→x0

∫
D0

∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x, y)

∣∣∣∣|y|α−n
|q(y)| dy = 0.

It follows that there exists r1 > 0 with r1 < r
2 such that for x ∈ B(x0, r1) ∩D,∫

D0

∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x, y)

∣∣∣∣|y|α−n
|q(y)| dy ≤

ϵ
2
.

Hence for x ∈ B(x0, r1) ∩D, we have ∣∣∣v(x) − v(x0)
∣∣∣ ≤ ϵ.

This implies that
lim
x→x0

v(x) = v(x0).

Case 2. Let x0 ∈ ∂D and x ∈ B(x0, 2r) ∩D. Then we have

|v(x)| ≤ sup
z∈D
|z|n−α

∫
D∩B(0,r)

GD
α (z, y)|y|α−n

|q(y)| dy

+ sup
z∈D
|z|n−α

∫
D∩Bc(0,r)∩B(x0 ,r)

GD
α (z, y)|y|α−n

|q(y)| dy

+

∫
D0

|x|n−αGD
α (x, y)|y|α−n

|q(y)| dy.

Since lim
x→x0
|x|n−αGD

α (x, y)|y|α−n = 0, for all y ∈ D0, we deduce by similar arguments as above that

lim
x→x0

v(x) = v(x0).

So, we conclude that v ∈ C0(D).

This completes the proof.

2.3. Karamata classK0

In this paragraph, we recall some useful properties related to the Karamata class K0. For more details
we refer readers to [5, 17].

Lemma 2.8. Let L1, L2 ∈ K0, p ∈ R and ε > 0. Then we have

(i) L1L2 ∈ K0 and Lp
1 ∈ K0.

(ii) lim
t→0+

tεL1 = 0 and lim
t→0+

t−εL1 = ∞.
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(iii) lim
t→0+

L1(t)∫ η
t

L1(s)
s ds
= 0 and t 7→

∫ η
t

L1(s)
s ds ∈ K0.

(iv) If
∫ η

0
L1(s)

s ds converges, then lim
t→0+

L1(t)∫ t
0

L1(s)
s ds
= 0 and t 7→

∫ t

0
L1(s)

s ds ∈ K0.

Applying Karamata’s theorem (see [15, 17]), we get the following

Lemma 2.9. Let ν ∈ R and L ∈ K0 . Then the following assertions hold

(i) If ν > −1, then
∫ η

0 sνL(s) ds converges and
∫ t

0 sνL(s) ds ≈ t1+νL(t)
1+ν as t→ 0+.

(ii) If ν < −1, then
∫ η

0 sνL(s) ds diverges and
∫ η

t sνL(s) ds ≈ − t1+νL(t)
1+ν as t→ 0+.

We end this section by the following result due to Mâagli et al. [13].

Lemma 2.10. Let L ∈ K0 defined on (0, η], η > 1, and a, b ∈ (0, 1), c ≥ 1 such that 1
c b ≤ a ≤ cb. Then, there exists

m ≥ 0 such that
c−mL(b) ≤ L(a) ≤ cmL(b).

3. Key tools

In what follows, we recall some important lemmas and prove properties that play an important role in
the proof of our result.

Lemma 3.1. [8, Lemma 1] Let x ∈ D, D1 = {y ∈ D, δ(x)δ(y) ≥ |x − y|2} and D2 = Dc
1. Then

(1) If y ∈ D1, then (
3 −
√

5
2

)
δ(x) ≤ δ(y) ≤

(
3 +
√

5
2

)
δ(x).

and

|x − y| ≤
1 +
√

5
2

(δ(x) ∧ δ(y)).

(2) If y ∈ D2, then

(δ(x) ∨ δ(y)) ≤

√
5 + 1
2
|x − y|.

In particular, we have

B
(
x,
√

5 − 1
2

δ(x)
)
⊂ D1 ⊂ B

(
x,
√

5 + 1
2

δ(x)
)
. (3.1)

In the same way as for the proof of the above result, we prove the following lemma.

Lemma 3.2. Let x ∈ D and Dx := {y ∈ D ; |x − y|2 ≤ |x||y|}. Then

(i) If y ∈ Dx then
3 −
√

5
2
|x| ≤ |y| ≤

3 +
√

5
2
|x|,

and

|x − y| ≤
√

5 + 1
2

(
|x| ∧ |y|

)
.

Furthermore

B
(
x,
√

5 − 1
2
|x|

)
⊂ Dx ⊂ B

(
x,
√

5 + 1
2
|x|

)
. (3.2)
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(ii) If y ∈ Dc
x then

|x| ∨ |y| ≤
√

5 + 1
2
|x − y|.

Proof. (i) Let y ∈ Dx. Since |y| ≤ |x − y| + |x|, then

|y| ≤
√
|x||y| + |x|.

So √
|y|2 −

√
|x||y| − |x| ≤ 0,

that is (√
|y| +

√
5 − 1
2

√
|x|

) (√
|y| −

√
5 + 1
2

√
|x|

)
≤ 0.

It follows that

|y| ≤
3 +
√

5
2
|x|.

Thus, interchange the role of x and y, we obtain |x| ≤ 3+
√

5
2 |y|. Which implies that

3 −
√

5
2
|x| ≤ |y| ≤

3 +
√

5
2
|x|.

In particular, we have

|x − y| ≤
1 +
√

5
2
|x| ∧ |y|.

According to the above, we deduce that

B
(
x,
√

5 − 1
2
|x|

)
⊂ Dx ⊂ B

(
x,
√

5 + 1
2
|x|

)
.

(ii) We may assume that (|x| ∨ |y|) = |y|. Then the inequalities |y| ≤ |x − y| + |x| and |x||y| ≤ |x − y|2 imply
that

|y|2 ≤ |x − y||y| + |x − y|2,

hence
|y|2 − |x − y||y| − |x − y|2 ≤ 0,

that is (
|y| +

√
5 − 1
2
|x − y|

) (
|y| −

√
5 + 1
2
|x − y|

)
≤ 0.

With an exchange of role between x and y we obtain

|x| ∨ |y| ≤
√

5 + 1
2
|x − y|.

This ends the proof.

Remark 3.3. Let r > 0 such that B(x, 3r) ⊂ D. Then for every x ∈ D with 0 < |x| < r we have∫
B(0,2r)∩Dx

dy
|x − y|n−α

≈ |x|α. (3.3)

Indeed, by (3.2) we have∫
B(0,2r)∩B(x,c1 |x|)

dy
|x − y|n−α

≤

∫
B(0,2r)∩Dx

dy
|x − y|n−α

≤

∫
B(0,2r)∩B(x,c2 |x|)

dy
|x − y|n−α

,

where c1 =
√

5−1
2 and c2 =

√
5+1
2 . Using a change of spherical variable, we obtain (3.3).
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Lemma 3.4. Let r > 0 such that B(0, 3r) ⊂ D. Then, we have

(i) If x ∈ B(0, r) and y ∈ B(0, 2r), then

GD
α (x, y) ≈

1
|x − y|n−α

.

(ii) If x ∈ B(0, r) and y ∈ D\B(0, 2r), then
GD
α (x, y) ≈ δ(y).

(iii) If x ∈ D\B(0, 2r) and y ∈ B(0, 2r), then
GD
α (x, y) ≈ δ(x).

Proof. (i) Since the following function

(x, y) 7−→ min
(
1,
δ(x)δ(y)
|x − y|2

)
is bounded and greater than a positive constant on B(0, r) × B(0, 2r). So, by (2.1), we obtain

GD
α (x, y) ≈

1
|x − y|n−α

.

(ii) Let y ∈ D\B(0, 2r) the function

1 : x 7→
δ(x)

|x − y|n−α
(
|x − y|2 + δ(x)δ(y)

) ,
is continuous in B(0, r).Hence 1 is bounded and greater than a positive constant on B(0, r). It follows
that

GD
α (x, y) ≈ δ(y).

(iii) Let x ∈ D\B(0, 2r), by the same manner as in (ii), we obtain

GD
α (x, y) ≈ δ(x).

Thus the lemma is proved.

An important step in our proof of the Proposition 3.7 uses the following result due to Bachar et al. [1].

Lemma 3.5. Let β ≤ 2 and L ∈ K0 defined on (0, η), η ≥ d, such that
∫ η

0 t1−βL(t) dt < ∞. Then

0 <
∫

D
δ(x)1−βL(δ(x)) dx < ∞,

that is
∫

D δ(x)1−βL(δ(x)) dx ≈ 1.

Proposition 3.6. Let Li be a function inK0 and λi be a real number, for i ∈ {1, 2}. Then the following assertions are
equivalent

(i) φ : x 7→ |x|−λ1 L1(|x|)δ(x)−λ2 L2(δ(x)) ∈ Kα(D).

(ii)
∫ η

0 tα−1−λi Li(t) dt < ∞ for i ∈ {1, 2}.

(iii) λi < α or λi = α with
∫ η

0
Li(t)

t dt < ∞.
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Proof. By Lemma 2.9, we have obviously (ii)⇐⇒ (iii). Let us prove (i)⇐⇒ (ii).
Suppose (i). Let r > 0 such that B(0, 3r) ⊂ D. By [14, Theorem 2], we have Vφ(0) < ∞. This implies that∫

B(0,2r)
GD
α (0, y)φ(y)dy < ∞.

It follows from Lemma 3.4 (i), that ∫
B(0,2r)

|y|α−n−λ1 L1(|y|)dy < ∞.

So ∫ 2r

0
tα−1−λ1 L1(t)dt < ∞,

and then ∫ η

0
tα−1−λ1 L1(t)dt < ∞.

On the other hand, by Remark 2.6, we have
∫

D δ(y)α−1φ(y)dy < ∞. In particular,∫
D\B(0,2r)

δ(y)α−1φ(y)dy ≈
∫

D\B(0,2r)
δ(y)α−1−λ2 L2(δ(y))dy < ∞.

Since ∫
D
δ(y)α−1−λ2 L2(δ(y))dy ≈

∫
D\B(0,2r)

δ(y)α−1−λ2 L2(δ(y))dy < ∞,

we obtain ∫ η

0
tα−1−λ2 L2(t)dt < ∞.

Conversely, assume (ii). Let r > 0 such that B(0, 3r) ⊂ D and let r1 ∈ (0, r). Then there exist c > 0 such that∫
D∩B(x,r1)

δ(y)
δ(x)

GD
α (x, y)φ(y)dy ≤ c

∫
D∩B(x,r1)∩B(0,2r)

δ(y)
δ(x)

GD
α (x, y)φ(y)dy

+ c
∫

D∩B(x,r1)∩Bc(0,2r)

δ(y)
δ(x)

GD
α (x, y)φ(y)dy

= A(x) + B(x).

Using Lemma 3.4 (i), we obtain

A(x) ≤ c
∫

Dx∩B(x,r1)∩B(0,2r)

|y|−λ1

|x − y|n−α
L1(|y|)dy

+ c
∫

Dc
x∩B(x,r1)∩B(0,2r)

|y|−λ1

|x − y|n−α
L1(|y|)dy

= A1(x) + A2(x),

where Dx is the set defined in Lemma 3.2. Note that, if y ∈ B(x, r1) ∩ B(0, 2r) then |x| < 3r. Now, for y ∈ Dx,
by Lemma 3.2, (i) and Lemma 2.10, we have

A1(x) ≤ c|x|−λ1 L1(|x|)
∫

Dx∩B(x,r1)∩B(0,2r)

dy
|x − y|n−α

,

using (3.3), we obtain
A1(x) ≤ c|x|α−λ1 L1(|x|).
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Since
∫ η

0 tα−1−λ1 L1(t)dt < ∞, then by (iii) we have λ1 ≤ α.

If λ1 < α then, by Lemma 2.8 (ii) and using the fact that α−λ1 > 0, there exist c > 0 such that |x|α−λ1 L1(|x|) ≤ c.
That is

A1(x) ≤ c.

If λ1 = α and
∫ η

0
L1(t)

t dt < ∞, then, by Lemma 3.2 (i) and using the fact that the function t 7→ t−αL1(t) is
nonincreasing in (0,w] for some w > 0, we obtain

A1(x) ≤ c
∫

Dx∩B(x,r1)

L1(
√

5+1
2 |x − y|)
|x − y|n

dy ≤ c
∫ √

5+1
2 r

0

L1(r)
r

dr ≤ c.

For y ∈ Dc
x, by Lemma 3.2, (ii), we have

A2(x) ≤ c
∫

Dc
x∩B(x,r1)∩B(0,2r)

|y|−λ1 L1(|y|)
(|x| ∨ |y|)n−α dy

≤ c
∫ (|x|+r1)∧2r

(|x|−r1)+

tn−1−λ1 L1(t)
(|x| ∨ t)n−α dt.

Since the function 1(z) :=
∫ z

0 tα−1−λ1 L1(t)dt is uniformly continuous on [0, 3r], we obtain

lim
r1→0

sup
|x|≤3r

[1((|x| + r1) ∧ 2r) − 1((|x| − r1)+)] = 0.

So, we deduce that

lim
r1→0

supx∈DA(x) = 0. (3.4)

On the other hand, we have

B(x) ≤ c
∫

D∩B(x,r1)∩Bc(0,2r)

δ(y)
δ(x)

GD
α (x, y)δ(y)−λ2 L2(δ(y))dy

≤ c
∫

D∩B(x,r1)

δ(y)
δ(x)

GD
α (x, y)δ(y)−λ2 L2(δ(y))dy.

Now, since
∫ η

0 tα−1−λ2 L2(t)dt < ∞ then, by [14, Proposition 7], we have

δ(y)−λ2 L2(δ(y)) ∈ Kα(D),

that is

lim
r1→0

sup
x∈D

∫
D∩B(x,r1)

δ(y)
δ(x)

GD
α (x, y)δ(y)−λ2 L2(δ(y))dy = 0.

So

lim
r1→0

sup
x∈D

B(x) = 0. (3.5)

Combining (3.5) and (3.4), we conclude that the function

φ : x 7→ |x|−λ1 L1(|x|)δ(x)−λ2 L2(δ(y)) is in Kα(D).

This completes the proof.

Now, we give an interesting result that plays a key role in the proof of Theorem 1.2.



S. Salah et al. / Filomat 38:2 (2024), 449–472 460

Proposition 3.7. Let γ < n − 2 + α, µ < α and M, N ∈ K0. Let

b(x) = |x|−γM(|x|)δ(x)−µN(δ(x)), x ∈ D\{0}.

Then, for x ∈ D\{0},
Vb(x) ≈ |x|min(0,α−γ)M̃(|x|)δ(x)min(1,α−µ)Ñ(δ(x)),

where M̃ and Ñ are defined on (0, η) by

M̃(t) :=


1, if γ < α,∫ η

t
M(s)

s ds, if γ = α,
M(t), if α < γ < n − 2 + α,

and Ñ(t) :=


1, if µ < α − 1,∫ η

t
N(s)

s ds, if µ = α − 1,
N(s), if α − 1 < µ < α.

Proof. First we remark that∫ η

0
tn−3+α−γM(t) dt < ∞ and

∫ η

0
tα−1−µN(t) dt < ∞, for η > d. (3.6)

Let 0 < r < 3−
√

5
2 such that B(0, 3r) ⊂ D. For x ∈ D\{0}, we have

Vb(x) =
∫

B(0, 2r)
GD
α (x, y)b(y) dy +

∫
D\B(0, 2r)

GD
α (x, y)b(y) dy.

We distinguish three cases.

Case 1 : If 0 < |x| < r.
By Lemma 3.4 (i) and (ii), we have

Vb(x) ≈
∫

B(0,2r)

|y|−γM(|y|)
|x − y|n−α

dy +
∫

D\B(0, 2r)
δ(y)1−µN(δ(y)) dy.

Using (3.6) and Lemma 3.5, we obtain∫
D\B(0, 2r)

δ(y)1−µN(δ(y)) dy ≈ 1.

Hence

Vb(x) ≈
∫

B(0,2r)

|y|−γM(|y|)
|x − y|n−α

dy + 1. (3.7)

Therefore

Vb(x) ≈
∫

B(0,2r)∩Dx

|y|−γM(|y|)
|x − y|n−α

dy +
∫

B(0,2r)∩Dc
x

|y|−γM(|y|)
|x − y|n−α

dy + 1

= I1(x) + I2(x),

where Dx is the set defined in Lemma 3.2 and

I1(x) =
∫

B(0,2r)∩Dx

|y|−γM(|y|)
|x − y|n−α

dy,

I2(x) =
∫

B(0,2r)∩Dc
x

|y|−γM(|y|)
|x − y|n−α

dy + 1.
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Let us estimate I1(x). By Lemma 2.10 and Lemma 3.2 (i) we have

|x| ≈ |y| and M(|x|) ≈M(|y|).

Then

I1(x) ≈ |x|−γM(|x|)
∫

B(0,2r)∩Dx

dy
|x − y|n−α

.

by Remark 3.3, we obtain

I1(x) ≈ |x|α−γM(|x|). (3.8)

Now let us estimate I2(x). For y ∈ Dc
x, we have |y|2−α

|x−y|2−α ≤ c. Then

J(x) =
∫

B(0,2r)∩Dc
x

|y|−γM(|y|)
|x − y|n−α

dy =
∫

B(0,2r)∩Dc
x

|y|2−α

|x − y|2−α
|y|α−2−γM(|y|)
|x − y|n−2 dy

≤ c
∫

B(0,2r)∩Dc
x

|y|α−2−γM(|y|)
|x − y|n−2 dy.

By Lemma 3.2 (ii), we have
|x − y|2−n

≤ c(|x| ∨ |y|)2−n,

this implies that

J(x) ≤ c
∫

B(0,2r)∩Dc
x

|y|α−2−γM(|y|)
(|x| ∨ |y|)n−2 dy

≤ c
∫

B(0,2r)

|y|α−2−γM(|y|)
(|x| ∨ |y|)n−2 dy

≤ c
∫

B(0,2r)∩(|x|≤|y|)

|y|α−2−γM(|y|)
(|x| ∨ |y|)n−2 dy + c

∫
B(0,2r)∩(|x|≥|y|)

|y|α−2−γM(|y|)
(|x| ∨ |y|)n−2 dy

≤ c|x|2−n
∫

B(0,2r)∩(|y|≤|x|)
|y|α−2−γM(|y|) dy + c

∫
B(0,2r)∩(|y|≥|x|)

|y|α−γ−nM(|y|) dy.

Since the functions to be integrated are radial, then

J(x) ≤ c|x|2−n
∫
|x|

0
tn−2+α−γ−1M(t) dt + c

∫ 2r

|x|
tα−γ−1M(t) dt = I21(x) + I22(x), (3.9)

where

I21(x) = c|x|2−n
∫
|x|

0
tn−3+α−γM(t) dt,

I22(x) = c
∫ 2r

|x|
tα−γ−1M(t) dt.

By (3.8) and (3.9), we conclude that

Vb(x) ≤ I1(x) + I21(x) + I22(x) + 1.

Now, we have three sub-cases
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(a) If α < γ < n − 2 + α then, by Lemma 2.9 (ii) we have

I21(x) ≈ |x|α−γM(|x|).

Using Lemma 2.9 (ii) and the fact that
∫ η

2r tα−γ−1M(t) dt ≈ 1, we obtain

I22(x) + 1 ≈
∫ 2r

|x|
tα−γ−1M(t) dt +

∫ η

2r
tα−γ−1M(t) dt

=

∫ η

|x|
tα−γ−1M(t) dt

≈ |x|α−γM(|x|).

This and (3.8) implies that

Vb(x) ≈ |x|α−γM(|x|). (3.10)

(b) If γ = α, then

I21(x) = c|x|2−n
∫
|x|

0
tn−3M(t) dt,

by Lemma 2.9 (i), we obtain
I21(x) ≈M(|x|).

Since 0 <
∫ η

2r
M(t)

t dt < ∞, we have

I22(x) + 1 ≈
∫ η

2r

M(t)
t

dt +
∫ 2r

|x|

M(t)
t

dt =
∫ η

|x|

M(t)
t

dt.

Then, by (3.8), we obtain

Vb(x) ≤ c
(
2M(|x|) +

∫ η

|x|

M(t)
t

dt
)

≤ c
∫ η

|x|

M(t)
t

dt

1 +
2M(|x|)∫ η
|x|

M(t)
t dt

 ,
so, by Lemma 2.8 (iii), we obtain

Vb(x) ≤ c
∫ η

|x|

M(t)
t

dt. (3.11)

On the other hand, by (3.7) and using the fact that |x − y| ≤ 2 max(|x|, |y|), we get

Vb(x) ≥ c
∫

B(0,2r)

|y|−αM(|y|)
max(|x|, |y|)n−α dy + 1

≥ c|x|α−n
∫
|x|

0
tn−1−αM(t)dt + c

∫ 2r

|x|

M(t)
t

dt + 1.

By Lemma 2.9 (i) and since
∫ η

2r
M(t)

t dt ≈ 1, we obtain

Vb(x) ≥ c
∫ η

|x|

M(t)
t

dt. (3.12)

So, using (3.11) and (3.12), we obtain

Vb(x) ≈
∫ η

|x|

M(t)
t

dt. (3.13)
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(c) If γ < α then, by Lemma 2.9 (i)
I21(x) ≈ |x|α−γM(|x|).

Since α − γ − 1 > −1 then, by Lemma 2.9 (i),
∫ η

0 tα−γ−1M(t)dt converges and

I22(x) + 1 = 1 + c
∫ 2r

|x|
tα−γ−1M(t)dt ≤ 1 + c

∫ η

0
tα−γ−1M(t)dt ≤ C. (3.14)

Lemma 2.8 (ii), (3.8) and (3.14) yield to

Vb(x) ≤ c. (3.15)

On the other hand, since
Vb(x) = I1(x) + I2(x),

then
Vb(x) ≥ I2(x) = J(x) + 1 ≥ 1.

So

Vb(x) ≥ c. (3.16)

Using (3.15) and (3.16), we obtain

Vb(x) ≈ 1. (3.17)

Finally, by (3.10), (3.13) and (3.17), we deduce that

Vb(x) ≈


1 if γ < α,∫ η
|x|

M(t)
t dt if γ = α,

|x|α−γM(|x|) if α < γ < n − 2 + α.
(3.18)

We conclude that, for 0 < |x| < r,

Vb(x) ≈ |x|min(0, α−γ)M̃(|x|). (3.19)

Case 2 : If x ∈ D\B(0, 3r). Using Lemma 3.4, we obtain

Vb(x) ≈ δ(x)
∫

B(0,2r)
|y|−γM(|y|) dy +

∫
D\B(0,2r)

GD
α (x, y)δ(y)−µN(δ(y)) dy.

Since ∫
B(0,2r)

|y|−γM(|y|) dy =
∫ 2r

0
tn−1−γM(t) dt

≤

∫ η

0
tn−1−γM(t) dt

≤ η2−α
∫ η

0
tn−3+α−γM(t) dt

< ∞.

Then ∫
B(0,2r)

|y|−γM(|y|) dy ≈ 1.
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Hence

Vb(x) ≈ δ(x) +
∫

D\B(0,2r)
GD
α (x, y)δ(y)−µN(δ(y)) dy.

The function y 7→ δ(y)−µN(δ(y)) is continuous in B(0, 2r). This implies that

δ(y)−µN(δ(y)) ≈ 1.

Thus, using Lemma 3.4 (iii), we obtain

Vb(x) ≈
∫

B(0,2r)
GD
α (x, y)δ(y)−µN(δ(y)) dy +

∫
D\B(0,2r)

GD
α (x, y)δ(y)−µN(δ(y)) dy

=

∫
D

GD
α (x, y)δ(y)−µN(δ(y)) dy.

Since µ < α, then by [14, Proposition 8] we obtain, for x ∈ D\B(0, 3r),

Vb(x) ≈


δ(x) if µ < α − 1,
δ(x)

∫ η
δ(x)

N(t)
t dt if µ = α − 1,

δ(x)α−µN(δ(x)) if α − 1 < µ < α.

(3.20)

This implies that

Vb(x) ≈ δ(x)min(1,α−µ)Ñ(δ(x)), for x ∈ D\B(0, 3r). (3.21)

Case 3 If r ≤ |x| ≤ 3r. The function x 7→ |x|min(0,α−γ)M̃(|x|)δ(x)min(1,α−µ)Ñ(δ(x)) is positive and continuous on
D\{0}. Let b(x) = |x|α−nq(x),where q(x) = |x|n−α−γM(|x|)δ(x)−µN(δ(x)). Then, by (3.6) and Proposition 3.6,
we have

q ∈ Kα(D).

Thus, by Proposition 2.7, we deduce that the function Vb is positive and continuous on D\{0}. So

Vb(x) ≈ |x|min(0,α−γ)M̃(|x|)δ(x)min(1,α−µ)Ñ(δ(x)), (3.22)

for all x in the compact J defined by J := {x ∈ D, r ≤ |x| ≤ 3r}.

Combining (3.19), (3.21) and (3.22), we obtain for x ∈ D\{0},

Vb(x) ≈ |x|min(0,α−γ)M̃(|x|)δ(x)min(1,α−µ)Ñ(δ(x)).

This ends the proof.

Proposition 3.8. Let a be a function satisfying (H). Then

V(a(x)Θσ(x)) ≈ Θ(x), x ∈ D\{0},

where Θ is defined by (1.3)

Proof. Let a be a function satisfying (H). By (1.2) and (1.3), we obtain

a(x)Θ(x)σ ≈ |x|−(λ−min(0, α−λ1−σ )σ)(L1L̃
σ

1−σ
1 )(|x|)δ(x)−(ξ−min(1, α−ξ1−σ )σ)(L2L̃

σ
1−σ
2 )(δ(x))

Let

γ = λ −min(0,
α − λ
1 − σ

)σ and µ = ξ −min(1,
α − ξ
1 − σ

)σ.
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Since ξ < α and λ < (n − 2 + α)(1 − σ) + ασ, then we have µ < α and γ < n − 2 + α.
Using Lemma 2.8 (i), (iii), (iv) and Proposition 3.6, we obtain

L1(t)(L̃1(t))
σ

1−σ ∈ K0 and L2(t)(L̃2(t))
σ

1−σ ∈ K0.

By Proposition 3.7, with M(t) = L1(t)(L̃1(t))
σ

1−σ and N(t) = L2(t)(L̃2(t))
σ

1−σ , we deduce that

V(a(x)Θσ(x)) ≈ |x|min(0,α−γ)M̃(|x|)δ(x)min(1,α−µ)Ñ(δ(x)).

Now, since

min
(
0, α − γ

)
= min

(
0, α − λ +min

(
0,
α − λ
1 − σ

)
σ
)
= min

(
0,
α − λ
1 − σ

)
,

min
(
1, α − µ

)
= min

(
1, α − ξ +min

(
1,
α − ξ
1 − σ

)
σ
)
= min

(
1,
α − ξ
1 − σ

)
,

and, by an elementary calculation, we have

M̃(t) ≈ L̃1(t))
1

1−σ and ˜N(t) ≈ L̃2(t))
1

1−σ .

Then, we deduce for x ∈ D\{0}
V(a(x)Θσ(x)) ≈ Θ(x).

This ends the proof.

For ω > 0, we denote by (Pω) the following problem

(Pω)


(−∆|D)

α
2 u = a(x)uσ(x), x ∈ D\{0}, ( in the distributional sense ),

u > 0 in D\{0},
lim
|x|→0
|x|n−αu(x) = ω,

lim
x→∂D

δ(x)2−αu(x) = 0,

Proposition 3.9. Let σ < 0 and assume that hypothesis (H)is satisfied. Then for esach ω > 0, problem Pω has at
least one positive solution uω ∈ C(D\{0}) satisfying for x ∈ D\{0}

uω = ω|x|n−α + V(a(x)uσω)(x). (3.23)

Proof. By hypothesis (H), we have

q(x) = |x|(α−n)(σ−1)a(x) ≈ |x|−(λ−(α−n)(σ−1))L1(|x|)δ(x)−ξL2(δ(x)).

Since, σ < 0 and 0 < α < 2 then

λ − (α − n)(σ − 1) < (1 − σ)α + ασ = α.

In addition, ξ < α. So ,by Proposition 3.6, we get that q(x) ∈ Kα(D).
Using Proposition 2.7, we deduce that the function

x 7→ |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σ dy is in C0(D). (3.24)

Let Σ be the closed convex set given by

Σ = {v ∈ C(D) : ω ≤ v ≤ β, β = ω + ωσ||h||∞}.
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We define the operator T on Σ by

Tv(x) = ω + |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σvσ(y) dy.

We shall prove that T has a fixed point in Σ. First, let x0 ∈ D, since σ < 0 then for all v ∈ Σwe have vσ ≤ ωσ.
Thus

|Tv(x) − Tv(x0)| ≤ ωσ
∫

D

∣∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x0, y)

∣∣∣∣∣|y|α−nq(y) dy, x ∈ D

where q(x) = |x|(α−n)(σ−1)a(x) ∈ Kα(D).
By same arguments as in the proof of Proposition 2.7, we obtain for all ϵ > 0 there exists δ > 0 such that,

if x ∈ D and |x − x0| < δ then ωσ
∫

D

∣∣∣∣∣|x|n−αGD
α (x, y) − |x0|

n−αGD
α (x0, y)

∣∣∣∣∣|y|α−nq(y) dy ≤ ϵ.

So, for all ϵ > 0 there exists δ > 0, such that

if x ∈ D and |x − x0| < δ then |Tv(x) − Tv(x0)| ≤ ϵ, for all v ∈ Σ.

This implies that the family TΣ is equicontinuous in each point of D. In particular, for all v ∈ Σ, Tv ∈ C(D)
and as a result TΣ ⊂ Σ. Therefore, since the family {Tv(x), v ∈ Σ} is uniformly bounded in D, then by
Arzela-Ascoli theorem (see [3]), the set T(Σ) is relatively compact in C(D). Next, let us prove the continuity
of T in Σ. We consider a sequence (vk)k in Σwhich converges uniformly to a function v in Σ. Then we have

|Tvk(x) − Tv(x)| ≤ |x|n−α
∫

D
GD
α (x, y)|y|(α−n)σa(y)|vσk (y) − vσ(y)| dy.

By (3.24), the dominated convergence theorem and using the fact that |vσk (y) − vσ(y)| ≤ 2ωσ, we deduce that

∀x ∈ D, Tvk(x)→ Tv(x) as k→∞.

Moreover, since T(Σ) is relatively compact in C(D), we get

||Tvk − Tv||∞ → 0 as k→∞.

So T is a compact mapping of Σ to it self. Applying, now, the Schauder fixed point theorem, there exists
vω ∈ Σ such that for each x ∈ D

vω = ω + |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σvσω(y) dy. (3.25)

From (3.24), (3.25) and since vσω ≤ ωσ, we obtain

lim
x→∂D

vω(x) = ω. (3.26)

Let r > 0 such that B(0, 3r) ⊂ D and let x ∈ B(0, r)\{0}. Since ω ≤ vω ≤ β, by (3.25) and hypothesis (H) and
similar argument as in the proof of Proposition 3.7, we obtain

vω(x) − ω ≈ |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σ dy

≈ |x|n−α
(∫

B(0,2r)

|y|−(λ−(α−n)σ)L1(|y|)
|x − y|n−α

dy + 1
)

≤ c|x|n−α
(
|x|α−λ+(α−n)σL1(|x|) +

∫
B(0,2r)∩Dc

x

|y|α−2−λ+(α−n)σL1(|y|)
(|x| ∨ |y|)n−2 dy + 1

)
≤ c|x|n−α

(
|x|α+(α−n)σ−λL1(|x|) +

∫ 2r

0

tn+(α−n)σ+(α−2)−λ−1L1(t)
(|x| ∨ t)n−2 dt + 1

)
.
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Since λ < (n − 2 + α)(1 − σ) + ασ and n + (α − n)σ − λ > (2 − α)(1 − σ) > 0, by Lemma 2.8, (ii), we get

lim
|x|→0
|x|n+(α−n)σ−λL1(|x|) = 0.

For n ≥ 3, x ∈ B(0, r)\{0} and t ∈ (0, 2r) we have

|x|n−α
tn+(α−n)σ+(α−2)−λ−1

(|x| ∨ t)n−2 L1(t) ≤ |x|2−αtn+(α−n)σ+(α−2)−λ−1L1(t)

≤ r2−αtn+(α−n)σ+(α−2)−λ−1L1(t)
= Ψ(t).

Since ∫ η

0
tn+(α−n)σ+(α−2)−λ−1L1(t) dt ≤ η(α−2)σ

∫ η

0
t(n−2+α)(1−σ)+ασ−λ−1L1(t) dt < ∞,

this implies that
Ψ(t) ∈ L1((0, η)),

and

lim
|x|→0
|x|n−α

tn+(α−n)σ+(α−2)−λ−1

(|x| ∨ t)n−2 L1(t) = 0.

By the dominate convergence theorem, we deduce that

lim
|x|→0

vω(x) = ω. (3.27)

Let uω(x) = |x|α−nvω(x), for x ∈ D\{0}. Then uω ∈ C(D\{0}), and we have

uω(x) = ω|x|α−n +

∫
D

GD
α (x, y)a(y)uσω(y) dy, (3.28)

so

ω|x|α−n
≤ uω(x) ≤ β|x|α−n. (3.29)

Now, since the function y 7→ a(y)uσω(y) ∈ L1
loc(D\{0}) and we have

x 7→
∫

D
GD
α (x, y)a(y)uσω(y) dy ∈ L1

loc(D\{0})

thus, by (2.6), applying (−∆|D)
α
2 on both sides of equation (3.28), we conclude that uω satisfies

(−∆|D)
α
2 uω = a(x)uσω(x), x ∈ D\{0}, ( in the distributional sense ),

in addition, from (3.27) and (3.29), we get

lim
|x|→0
|x|n−αuω(x) = ω, lim

x→∂D
δ(x)2−αuω(x) = 0.

This ends the proof.

Corollary 3.10. Let a be a function satisfying (H), σ < 0 and uωi ∈ C(D\{0}) is a solution of Pωi i = 1, 2. Then, for
0 < ω1 ≤ ω2, we have

0 ≤ uω2 (x) − uω1 (x) ≤ (ω2 − ω1)|x|α−n, x ∈ D\{0}. (3.30)
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Proof. Let h be the function defined on D\{0} by

h(x) =

a(x)
uσω2

(x)−uσω1
(x)

uω1 (x)−uω2 (x) , if uω2 (x) , uω1 (x),

0, if uω2 (x) = uω1 (x).

Since σ < 0, then h ∈ B+(D\{0}) and we have

uω2 − uω1 + V(h(uω2 − uω1 )) = (ω2 − ω1)|x|α−n, x ∈ D\{0}.

Furthermore, by (3.23), (3.24) and (3.29), we conclude that, for x ∈ D\{0}

V(h|uω2 − uω1 |)(x) ≤ (ωσ1 + ω
σ
2)

∫
D

GD
α (x, y)a(y)|y|(α−2)σ dy

< ∞.

Hence the result (3.30) holds by Lemma 2.3.

Proposition 3.11. Let σ < 0 and assume that hypothesis (H) is satisfied. Then problem P has at least one positive
solution u ∈ C(D\{0}) such that, for x ∈ D\{0}

u = V(a(x)uσ)(x). (3.31)

Proof. Let (ωk)k be a sequence of positive real numbers decreasing to zero and denote by uk the positive
continuous solution of problem Pωk . By Corollary 3.10, the sequence (uk)k decreases to a function u and
since the sequence (uk −ωk|x|α−n)k increases to u. Then, by (3.23) and (3.29), we have for each x ∈ D\{0} and
σ < 0,

u(x) ≥ uk(x) − ωk|x|α−n

=

∫
D

GD
α (x, y)a(y)uσk (y) dy

≥ βσk

∫
D

GD
α (x, y)a(y) dy > 0,

where βk = ωk + ωσk ||h||∞. Therefore, by the monotone convergence theorem, we obtain

u(x) =
∫

D
GD
α (x, y)a(y)uσ(y) dy.

Let us prove that u is a positive continuous solution of (1.1). Since for each x ∈ D\{0}, we have

u(x) = inf
k

uk(x) = sup
k

(uk − ωk|x|α−n),

then u is upper and lower semi-continuous function on D\{0} and so u ∈ C(D\{0}).
Hence the function y 7→ a(y)uσ(y) is in L1

loc(D\{0}) and we have

y 7→
∫

D
GD
α (x, y)a(y)uσ(y) dy ∈ L1

loc(D\{0}).

Using (2.6), we conclude that

(−∆|D)
α
2 u = a(x)uσ(x) x ∈ D\{0}, ( in the distributional sense ).

Now, since 0 < u(x) ≤ uk(x) for each x ∈ D\{0}, and uk is a solution of problem (Pωk ), then

lim
|x|→0
|x|n−αu(x) = 0.

By (3.26) and using the fact that 0 < |x| ≤ d as x→ ∂D, we have

lim
x→∂D

δ(x)2−αu(x) = lim
x→∂D

δ(x)2−α
|x|α−nvω(x) = 0.

Consequently, u is a solution of problem (1.1). This completes the proof.
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4. Proof of Theorem 1.2

Let a be a function satisfying (H) and let Θ be the function defined in (1.3), by proposition 3.8, there
exists M ≥ 1 such that

1
M
Θ(x) ≤ V(a(x)Θ(x)σ) ≤MΘ(x) for all x ∈ D\{0}, (4.1)

We divide the proof of Theorem 1.2 into two cases according to the sign of σ.

Case 1. If σ < 0.
By Proposition 3.11, problem (3.7) has a positive continuous solution u satisfying (3.31). Let us prove
that u satisfies (1.4). Assume that p(x) = a(x)Θ(x)σ, then, by (4.1), we obtain

Mσ(Vp)σ(x) ≤ Θσ(x) ≤M−σ(Vp)σ(x). (4.2)

Put c be a positive constant, then we have

cVp(x) = V((cVp)σ)(x) + V(caΘσ − cσ(Vp)σ))(x). (4.3)

Define the function f by

f (x) = ca(x)[Θ(x)σ − cσ(Vp)σ(x)] ∈ B+(D\{0}),

then, by (4.3), for c =M−
σ

1−σ ,

f (x) = ca(x)(Θ(x)σ −Mσ(Vp)σ(x)), x ∈ D\{0}.

Using (3.31) and (4.3), we obtain

cVp − u + V(a(uσ − (cVp)σ) = cVp − u + V(a(uσ) − (cVp)σ) = V f .

Let 1 be a function defined on D\{0} by

1(x) =

a(x) uσ(x)−(cVp)σ(x)
cVp(x)−u(x) , if u(x) , cVp(x),

0, if u(x) = cVp(x).

Since σ < 0, then 1 ∈ B+(D\{0}) and

1(x)(cVp − u)(x) = a(x)(uσ − (cVp)σ)(x), for all x ∈ D\{0}. (4.4)

Hence
cVp − u + V(1(cVp − u)) = V f .

By (3.31), (4.1), (4.2) and (4.4), we obtain

V(1|cVp − u|) ≤ V(auσ) + V(a(cVp)σ)
≤ u + cVp
≤ u + cMΘ
< ∞.

So, by Lemma 2.3, we have
u ≤ cVp.

In the same way as above, we get that
1
c

Vp ≤ u.

Thus, by (4.1), u satisfies (1.4).
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Case 2. 0 ≤ σ < 1
Let 1(x) = |x|n−αΘ(x), x ∈ D. By (4.1), we have, for p(x) = a(x)Θ(x)σ,

1
M
1(x) ≤ |x|n−αVp(x) ≤M1(x). (4.5)

Put c =M
1

1−σ , where M is the constant defined in (4.1).
Let B = {v ∈ C0(D), 1

c1 ≤ v ≤ c1}, be the closed convex non empty set and let T be the operator defined
on B, for all v ∈ B, by

Tv(x) := |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σvσ(y) dy, x ∈ D.

Further, by (4.5), we obtain
1
c
1 ≤ Tv ≤ c1

Since, for all v ∈ B, we have
|vσ(y)| ≤ cσ||1σ||∞, y ∈ D,

by the same arguments as in the proof of Proposition 3.9, we deduce that

Tv ∈ C0(D), for all v ∈ B.

Then
T(B) ⊂ B.

Consider the sequence of function (vk)k defined by

v0 =
1
c
1 and vk+1 = Tvk, k ∈N.

From the monotonicity of T and using the fact that T(B) ⊂ B, we deduce that

1
c
1 = v0 ≤ v1 ≤ v2 ≤ ... ≤ vk ≤ vk+1 ≤ c1.

So, thanks to the convergence monotone theorem, the sequence (vk)k convergence to a function v
satisfying for each x ∈ D

1
c
1(x) ≤ v(x) ≤ c1(x),

and

v(x) = |x|n−α
∫

D
GD
α (x, y)a(y)|y|(α−n)σvσ(y) dy.

Since v is bounded, we prove by similar arguments as in the proof of Proposition 3.9 that v ∈ C0(D).
Put u(x) = |x|α−nv(x). Then u ∈ C0(D\{0}) and satisfies the following equation

u(x) = V(auσ)(x), x ∈ D\{0}. (4.6)

Now, using the fact that y 7→ a(y)uσ(y) is in L1
loc(D\{0}) and by (4.6) the function x 7→ V(auσ) is also in

L1
loc(D\{0}). Then, by (2.6), we deduce that u is a solution of problem (1.1). This ends the proof.

We end this section with the following example that illustrates our result.
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Example 4.1. Let σ < 1 and a be a nonnegative function in C(D\{0}) such that, for x ∈ D\{0},

a(x) ≈ |x|−λ
(
ln

(
4d
|x|

))−β1

δ(x)−ξ
(
ln

(
4d
δ(x)

))−β2

,

where λ < (n − 2 + α)(1 − σ) + ασ, ξ < α, β1 > 1, β2 > 1 and d := diam(D). Then, by Theorem 1.2, problem (1.1)
has at least one positive continuous solution u satisfying the following.

If α < λ < (n − 2 + α)(1 − σ) + ασ and α − 1 + σ < ξ < α, then

u(x) ≈ |x|
α−λ
1−σ

(
ln

(
4d
|x|

)) −β1
1−σ

δ(x)
α−ξ
1−σ

(
ln

(
4d
δ(x)

)) −β2
1−σ

.

If λ ≤ α and ξ ≤ α − 1 + σ, then
u(x) ≈ |x|δ(x).

Indeed, let L1(t) =
(
ln

(
4d
t

))−β1
and L2(t) =

(
ln

(
4d
t

))−β2
, 0 < t < d.

If λ < α and ξ < α − 1 + σ, we have L̃1(t) = 1 and L̃2(t) = 1. Then

u(x) ≈ |x|δ(x).

If λ = α and ξ = α − 1 + σ, we have L̃1(t) ≈ 1 and L̃2(t) ≈ 1. Then

u(x) ≈ |x|δ(x).

If α < λ < (n− 2+α)(1−σ)+ασ and α− 1+σ < ξ < α we have L̃1(t) =
(
ln

(
4d
t

))−β1
and L̃2(t) =

(
ln

(
4d
t

))−β2
. Then

u(x) ≈ |x|
α−λ
1−σ

(
ln

(
4d
|x|

)) −β1
1−σ

δ(x)
α−ξ
1−σ

(
ln

(
4d
δ(x)

)) −β2
1−σ

.
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55–62.
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