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Singular solutions of a fractional Dirichlet problem in a punctured
domain

Sana Salah®*, Faten Toumi®?, Mohamed Hbaib?

*University of Sfax, Faculty of Sciences of Sfax
YKing Faisal University, College of Business Administration,

Abstract. Let D be a bounded regular domain in R" (n > 3) containing 0, 0 < & < 2, and ¢ < 1. We take

up in this article the existence and asymptotic behavior of a positive continuous solution for the following
semi-linear fractional differential equation

(—Alp)?u = a(x)u’(x) in D\{0},

with the boundary Dirichlet conditions

. n—a _ : 2—a —
llYl‘LI}) [x]""*u(x) = 0 and xlir?D o(x)"“u(x) =0,

where (=Alp)? is the fractional Laplace associated to the subordinate killed Brownian motion process in
D and 6(x) = dist (x, dD) denotes the Euclidean distance between x and dD. The function a is a positive
continuous function in D\{0}, which may be singular at x = 0 and/or at the boundary JD satisfying
some appropriate assumption related to Karamata class. More precisely, we shall prove the existence and

global asymptotic behavior of a positive continuous solution on D\{0}. We will use some potential theory
arguments and Karamata regular variation theory tools.

1. Introduction
In the present work, we consider the following semilinear singular fractional problem

(=Alp)2u = a(x)u’(x), x € D\{0}, (in the distributional sense, )
u > 0in D\{0},

lim |x|"~*u(x) = 0, (1.1)

|x]—0
li 2—a -
Jm Oo(x)“u(x) =0,
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where D is abounded C"'—~domaininR", n >3, 0 < a <2, 0 < 1, 6(x) = dist (x, dD) denotes the Euclidean
distance between x and dD and the positive continuous function 4 is required to satisfy some conditions
related to the Karamata class Ky defined as follows

Definition 1.1. [11] A function L defined on (0, n], n > 0 belongs to the Karamata class Ky if

L(t) :=cexp (ft‘n @ ds),

where ¢ > 0 and v € C([0, n]) with v(0) = 0.

As a standard example of a function L belonging to Ky, we quote
4
1) =] Jane®

k=1

N,

where p € IN*, (vi,v2, ... vp) € RP, ¢ > 0, ¢ is a sufficiently large positive real number and Ini(x) =
Inolno ... olnx (k times).

Recently, Fractional Dirichlet problems find a big interest by many researchers due to their real-world
applications in many domains such as finance, engineering, science, economics, thermal elasticity, etc. As
a motivation of our study, we give a short historical account. Both fractional Dirichlet problem and its
elliptic counterpart have been widely studied, we cite works [1, 2, 6, 8,12, 14, 16, 21]. Namely, in [1], Bachar
et al., using Karamata’s theory and Schauder’s fixed point theorem, showed the existence of a continuous
positive solution of the following problem

(=A)u = g(x)u’(x), x € D\{0},
> 0in D\{0},
lli‘n}) Ix|"2u(x) = 0,

lim u(x) =0,

x—dD
where ¢ < 1 and g is required to satisfy suitable assumptions related to the Karamata class K.

In [14], Maagli and Zribi, investigated the existence, the uniqueness, and the asymptotic behavior of a
positive continuous solution of the following fractional problem

(=Alp)?u = k(x)u’(x), x € D,
u>0inD,

li 2—-a -

xlg}) O(x)u(x) =0,

where 0 < 1 and k is a positive measurable function in D satisfying, for x € D,
1
000 L(O()) < k(x) < e5(x) ' L(3(x),

withe >0, A <a+2-a)(l -o0) and L € Ky defined on (0, n], n > diam(D). This result is already
an improvement of work [8] for the case where the nonlinear term ¢(., 1) implies as a typical example
@(x,u) = k(x)u’(x), o <0.

In this work, we shall prove the existence and give a global behavior of positive continuous solutions to
our problems (1.1). We remark here that we are essentially inspired by the works [1] and [14]. In fact, we
will extend the result of [1] to problem (1.1). We point out that Bachar et al.’s proofs in [1] carry over to
some proof’s here, quite nicely.

Throughout this paper, we suppose that the function a satisfies the following hypothesis.

(H) a is a positive continuous function in D\{0} satisfying

a(x) = [x ™ La(ld)o(x)“*La(6(x)), (12)
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where A < (n -2+ a)(1-0)+aoc, & <aand Ly, L, € Ky defined on (0, 1), n>d, d = diam(D).
We remark that under the hypotheses (H) we have,

n 0
f st=2ra)(1-o)tac=A=11 | () ds < co and f s 5 (s) ds < oo
0 0

Hereinafter, for two nonnegative functions f and g defined on a set (), the notation f(x) =~ g(x) for x € Q
means that there exists ¢ > 0 such that % g(x) < f(x) < g(x), for all x € Q.

Further, for 0 < 1, we put © the function defined on D\{0} by

a=¢

Ox) = x[™O N (T) ™5 ()6 ()™ (L) 5 (5(x)), (1.3)

where L (t) and L,(t) are defined on (0, 1)) as follows

1, ifA<a, 1, fé<a-1+o,
Lit) =3 [T ds, if A = a, L) =4 [15%ds, if e =a—1+0,
Li(t), ifa<A<m-2+a)l-o0)+ao. Ly(t), ifa—-1+0<é<a.

Our main result is the following

Theorem 1.2. Let ¢ < 1 and assume that the function a satisfies (H). Then problem (1.1) has at least one positive
continuous solution u € D\{0} satisfying

u(x) ~ ©(x), for x € D\{0}. (1.4)

Our approach to prove Theorem 1.2 relies on potential theory tools associated to the operator (—~Alp)?2
developed in some recent papers. Also Karamata’s theory and the functional class K, called fractional Kato
class, plays a key role in our study.

The outline of this paper is organized as follows. In the next Section, we recall some potential theory
tools pertaining to the fractional operator. Then we collect a basic properties of functions in K, and in the
class Ko. In Section 3, we state some technical lemmas and we prove the asymptotic behavior of potential
functions. The last section is devoted to establish existence of solutions of problem (1.1) and will give an
example to illustrate our results.

We close this section by giving the following notation. For all s, t € IR we denotes s V t = max(s, t) and
s At = min(s, t). Further, We point out that 8(D) is the set of all measurable functions on D and 8*(D)
is the subset of non-negative measurable functions on D. Analogously, C(D) is the class of all continuous
functions in D and let Cy(D) be the subclass of C(D) consisting of functions which vanish continuously on
dD. The letter ¢ will denote a generic positive constant which may vary from line to line and d denotes the
diameter of D.

2. Preliminaries

This section is dedicated to the presentation of the main tools that we will use throughout the paper.

2.1. Green’s function

In this paragraph, we recall sharp inequalities for the Green function G (x, y). The following estimates
are stated in [18]

Py~ L @Aawam

=y = yP ), x, y€D. (2.1)
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For a = 2, we refind the estimation, stated in [20], for the classical Green function

1 6(y)6(x))
GP(x,y) ~ (1/\ , x, y€D.
Moreover, by [8], we have
GR(x, y) ~ Ix = yI**GP(x, y). 22)
Proposition 2.1. [8, Proposition 4] Let x,y € D. Then
o(x)o
Gl(x,y) ~ (90(y) 2.3)

Ry (k- P + 00
and
5(x)0(y) < ¢ GL(x, ).
Moreover, if |x — y| > r then

0(x)0(y)

pnt2-a

Recall that for each f € 8*(D), the potential kernel V f is defined by

GPx,y)<c

2.4)

Vit = [ GRa s dy, xeD,

We now briefly recall known notions. Let X = (D, F, F;, X;, 04, Py) an n—dimensional F;—Brownian motion,
and T = (D, G, Ty, Py) is an §—stable subordinator starting at zero, 0 < @ < 2, independent of X for every
P,. It well known that Y; = X7, is a rotationally invariant a—stable process whose infinitesimal generator is
—(=A)2 and YP the one killed on exiting D. The subordinate killed Brownian motion Z£ corresponding to
the fractional power —(—Alp)? as the process obtained by subordinating the killed Brownian motion X at
Tp, the first exit time of X from D, via T;. From [4, page 187 — 198], the kernel x — |x - y|a_n is a—harmonic
function in R"\ {y} with respect to Y and the function x - |x|*™" is a—superharmonic with respect to Y. By
[7, Remark 2.1], the function h(x) = [x|*™" in D, and 0 outside D is a—superharmonic in D with respect to
YP. Since, from [9] and [19], we know that the killed subordinate process Z£ has a shorter lifetime than the
subordinate killed process YP. Then, the function h(x) is a—superharmonic with respect to Z. Moreover, it
is worth to recall that for every f € 87(D), V f is a—superharmonic function in D with respect to Z%.

Let f € 8%(D). By [9], we have Vf # oo if and only if fD o(y) f(y) dy < co. Furthermore, as in the classical
case, it was shown in [9, 10], that, for any f € 8*(D) such that f, Vf € LllDC(D), we have in the distributional
sense

(-Alp): Vf = f, in D 2.5)

Remark 2.2. We remark that the above result remains true in D\ {0}. More precisely, for any f € B*(D\{0}) such
that f, Vf € L, (D\{0}), we have

(~Alp)2 Vf = f, in D\A0}, in the distributional sense. (2.6)
Indeed, it is enough to extend the function f by 0 for x = 0 and use (2.5).

The potential kernel V satisfies the complete maximum principle (see for intense [4, Chapter 2, Proposition
7.1]). The following Lemma is due to [8].

Lemma 2.3. Let h € 87 (D) and v be a nonnegative a—superharmonic function. Let w be a Borel measurable function
in D such that V(h|w|) < oo and v = w + V(hw). Then w satisfies

O0<w<o.
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2.2. Kato class K, (D)

In this paragraph, we gather some properties of functions belonging to the Kato class K,(D), for more
details, we refer the reader to [6, 8, 14]. Let us recall the definition of K,(D).

Definition 2.4. A Borel measurable function q in D belongs to the Kato class K,(D) if q satisfies the following
condition

1im(sup fD X9 o, Wiyl dy| = 0. (2.7)

=0 xeD NB(x,r) 6(x)
As a typical example of functions in K,(D), we quote g(x) = 5(x)™*, A < a.
Now, we state the following result which is a consequence of [8, Proposition 10].

Proposition 2.5.
Let q be a function in K,(D). Then for any a—superharmonic function h in D with respect to ZE, we have for xo € D

. 1
lim (Sup P G2 (x, a)lh(y) dy) =0. (2.8)
=0\ yep M%) JprB(xo

Remark 2.6. If q € K, (D), then the function x = &(x)*"1q(x) is in L1(D), see [8, Corollary 2].

Next, we state the following interesting proposition.

Proposition 2.7. Let q € K,(D), then the function v(x) defined by
u(x) =[x f GP(x, v)lyl*™"q(y) dy is in Co(D).
D
[x|*™", x e D

0, x¢D
with respect to ZZ, then using (2.8), there exists r > 0 such that

Proof. Letq € Ky(D), e > 0and xg € D. Since h(x) = is an a—superharmonic function in D

| ™

zeD

sup |z["™* f Gl pyl* gyl dy <
DNB(0,7)

and

| m

zeD

swmwj‘ Pz, YY"l dy <
DNB(0,)NB(x0,7)

We distinguish tow cases
Case 1. Let xo € D and x € B(xo, 5) N D. Then
[(x) = v(x0)| < "™ f IGZ (x, Yy laWll dy + |xol" ™ f IG5 (o, YIYI"lgW)Il dy
D D
< 2suplz|"™ f GL (@ Iyl*"lg(y)l dy
zeD DNB(0,r)

+ 2sup 2" f G2 (2, ylyI*lg(y)l dy
DNBE(0,r)NB(xo,7)

zeD

+ f
DNBE(0,r)NBE (xg,1)

e f
<o+
2 DNBE(0,r)NBC(xq,r)

bel"GE(x, ) — ol GE(x, )|yt "la(y)] dy

"GP (x, y) = ol G (x, y)||1/|“’”lq(y)ldy-
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Let y € Dy = D N B°(0,7) N B(xo, 1), then
v
Ix =yl = |y — xol = |x — x0| > 5 and |y| >,

so, using (2.4), we obtain

dé(y)a—l6(y)2—adn—ara—n
(r)n—nc+2
< Cdn—2a+3r2a—2n—26(y)a—l

< cs(y)* .

"G x, )yl < ¢

By Remark 2.6, it follows

"G (x, »)lyl* " g(y)] < ¢ 8(y)* ' lg(y)l € L' (Dy).
Since |x|""*GP(x, y) is continuous on (B(xy, 2r) N D) X Dy, we get, by Lebesgue’s
dominated convergence theorem,

lim f [l GE(x, y) - ol GE(x, |1yt lg(w)l dy = 0.
Do

X—XQ

It follows that there exists ; > 0 with r; < 5 such that for x € B(xo,71) N D,

[ et - G2 o ay < 5.
Do

Hence for x € B(xg,71) N D, we have
|v(x) - v(xo)| <e.

This implies that
lim v(x) = v(xp).
X=X

Case 2. Let xy € dD and x € B(xo, 2r) N D. Then we have

[o(x)| < sup |z|"™* f Gz IyI*"lg(y)l dy
DNB(0,7)

zeD

+ sup 2" f PGz, Iy ()l dy
DNB¢(0,r)NB(xq,r)

zeD

+ [ "G plyl T g(y)l dy.

Do

Since lim |x[""*G2(x, y)ly|*™ = 0, for all y € Dy, we deduce by similar arguments as above that
X=X
lim v(x) = v(xp).
X=X

So, we conclude that v € Cy(D).
This completes the proof. [

2.3. Karamata class Ky

In this paragraph, we recall some useful properties related to the Karamata class Kj. For more details
we refer readers to [5, 17].

Lemma 2.8. Let Ly, L, € Ko, p € Rand € > 0. Then we have
(Z) [1L; € (](0 and L}17 (S 7(0.

(i1) lim t°L; = 0and lim 7L = oo.
t—0+ t—0+
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(iii) lim ff—(? =0andt > ["HE ds € %,

(iv) If fon LlT<~*>> ds converges, then tll,%l f(JtLLi—F’?ds =0andt+— j(') ! LlT(S) ds € Kp.

Applying Karamata’s theorem (see [15, 17]), we get the following

Lemma 2.9. Let v e Rand L € Ky . Then the following assertions hold

() Ifv> -1, then fon s"L(s) ds converges and fot sVL(s) ds = UL gs s 0+,

1+v

(i) Ifv < -1, then fq s"L(s) ds diverges andf s'L(s) ds ~ — L(t) st — 0",
We end this section by the following result due to Maagli et al. [13].
Lemma 2.10. Let L € Ky defined on (0,n], n>1,and a,b € (0, 1), ¢ > 1 such that %b < a < cb. Then, there exists

m > 0 such that
¢ ™L(b) < L(a) < c"L(D).
3. Key tools

In what follows, we recall some important lemmas and prove properties that play an important role in
the proof of our result.

Lemma 3.1. [8, Lemma 1] Let x € D, D1 = {y € D, 6(x)6(y) > |x — y[*} and D, = D{. Then
1) If y € Dy, then

(3 V)a><a><(3+vda>
and
=< 256w a0,
2) Ify € Dy, then
V5+1

(0(x) v o(y)) <

5 [x = yl.

In particular, we have
B( V5 - RCEETTN ))chcB( ‘/_”o( )) G.1)

In the same way as for the proof of the above result, we prove the following lemma.

Lemma 3.2. Let x € D and Dy := {y € D ; |x — y|* < |x||lyl}. Then
(i) If y € Dy then

3;%MSMS32ﬁx
and VB
5+1
b=yl <~ (i A o).
Furthermore
-1 1
B(x, ‘/52 le) cD,C B(x, \/g; |x|). (3.2)
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(ii) If y € D5 then
V5+1
2

x|V Iyl < [x = yl.
Proof. (i) Lety € D,. Since |y| < |x — y| + |x|, then

lyl < Vlxllyl + |x].

So
lyP? = Vlxllyl = x| < 0,
that is N N
5-1 5+1
(Vi+ 25 Vi) Vi - S5 ) <o
It follows that VB
3+ V5
Yyl < —5—Mhl.
Thus, interchange the role of x and y, we obtain |x| < 3+T‘Blyl. Which implies that
3-+5 3+ 5
<lyl < .
5 A <lyl < ——M
In particular, we have
1+ 15
=yl < =Rl A
According to the above, we deduce that
B|x, Vg_llxl c D, C Blx, \/§+1|x| .
2 2
(i) We may assume that (Jx| V |y|) = |y|. Then the inequalities |y| < |x — y| + |x| and |x|ly| < |x — y|* imply
that
P <l = yllyl + = yP,
hence
P = lx = yliyl = lx = yi* <0,
that is N N
5-1 5+1
Iyl + e =yl Iyl = lx—yl] < 0.
2 2
With an exchange of role between x and y we obtain
V5+1
v Iyl < k= ol

This ends the proof. [J
Remark 3.3. Let r > 0 such that B(x,3r) C D. Then for every x € D with 0 < |x| < r we have

dy
B0,29nD, X = Yl

Indeed, by (3.2) we have

d d d
f —y_ < f —}/_ < f —y_/
B(02)NBcilx)) X — yI"° BO.29nD, X — Yl B(0.2)NB(xcall) X — YI"¢

where c1 = % and c; = @ Using a change of spherical variable, we obtain (3.3).
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Lemma 3.4. Let r > 0 such that B(0, 3r) C D. Then, we have

(i) If x € B(0, r)and y € B(0, 2r), then
1

Gg(x, y) I~ m.

(i) If x € B(O, r) and y € D\B(O, 2r), then
Gy (x,y) = 8(y)-

(iii) If x € D\B(O, 2r) and y € B(0, 2r), then
G2(x,y) ~ 6(x).

Proof. (i) Since the following function

0(x)o(y) )

x, Y) — min|1,
oy ( e = yP?
is bounded and greater than a positive constant on B(0, r) X B(0, 2r). So, by (2.1), we obtain

1

GP(x,y)  ————.
05( y) |x_y|n—a

(if) Let y € D\B(0, 2r) the function

N o(x)
T oy (= yP + 6o (y)’

is continuous in B(0, r). Hence g is bounded and greater than a positive constant on B(0, r). It follows
that

Ga(x,y) ~ 6(y).
(iif) Let x € D\B(0, 2r), by the same manner as in (if), we obtain
GR(x, ) ~ 5(v).
Thus the lemma is proved. O
An important step in our proof of the Proposition 3.7 uses the following result due to Bachar et al. [1].

Lemma 3.5. Let f < 2and L € K defined on (0, 1), n > d, such that foq t1=FL(t) dt < co. Then
0< f S()PL(S(x)) dx < o0,
D

that is [ 5(x)'PL(S(x)) dx ~ 1.

Proposition 3.6. Let L; be a function in Ky and A; be a real number, for i € {1,2}. Then the following assertions are
equivalent

(i) @ : x = X" Ly (Ix)6(x) 2 La(5(x)) € Ka(D).
(il) [ 97 INL(H) dt < oo for i € {1, 2},

(iii) Ai < aor A= awith [/ 50 dt < co.
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Proof. By Lemma 2.9, we have obviously (ii) < (iii). Let us prove (i) < (ii).
Suppose (i). Let r > 0 such that B(0, 3r) € D. By [14, Theorem 2], we have V¢(0) < co. This implies that

f GL(0, y)(y)dy < oo.
B(0,2r)

It follows from Lemma 3.4 (i), that

yI*" MLy (lydy < co.

B(0,2r)
So

2r
f f ML (#)dE < oo,
0

and then .
f t 1ML (Bt < oo,

0

On the other hand, by Remark 2.6, we have fD 6(y)*Lp(y)dy < co. In particular,

f' 6@*%@@zf S Ly(5(y)dy < oo,
D\B(0,2r) D\B(0,2r)

Since

faWHWMWWsz S Ly(6(y))dy < oo,
D D\B(0,27)

we obtain .
f 11 (F)dt < oo,
0
Conversely, assume (ii). Let r > 0 such that B(0, 3r) C D and let r; € (0, 7). Then there exist ¢ > 0 such that

oY) p f o(y) p
—— G, (x, dy<c —G, (x, d
fDﬂB(x,h) 6(x) a( y)(p(y) Y DNB(x,r1)NB(0,2r) 5(95) a( ]/)(P(]/) Y
o) p
*c —— Ga (5, Yp(y)d
LﬂB(x,rl)ﬂB"(O,Zr) o(x) vy
= A(x) + B(x).
Using Lemma 3.4 (i), we obtain
Ax) < Cf ﬁh(lyl)dy
DB )NBO2r) X — YI'e
te f ™, (y)dy
L1
DENBer)NBO2A X — Y'Y

= A1(¥) + Az(x),

where D, is the set defined in Lemma 3.2. Note that, if y € B(x,r1) N B(0, 2r) then |x| < 3r. Now, for y € D,,
by Lemma 3.2, (i) and Lemma 2.10, we have

dy
|n—a’

Ai(x) < clx|"M Ly (Jx]) —
D.NB(x,r1)NB(0,2r) lx—y

using (3.3), we obtain
A1(x) < clx|* M Ly (|x]).
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Since fon ta=1=M L, (#)dt < oo, then by (iii) we have A; < a.
If A < a then, by Lemma 2.8 (if) and using the fact that a — A; > 0, there exist ¢ > 0 such that [x|*™"1L;(Jx]) < c.
That is

Ai(x) <c.

If Ay = @ and fon LlT(t)dt < o0, then, by Lemma 3.2 (i) and using the fact that the function t +— t™*L;(¢) is
nonincreasing in (0, w] for some w > 0, we obtain

V5+1 541
Li(2=x - ol
Al(x)$cf Mdyﬁcf ﬁdrﬁc.
D,NB(x,r1) |x - ]/|" 0 r

For y € D¢, by Lemma 3.2, (ii), we have

A
Ap(x) < cj;) wdy

< AB(x,r)nBO,2) (X V Iyl

(lxl+r1)A2r 1p—1-A
t 1L4(t
[,
( (x| v £y

x|—r1)*
Since the function g(z) := foz ta1=M L (Bdt is uniformly continuous on [0, 3r], we obtain

lim sup[g((1x] + 1) A 27) = g((]x] = 1)*)] = 0.

1n—0 |x|<3r
So, we deduce that
lirr}) supxepA(x) = 0. (3.4)
r1—

On the other hand, we have

B < c fD OW) 6 x, y5(y) " La(o(y))dy

NB(x,r1)NB(0,2r) o(x)

M D A
= fDﬁB(x,rl) O(x) Ga (v, O(y)2La(S(y))dy.-

Now, since fon ta=1=12] »(#)dt < oo then, by [14, Proposition 7], we have

8(y) " La(0(y)) € Ka(D),

that is
. 6(]/) D A
lim sup — = Ga (x, 1)o(y)"La(6(y))dy = 0.
10 xeD JDNB(x,r) 6(3()
So
lim sup B(x) = 0. (3.5)
r—0 xeD

Combining (3.5) and (3.4), we conclude that the function
@1 x> "MLy (x)o(x) 2 La(5(y)) is in Ku(D).
This completes the proof. [J

Now, we give an interesting result that plays a key role in the proof of Theorem 1.2.
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Proposition 3.7. Lety <n—-2+a, u <aand M, N € Ky. Let
b(x) = x| M(Ix)o(x) *N(6(x)), x € D\{0}.

Then, for x € D\{0}, , ) .
Vb(x) ~ [x™ MO N (|x)o ()™ RN (5(x)),

where M and N are defined on (0,1) by

1, ify <a, 1, ifu<a-1,
M(t) = ft'”@ ds, ify =a, and N(t) := ftnl\@ds, fu=a-1,
M@, ffa<y<n-2+a, N@s), ifa-l<pu<a.

Proof. First we remark that
1l 1l
f 3 Y M(H) dt < o0 and f 9 1I7EN(t) dt < oo, for n > d. (3.6)
0 0
Let 0 < r < 28 such that B(0, 3r) € D. For x € D\{0}, we have

Vb(x) = f G, y)b(y) dy + f G2, y)by) dy.
B(0, 2r) D\B(0, 27)

We distinguish three cases.

Casel: If0< x| <.
By Lemma 3.4 (i) and (ii), we have

o
Vb ~ f WITMAYD o f 5(1)“N(()) dy.
B D\B(O, 27’)

02n =yl

Using (3.6) and Lemma 3.5, we obtain

f 5PN () dy ~ 1.
D\B(0, 2)

Hence
Iyl M(ly)
@ Bo2n X —ylI"™ Y
Therefore
TM “YM
wws [ U D 4, [ WD 4 41
BO2nD, X —yI"e BO2nD: X =Yl

= L(x) + (%),

where D, is the set defined in Lemma 3.2 and

M
Il(x):f [y M(|yl) dy,
BO2nnD, X — yI"™®

L(x) = f W dy+ 1.
B

©02nnDe X =yl
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Let us estimate [;(x). By Lemma 2.10 and Lemma 3.2 (/) we have
x| ~ [yl and M(|x]) =~ M(lyl).

Then
dy

Li(x) = |x[7" M(|x]) —_—
BO2nnD, X = Yl

by Remark 3.3, we obtain
I (x) = [x|*7" M(|x]). (3.8)

2—a
Now let us estimate I>(x). For y € D, we have ‘x‘ﬂ'yﬁ < c¢. Then

TM 2—a a=2-y M1
o= [ WM, [ W WM,

©O2nnps X =yl 02nnps X = Yo fx = yln2

a—Z—yM
< f lyl / _(|2]/|) p
Bo2nnDs X =Yl

= yP < e(lxl v Iy,

By Lemma 3.2 (ii), we have

this implies that

a—Z—yM
](x)sch |yl (IyD dy

©2nnps (Xl Vv [yl

a727)/M
“f MG
B

= Jeoan (X V Iy

a—Z—yM a—Z—yM
<c f |yl (IyD) dy -+ c f |yl (IyD dy
B B

0200y (X1 V Iyl)2 20y (X1 V Iyl)2

< clxfF" f [yl M(lyl) dy + ¢ f [yI*™7"M(lyl) dy.
B(0,21N(lyl<l) BO29N(ylzlx)

Since the functions to be integrated are radial, then
|| 2r
J(x) < clx*" f 2=V dt + cf FTIM(E) dt = I (x) + Io(x), 3.9)
0 x|

where

|ox|
mm=m“ftﬂwwm%
0

2r
In(x)=c f 1 IM(E) dt.
|x]
By (3.8) and (3.9), we conclude that
Vb(x) < Il(x) + 121(.7() + Izz(x) + 1.

Now, we have three sub-cases



(@)

(b)
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If « <y <n—2+athen, by Lemma 2.9 (ii) we have
Ly (x) ~ |x|*7" M(]x]).
Using Lemma 2.9 (ii) and the fact that j;: t*=r=1M(t) dt ~ 1, we obtain

2r n
Ip(x) +1= f 1 IM(E) d + f t Y IMI(E) dt

x| 2r

1
= f 1M dt

||

~ [l M.
This and (3.8) implies that
Vb(x) = |x|*77 M(|x]). (3.10)
If y = a, then
Da(x) = clxf™" fo i FM(Y) dt,

by Lemma 2.9 (i), we obtain
[1(x) ~ M(Jx))-

Since 0 < fzz A@ dt < oo, we have

d 2r .
122(x)+1zf]@dt+ mdt:f]mdt_
2

r I ]

Then, by (3.8), we obtain

Vb(x) < c(2M(|x|) + f| ln MT(t) dt)

T M(t) 2M(|x)
< —dt|1+ ——,
<CL t [*flg@dt]

so, by Lemma 2.8 (iii), we obtain
Vb(x) < c[? A@ dt. (3.11)
X
On the other hand, by (3.7) and using the fact that [x — y| < 2 max(|x], |y|), we get
Vb(x) > cf wdy +1
B

(0,2 max(lx|, [yl

|x| 2r
> clx|v™" f ML + ¢ f A@dtﬂ.
0

[x]

By Lemma 2.9 (i) and since 2’: A@dt ~ 1, we obtain

1
Vb(x) = cf A@ dt. (3.12)
||
So, using (3.11) and (3.12), we obtain
1
Vb(x) ~ M) dt. (3.13)

Ix]
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(c) If y < a then, by Lemma 2.9 (i)
Ly (x) ~ x| M(|x]).

Since @ —y — 1 > —1 then, by Lemma 2.9 (i), fon ==L M(t)dt converges and

2r

Ul
Ip@x)+1=1+c f T IM()dt <1+ ¢ f 1 IM(p)dt < C.
0

[

Lemma 2.8 (ii), (3.8) and (3.14) yield to
Vb(x) < c.

On the other hand, since
Vb(x) = Li(x) + Ir(x),

then
Vb(x) = L(x)=J(x)+1>1.

So
Vb(x) > c.

Using (3.15) and (3.16), we obtain
Vb(x) = 1.

Finally, by (3.10), (3.13) and (3.17), we deduce that

1 ify<a,
Vb(x) = f|:| A@ dt ify=a,
[x]*=Y M(|x]) ifa<y<n-2+a.

We conclude that, for 0 < |x| < 7,
Vb(x) ~ |x[™" @) M(|x]).

Case 2: If x € D\B(0, 3r). Using Lemma 3.4, we obtain

Vb(x) ~ 6(x)f [yI7"M(lyl) dy + f Gg(x, »O(y) *N((y)) dy.
B(0,2r) D\B(0,27)

Since

2r
f [y M(lyl) dy = f #1717 M(t) dt
B(0,2r) 0

7]
< f Y M) dt
0

1
< nZ—af tn—3+a—yM(t) dt
0
< 00.

Then
f Myl dy ~ 1.
B(0,2r)

463

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Hence

Vb(x) ~ 5(x) + f G2(x, )o(y)N(O()) dy.

D\B(0,2r)

The function y = 6(y)"*N(6(y)) is continuous in B(0, 2r). This implies that

S(y) N W) ~ 1.

Thus, using Lemma 3.4 (iii), we obtain

Vb(x) ~ f GP(x, y)o(y) *N(6(y)) dy + f G2 (x, y)o(y) *N(6(y)) dy
B(0,2r) D

\B(0,2r)

_ fD G2, y)o(y) *N(()) dy.

Since p < a, then by [14, Proposition 8] we obtain, for x € D\B(0, 37),

5(x) ifu<a-1,
Vh(x) ~ 16(x) 6?)() NO gt ifu=a-1,
O(x)* HN(6(x)) ifa-l<yu<a.
This implies that

Vb(x) ~ 5(x)™nLa=0N(5(x)), for x € D\B(0, 3r).

464

(3.20)

(3.21)

If r < |x| < 3r. The function x > [x[™"OVN(|x])5(x)™4-HN(5(x)) is positive and continuous on
D\{0}. Let b(x) = |x|*"q(x), where g(x) = |x|"~*7"M(|x[)o(x)"*N(6(x)). Then, by (3.6) and Proposition 3.6,

we have
q € K,(D).

Thus, by Proposition 2.7, we deduce that the function Vb is positive and continuous on D\{0}. So

Vb(x) ~ [ M(|x)o ()™ N (6(x),

for all x in the compact | defined by | := {x € D, r < |x| < 3r}.

Combining (3.19), (3.21) and (3.22), we obtain for x € D\{0},

Vb(x) ~ OV RA (om0 N (5 ().

This ends the proof. O

Proposition 3.8. Let a be a function satisfying (H). Then

V(a(x)0°(x)) ~ O(x), x € D\{0},

where © is defined by (1.3)

Proof. Let a be a function satisfying (H). By (1.2) and (1.3), we obtain

Let

a(X)O()” ~ x| AmINOED (1, 11 ) (] ()~ mIn( D) (1,157 ) (5(x))

y = A —min(0, %)a and y = £ —min(1, %)a

(3.22)
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Since{ <a and A < (n -2+ a)(1-o0)+ao, thenwehavey <aandy <n-2+a.
Using Lemma 2.8 (i), (iii), (iv) and Proposition 3.6, we obtain

Lit)L1 ()™ € Ko and Lo()(La(H) ™ € K.
By Proposition 3.7, with M(t) = Ly (t)(L1(t)) 7 and N(t) = Lo(t)(La(t)) 7, we deduce that
V(a(x)0 (x)) = [x™ O M(|x))5 ()™ N (5(x)).

Now, since

min (0, a —y) =min(0, a—A+min(O,a_ )0) =min(0, 01(_/\),

min (1,0 —u) = mm(l, a— £+mm(1, 7 —0)0) = mm(l, -
and, by an elementary calculation, we have
M(t) ~ Li(t)™ and N(t) ~ Lo(t)) ™.

Then, we deduce for x € D\{0}
V(a(x)0’(x)) ~ O(x).

This ends the proof. [J

For w > 0, we denote by (P,) the following problem

(=Alp)2u = a(x)u’(x), x € D\{0}, (in the distributional sense ),
u > 0in D\{0},
(Po) § lim x| u(x) = w,

[x|—0
xlir?D S(x)>u(x) =0,
Proposition 3.9. Let 0 < 0 and assume that hypothesis (H)is satisfied. Then for esach w > 0, problem Py, has at
least one positive solution u, € C(D\{0}) satisfying for x € D\{0}
Uy = wlx"™* + V(a(x)ug))(x). (3.23)
Proof. By hypothesis (H), we have
4(x) = Xl @OV a(x) x |34 @O (1) (x) 4 Lo(6()).
Since, 0 < 0and 0 < a < 2 then
A—(a—-n)(c-1)<(1-0)a+aoc=a.

In addition, & < a. So ,by Proposition 3.6, we get that q(x) € K,(D).
Using Proposition 2.7, we deduce that the function

x - [xt f GP(x, y)a(y)lyl®™ dy is in Co(D). (3.24)
D

Let X be the closed convex set given by

Y={veCD): w<v<h, =+l



S. Salah et al. / Filomat 38:2 (2024), 449-472 466
We define the operator T on L by

To(x) = w + |x"™® f GP(x, y)a(y)lyl 0% (y) dy.
D

We shall prove that T has a fixed point in L. First, let xy € D, since ¢ < 0 then for all v € £ we have v < °.
Thus

ITv(x) — To(xo)| < @’ f " Gg (x, y) = x| G (xo, y).lyl“‘”q(y) dy, xeD
D

where g(x) = [x|@0Dg(x) € K,(D).
By same arguments as in the proof of Proposition 2.7, we obtain for all € > 0 there exists 6 > 0 such that,

ifxeD and |x — xo| <6 thena)"f
D

1RG5, ) = ol GE G, )l "a(w) dy < e
So, for all € > 0 there exists 6 > 0, such that
ifxeD and |x — xp| < & then |To(x) — To(xo)| <€, forallv e X.

This implies that the family TZ. is equicontinuous in each point of D. In particular, for all v € &, To € C(D)
and as a result TZ. C X. Therefore, since the family {Tv(x), v € L} is uniformly bounded in D, then by

Arzela-Ascoli theorem (see [3]), the set T(X) is relatively compact in C(D). Next, let us prove the continuity
of T'in X.. We consider a sequence (vy)x in X which converges uniformly to a function v in X. Then we have

[To(x) — To()] < x| fD GL @, Pyl )] (y) — v (y)l dy.
By (3.24), the dominated convergence theorem and using the fact that [0} (y) — v"(y)| < 2w, we deduce that
Vx € D, Tog(x) — To(x) as k — 0.
Moreover, since T(Z) is relatively compact in C(D), we get
[|Toe — Tol|loo — 0 as k — 0.

So T is a compact mapping of X to it self. Applying, now, the Schauder fixed point theorem, there exists
v, € X such that for each x € D

u =+ i [ GE G DAl ) dy. (3.25)
D
From (3.24), (3.25) and since v¢, < w’, we obtain
xlirtng 1, (x) = 0. (3.26)

Let r > 0 such that B(0,3r) c D and let x € B(0,)\{0}. Since w < v, < B, by (3.25) and hypothesis (H) and
similar argument as in the proof of Proposition 3.7, we obtain

Vo(*) — @ ~ x| f GY(x, ma(y)lyl*™ dy
D

- (f |y|—(/\—(oc—n)a)L1(|y|) dy N 1)
B(0,27) x — yl*=

a—2—A+(a—n)oL
< el (|x|“-“<“-">m(|x|) " f £ Ll g, 1)
B(0,2r)D" (] V [yD)"

< o™ (IXI“(“_")“_ALl(IXI) + f
0

2r tn+(a—n)a+(a—2)—/\—1L1(t)
(x| v tyn=2

dt+1).
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SinceA<(n-2+a)l-o)+acandn+ (@ —n)o—A > (2 —-a)(1-o) >0, by Lemma 2.8, (ii), we get

tim "9 L () = 0.

For n > 3, x € B(0,r)\{0} and ¢ € (0,2r) we have
tn+(a—n)a+(a—2)—/\—1

x n—oa
T VT

Ll (t) < |x|2—a tn+(a—n)o+(a—2)—/\—1 Ll (t)

< 1,2—atn+(a—n)o+(a—2)—A—1L1 (t)

= w(p).

Since

i i
f tn+(a—n)0+(a—2)—/\—1L1(t) dt < n(a—Z)af t(n—2+a)(1—0)+aU—A—1L1(t) dr < o0,
0 0

this implies that
() € L'(0,m),

and
n+(a—n)o+(a—2)—-A-1
lim |x" Li(t) =0.
Hm (x| v )12 1t

By the dominate convergence theorem, we deduce that

lim v,(x) = w. (3.27)

x|—0

Let u,(x) = |x|*"v4(x), for x € D\{0}. Then u,, € C(B\{O}), and we have

Up(X) = wlx]|*™" + fD Gf(x, ya(y)ug (y) dy, (3.28)
S0
Wlx|*" < g (x) < Blx*T (3.29)

Now, since the function y — a(y)ug(y) € LllDC(D\{O}) and we have

X f G2, alyic(y) dy € L. (D\[O)

thus, by (2.6), applying (~Alp)? on both sides of equation (3.28), we conclude that u,, satisfies
(-Alp)2u, = a(x)ul (x), x € D\{0}, (in the distributional sense ),
in addition, from (3.27) and (3.29), we get

li e 10) =w, li 2ma 1) =u.
\x}g}) [ uy(x) = w Hm O(x) “uy(x) =0
This ends the proof. O

Corollary 3.10. Let a be a function satisfying (H), o < 0 and u,, € C(D\{0}) is a solution of P,,, i = 1, 2. Then, for
0 < w1 < wy, we have

0< ua)z(x) — Uy, (x) < (wZ - wl)lxla_n/ xe 5\{0} (330)
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Proof. Let h be the function defined on D\{0 0} by
u, (x) g, (x)
h(x) ( )Mal(x —1l, (x)’ lf uwz(x) # uwl (x)/
0, if 14, (X) = Ug, (X).
Since 0 < 0, then h € B7(D\{0}) and we have
Uy = Uy + V(H(the, = Uey)) = (02 — w1)lX|"™", x € 5\{O}

Furthermore, by (3.23), (3.24) and (3.29), we conclude that, for x € D\{0}

V(I’l|um2 U, )(X) < a)1 + wZ)fGD(x y)ﬂ(y)lyl(a 2)o dy
< 00,
Hence the result (3.30) holds by Lemma 2.3. O

Proposition 3.11. Let 0 < 0 and assume that hypothesis (H) is satisfied. Then problem P has at least one positive
solution u € C(D\{0}) such that, for x € D\{0}

u = V(a(x)u)(x). (3.31)

Proof. Let (wi)x be a sequence of positive real numbers decreasing to zero and denote by u; the positive
continuous solution of problem P,,. By Corollary 3.10, the sequence (u)r decreases to a function u and

since the sequence (1 — wi|x|*™), increases to u. Then, by (3.23) and (3.29), we have for each x € D\{0} and
0<0,

u(x) > up(x) — wglx|*™
- fD GP(x, ya(y)us(y) dy

> py fD G2 (x, y)a(y) dy > 0,

where i = wi + w}l||h|. Therefore, by the monotone convergence theorem, we obtain

u(x) = fD G2 (x, y)a(y)u®(y) dy.

Let us prove that u is a positive continuous solution of (1.1). Since for each x € D\{0}, we have

u(x) = infu(x) = sup(ug — welx*™),
k

then u is upper and lower semi-continuous function on D\{0} and so u € C(D\{0}).
Hence the function y — a(y)u°(y) is in L}OC(D\{O}) and we have

v [ GG e dy € L 0\,
D
Using (2.6), we conclude that
(—=Alp)?u = a(x)u°(x) x € D\{0}, (in the distributional sense ).
Now, since 0 < u(x) < ug(x) for each x € D\{0}, and 1y is a solution of problem (P,,), then
Lim |x|"“u(x) =0
lleol I"u(x)
By (3.26) and using the fact that 0 < |x| < d as x = JD, we have
li 2—q =1 2—q | |a—n » -
Jm o) “u(x) Hm 0(x)" x| v,(x) = 0

Consequently, u is a solution of problem (1.1). This completes the proof. [
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4. Proof of Theorem 1.2

Let a be a function satisfying (H) and let ©® be the function defined in (1.3), by proposition 3.8, there
exists M > 1 such that

%@(x) < V(@a(x)O(x)°) < MO(x) for all x € D\{0}, (4.1)

We divide the proof of Theorem 1.2 into two cases according to the sign of o.

Casel. If o < 0.
By Proposition 3.11, problem (3.7) has a positive continuous solution u satisfying (3.31). Let us prove
that u satisfies (1.4). Assume that p(x) = a(x)©(x)°, then, by (4.1), we obtain

M (Vp)’(x) < ©7(x) < M (Vp)' (x). (42)
Put ¢ be a positive constant, then we have
CVp(x) = V(eVp))(x) + V(e — (V) )@ (43)
Define the function f by
f(@) = ca@IO)" - ¢’ (Vp) ()] € B*(D\(0)),
then, by (4.3), for c = M7,
f() = ca@)(@) ~ M7 (Vp) (), x € D\[0).
Using (3.31) and (4.3), we obtain
cVp—u+ V(aw® — (cVp)’) = cVp — u + V(a(u®) - (cVp)°) = Vf.
Let g be a function defined on D\{0} by
) = {a(x)% if u(x) # cVp(x),
0, if u(x) = cVp(x).
Since o < 0, then g € B*(D\{0}) and
gO)(CVp =~ w(@) = a@(u’ - (Vp)’)), forallx € D\(o} (44)

Hence
cVp—u+V(g(cVp—u)) =Vf.

By (3.31), (4.1), (4.2) and (4.4), we obtain

V(glcVp —ul) < V(au®) + V(a(cVp)°)
<u+cVp
<u+cMO

< 00,

So, by Lemma 2.3, we have

In the same way as above, we get that

Thus, by (4.1), u satisfies (1.4).
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Case2. 0<o<1
Let g(x) = [x[""“O(x), x € D. By (4.1), we have, for p(x) = a(x)O(x)°,
1 _
3770 < Ix"™*Vip(x) < Mg(x). (4.5)

Putc = M5, where M is the constant defined in (4.1).
Let B = {v € Co(D), 19 < v < cg}, be the closed convex non empty set and let T be the operator defined
on B, for all v € B, by

To(x) = |x|"* f G2 (x, )ay)lyl v’ (y) dy, x € D.
D

Further, by (4.5), we obtain

%QSTUSCQ

Since, for all v € B, we have
[0’ (Y < c“llg°ll, v € D,

by the same arguments as in the proof of Proposition 3.9, we deduce that
Tv € Cy(D), forall v € B.

Then
T(B) C B.

Consider the sequence of function (vx)x defined by

1
= Eg and vy = Tor, k€ N.

From the monotonicity of T and using the fact that T(B) C B, we deduce that

1
Egzv()SvlSUgS...SUkSvk+1ch.

So, thanks to the convergence monotone theorem, the sequence (vy); convergence to a function v
satisfying for each x € D

2909 < 00 < g0,

and

vwﬂWﬂLQmW@MH%WMy

Since v is bounded, we prove by similar arguments as in the proof of Proposition 3.9 that v € Cy(D).
Put u(x) = |x|*"v(x). Then u € Co(D\{0}) and satisfies the following equation

u(x) = V(au®)(x), x € D\{0}. (4.6)

Now, using the fact that y - a(y)u°(y) is in L} (D\{0}) and by (4.6) the function x — V(au°) is also in

loc

L! (D\{0}). Then, by (2.6), we deduce that u is a solution of problem (1.1). This ends the proof.

loc

We end this section with the following example that illustrates our result.
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Example 4.1. Let 0 < 1 and a be a nonnegative function in C(D\{0}) such that, for x € D\{0},

. 4d\?" 4d \\
a(x) ~ |x| A(ln(m)) 5(x)6(1n(%)) ,

where A < (n -2+ a)1-0)+ao, E<a, p1 >1, B2 > 1and d := diam(D). Then, by Theorem 1.2, problem (1.1)
has at least one positive continuous solution u satisfying the following.

Ifa<A<m-2+a)l-0)+acanda—-1+0 <& <a,then

B b2
a=A 4d\\ ™ a=g 4d \\™
u(x) = |x| (ln(m)) o(x) T (ln(%)) .

IfA<aand E <a—1+0,then
u(x) = |x]0(x).

Indeed, let Li(t) = (In (%)) ™ and Ly(t) = (In(4)) ™, 0 <t <.
IfA<aand &< a—1+ 0, we have L(t) = 1 and Ly(t) = 1. Then

u(x) =~ |x|6(x).

IfA=aand &= a—1+ 0, we have Ly(t) ~ 1 and Ly(t) ~ 1. Then

u(x) = |x[o(x).

Ifa<A<n-2+a)(l-0)+acanda—1+0 < & < a we have Ly(t) = (111(47”’))_161 and Ly(t) = (1r1(47d))_ﬁ2 . Then

-B1 —h2
) 4d\\ ™ a=g 4d \\"
u(x) = |x| 1= (ln(m)) o(x) (ln(%)) .

"My manuscript has no associate data”
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