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Abstract. In the present paper, Lyapunov functional (LF) is employed to discuss the continuability and
boundedness of solutions for a third-order non-autonomous stochastic integro-differential equation (SIDE)
with time delay. The third-order differential equation is ablated to a system of first-order differential
equations together with its equivalent quadratic function to derive a suitable downright LF and then we
study the behaviour of the solutions. A numerical example is considered to support our results. Moreover,
we use the Euler-Maruyama method to get an approximate numerical solution for the considered system.
The obtained result complements some recent ones in the literature.

1. Introduction

In the last decades, some methods have been developed to obtain information about the qualitative
behaviour of solutions, stability, instability, continuability and boundedness of solutions for the delay
differential equations (DDEs), see for example [7–9, 20, 21, 38].

An integro-differential equation (IDE) is an equation that involves both integrals and derivatives of an
unknown function. The IDE is said to have a delay when the rate of variation in the equation state depends
on past states, in this case, IDE is called a time delay IDE.

IDEs have attracted significant interest in the field of engineering and applied sciences in the last few
years, which arise in several research fields, like economy, control theory, physics, chemistry, population
dynamics, medicine, atomic energy, information theory, mechanics and electromagnetic theory, life science,
see [12, 13, 15, 17, 19, 31, 33, 34, 41]. On the other hand, in order to capture ubiquitous noise factors in the
actual situation, SIDEs emerge in anomalous diffusion [28]. Stochastic delay integro-differential equations,
as the mathematical model, widely apply in biology, physics, economics and finance [10, 26].

It is worth-mentioning, that according to our observation, it can be seen some papers studied solutions
of IDE and stochastic differential equations (SDEs) with or without delays, see [1–6, 14, 16, 18, 22–24, 29, 30,
32, 35, 37, 39, 42–44].

In addition, it is reasonable to mention some recent papers from the literature dealing with the
qualitative behaviors of nonlinear differential equations of the third-order with delay.
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In 2019, Tunç and Ayhan [37] discussed the continuability and boundedness of solutions for a kind of
nonlinear delay integro-differential equations of the third-order

(q(t)(p(t)x′)′)′ + a(t) f (t, x, x′)x′′ + b(t)1(t, x)x′ + c(t)h(x − r)

=

∫ t

0
C(t, s)x′(s)ds.

Recently, Mahmoud and Bakhit [25] established the properties of solutions for non-autonomous third-
order stochastic differential equation with a constant delay

...
x (t) + a(t) f (x(t), ẋ(t))ẍ(t) + b(t)ϕ(x(t))ẋ(t) + c(t)ψ(x(t − r))
+ 1(t, x)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)).

Here, we consider a non-autonomous SIDE with variable delay of third-order as the form

...
x (t) + a(t) f (t, ẋ(t))ẍ(t) + b(t)11(ẋ(t − r(t))) + c(t)12(x(t − r(t)))

+ σx(t − h(t))ω̇(t) = P(t, x(t))
∫ t

0
G(s, ẋ(s))ẋ(s)ds,

(1.1)

where, a(t), b(t) and c(t) are positive and continuously differentiable functions on [0,∞), f : R+ ×R → R+,
11, 12 : R→ R+ and G : R+ ×R→ R+ are continuous functions. h(t) is a continuous function and defined
from [0,∞) to [0, h1]. ω(t) ∈ Rn is standard Brownian motion.

Essentially, our aim is to establish some sufficient conditions for the the continuability and boundedness
of solutions of equation (1.1) by constructing a suitable LF.

Remarks :

(i) In recent years, few papers have been written on the continuability and boundedness of solutions
for IDEs; our study generalizes all of these papers. Moreover, most of these papers are IDEs of
second-order without a stochastic term, for example [16, 29, 36, 40], but here we study SIDE for the
third-order. Our results are new and improve previous results.

(ii) In (1.1), if we put
...
x = (q(t)(p(t)x′)′)′, f (t, ẋ) = f (t, x, x′), 11(ẋ(t − r(t))) = 1(t, x)x′, 12(ẋ(t − r(t))) = h(x − r),

σx(t − h(t)) = 0 and P(t, x(t)) = 1, we note that the equation in [37] represents a special case from the
main equation (1.1) in this study.

(iii) Whenever, 11(ẋ(t − r(t))) = φ(x(t))ẋ(t), 12(ẋ(t − r(t))) = ψ(x(t − r)), σx(t − h(t)) = 1(t, x) and replacing the
integral term P(t, x(t))

∫ t

0 G(s, ẋ(s))ẋ(s)ds by p(t, x(t), ẋ(t), ẍ(t)), then (1.1) reduces to the studied equation
in [25]. Thus, equation (1.1) generalizes the results obtained in [25]. Hence, our results include and
extend all the previous results.

(iv) Equation (1.1) is considered the first equation to thoroughly and systematically study the SIDE with
time delay. The information just mentioned indicates the novelty and originality of the present paper.

2. Main Results

Let G(t) = (G1(t), . . . ,Gm(t)) be an m-dimensional Brownian motion defined on the probability space.
Consider an n-dimensional stochastic delay differential equation (SDDE)

dx(t) = N1(t, xt)dt +N2(t, xt)dG(t), xt(θ) = x(t + θ) − r ≤ θ ≤ 0, t ≥ t0, (2.1)
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with initial value x(0) = x0 ∈ C([−r, 0];Rn). Suppose that N1 : R+ ×R2n
→ Rn and N2 : R+ ×R2n

→ Rn×m

satisfy the local Lipschitz condition and the linear growth condition. Therefore, for any given initial value
x(0) = x0 ∈ C([−r, 0];Rn), it is known that equation (2.1) has a unique continuous solution on t ≥ 0, which is
denoted by x(t; x0) in this section . Suppose that N1(t, 0) = 0 and N2(t, 0) = 0, for all t ≥ 0. Therefore, the
SDDE admits the zero solution x(t; 0) ≡ 0 (see [8, 11, 26]).

Let C1,2(R+ × Rn;R+) denote the family of non-negative functions V(t, xt) defined on R+ × Rn, which
are once continuously differentiable in t and twice continuously differentiable in x.

By Itô formula we have

dV(t, xt) = LV(t, xt)dt + Vx(t, xt)N2(t, xt)dG(t),

where

LV(t, xt) = Vt(t, xt) + Vx(t, xt)N1(t, xt)

+
1
2

trace[NT
2 (t, xt)Vxx(t, xt)N2(t, xt)],

(2.2)

such that Vx = (Vx1 , . . . ,Vxn ) and Vxx = (Vxix j )n×n.
Suppose that there exist non-negative constants a1, a2, b1, b2, c1, c2, f1, f2,

M, N, k, D1, D2, γ, β, L1, L2, δ0,L2 and δ2 with the negative constant a0 such that the following assumptions
are achieved

(A1) a1 ≤ a(t) ≤ a2, b1 ≤ b(t) ≤ b2, c1 ≤ c(t) ≤ c2, with 0 < m1 ≤ c(t) ≤ b(t),
0 < m2 ≤ ḃ(t) ≤ ċ(t) ≤ 0, ȧ(t) ≤ a0, 0 < r(t) ≤ γ and 0 < ṙ(t) ≤ β, β ∈ (0, 1).

(A2) 11(y) ≥ ky, |1′1(y)| ≤ L1, 12(x) ≥ δ1x, |1′2(y)| ≤ L2 and sup {1′2(x)} = 10 such that k ≥ L2.

(A3) |P(t, x(t))| ≤ P(t) ≤M, |G(t, y(t))| ≤ G(t) ≤ N.

(A4) f1 ≤ f (t, y) ≤ f2, a1 f1 ≥ 2, t ≥ 0, y ∈ R.

(A5) M
∫
∞

0 G(s)ds ≤ D1, M
∫
∞

0 G(s)ds+N
∫
∞

0 P(s)ds ≤ D2, such that, D1 ≤ a1 f1−3, D2 ≤ b1k−a0 f2−2c210−3.

(A6) 0 < h(t) ≤ h1, |ḣ(t)| ≤ 1
2 , such that 2σ2

≤ 2c1δ1 − a1 f1 − b1k −D1 − 2.

Theorem 2.1. Suppose that all the assumptions (A1)–(A6) are satisfied. Then all solutions of system (1.1) are
continuable and bounded provided that

γ <min
[{ (2c1δ1 − a1 f1 − b1k − 2 − 2D1 − 2σ2)

2(b2L1 + c2L2)

}
,{ (1 − β)(b1k − a0 f2 − 2c210 − 3 −D2)

2(b2L1(1 − β) + c2L2(4 − β))

}
,{ (1 − β)(a1 f1 − 3 −D1)

2
{
b2L1(4 − β) + c2L2(1 − β)

}}].
Proof. We can rewrite (1.1) as the system

ẋ = y,
ẏ = z,

ż = P(t, x)
∫ t

0
G(s, y(s))y(s)ds − a(t) f (t, y)z − b(t)11(y) − σx(t − h(t))ω̇(t)

+ b(t)
∫ t

t−r(t)
1′1(y(s))z(s)ds − c(t)12(x) + c(t)

∫ t

t−r(t)
1′2(x(s))y(s)ds.

(2.3)
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The LF V(t, xt, yt, zt) around the system (2.3) can be defined as

V(t, xt, yt, zt) =c(t)
∫ x

0
12(ξ)dξ + b(t)

∫ y

0
11(ζ)dζ + c(t)12(x)y + a(t)

∫ y

0
f (t, ζ)ζdζ

+ yz +
z2

4
+ (x +

z
2

)2 + λ1

∫ 0

−r(t)

∫ t

t+s
y2(u)duds + σ2

∫ t

t−h(t)
x2(s)ds

+ λ2

∫ 0

−r(t)

∫ t

t+s
z2(u)duds +

3
2

∫ t

0

∫
∞

t
|P(η, x(η))|G(s)y2(s)dηds.

(2.4)

Define the functions V1 and V2, as the following

V1 = c(t)
∫ x

0
12(ξ)dξ + b(t)

∫ y

0
11(ζ)dζ + c(t)12(x)y,

and

V2 = a(t)
∫ y

0
f (t, ζ)ζdζ + yz +

z2

4
+ (x +

z
2

)2,

such that

V =V1 + V2 + λ1

∫ 0

−r(t)

∫ t

t+s
y2(u)duds + σ2

∫ t

t−h(t)
x2(s)ds

+ λ2

∫ 0

−r(t)

∫ t

t+s
z2(u)duds +

3
2

∫ t

0

∫
∞

t
|P(η, x(η))|G(s)y2(s)dηds.

(2.5)

First, for the function V1, since 11(y) ≥ ky, we get

V1 ≥ c(t)
∫ x

0
12(ξ)dξ +

1
2

kb(t)
(
y +

c(t)12(x)
kb(t)

)2
−

1
2kb(t)

c2(t)12
2(x)

≥ c(t)
∫ x

0

(
1 −

c(t)
2kb(t)

1′2(ξ)
)
12(ξ)dξ.

Since 0 < m1 ≤ c(t) ≤ b(t) and from (A2), we conclude

V1 ≥
1
2

m1(1 −
L2

k
)δ1x2.

Since, k ≥ L2, therefore there exists a positive constant δ2, such that

δ2 = 1 −
L2

k
≥ 0.

It follows that

V1 ≥
1
2
δ1δ2x2. (2.6)

Second, for the function V2, in view of the assumptions (A1) and (A4), we find

V2 ≥ (
z
2
+ y)2 + (x +

z
2

)2 + (
1
2

a1 f1 − 1)y2. (2.7)

Let a1 f1 ≥ 2, then for some positive constants δ3, δ4, δ5, we get

V2 ≥ δ3x2 + δ4y2 + δ5z2.



A. M. Mahmoud, D. A. M. Bakhit / Filomat 38:2 (2024), 487–504 491

Now, since λ1

∫ 0

−r(t)

∫ t

t+s y2(u)duds, σ2
∫ t

t−h(t) x2(s)ds, λ2

∫ 0

−r(t)

∫ t

t+s z2(u)duds

and 3
2

∫ t

0

∫
∞

t |P(η, x(η))|G(s)y2(s)dηds are positive, then from (2.5), we get

V ≥ V1 + V2.

Therefore, from (2.6) and (2.7), we find

V(t, xt, yt, zt) ≥
1
2
δ1δ2x2 + δ3x2 + δ4y2 + δ5z2.

Hence, for positive constant δ6, we conclude

V(t, xt, yt, zt) ≥ δ6(x2 + y2 + z2). (2.8)

This implies that V(t, xt, yt, zt) ≥ 0.
Now, we compute the stochastic time derivative of the LF V(t, xt, yt, zt) by using Itô formula (2.2), then

we find

LV =ȧ(t)
∫ y

0
f (t, ζ)ζdζ + ċ(t)

∫ x

0
12(ξ)dξ + ḃ(t)

∫ y

0
11(ζ)dζ + ċ(t)12(x)y

− a(t) f (t, y)z2
− b(t)11(y)y − a(t) f (t, y)xz − b(t)11(y)x − c(t)12(x)x

+ 2xy + yz + z2 + c(t)1′2(x)y2 + (x + y + z)
{
b(t)
∫ t

t−r(t)
1′1(y(s))z(s)ds

+ c(t)
∫ t

t−r(t)
1′2(x(s))y(s)ds + P(t, x)

∫ t

0
G(s, y(s))y(s)ds

}
+ λ1r(t)y2

− λ1(1 − ṙ(t))
∫ t

t−r(t)
y2(u)du + σ2x2(t)

− σ2x2(t − h(t))(1 − ḣ(t)) +
1
2
σ2x2(t − h(t)) + λ2r(t)z2

− λ2(1 − ṙ(t))
∫ t

t−r(t)
z2(u)du +

3
2

d
dt

∫ t

0

∫
∞

t
|P(η, x(η))|G(s)y2(s)dηds.

(2.9)

We know that

d
dt

∫ t

0

∫
∞

t
|P(η, x(η))|G(s)y2(s)dηds

= −|P(t, x(t))|
∫ t

0
G(s)y2(s)ds + G(t)y2(t)

∫
∞

t
|P(η, x(η))|dη.

(2.10)

We now check that

F(t, x, y) = ċ(t)
∫ x

0
12(ξ)dξ + ḃ(t)

∫ y

0
11(ζ)dζ + ċ(t)12(x)y ≤ 0.

We can write the above inequality as the following

F(t, x, y) = ċ(t)
{∫ x

0
12(ξ)dξ +

ḃ(t)
ċ(t)

∫ y

0
11(ζ)dζ + 12(x)y

}
.

From the condition |1′1(y)| ≤ L1 and using the mean-value theorem, we get

F(t, x, y) ≤ ċ(t)
{∫ x

0
12(ξ)dξ +

L1ḃ(t)
2ċ(t)

(
y +

ċ(t)
L1ḃ(t)

12(x)
)2
−

ċ(t)
2L1ḃ(t)

12
2(x)
}
.
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Since ḃ(t) ≤ ċ(t) ≤ 0; by the hypostasis (A1), we can see that

F(t, x, y) ≤ ċ(t)
{∫ x

0

(
1 − 1′2(ξ)

)
12(ξ)dξ +

L1

2

(
y +

ċ(t)
L1ḃ(t)

12(x)
)2}
.

Since 1 − 1′2(x) ≤ 1 + |1′2(x)| ≤ 1 + L2 ≥ 0 and ċ(t) ≤ 0, therefore, we conclude that F(t, x, y) ≤ 0.

Now, by substituting from (2.10) in (2.9), using the condition ḣ(t) ≤ 1
2 and considering F(t, x, y) ≤ 0, we

get

LV =ȧ(t)
∫ y

0
f (t, ζ)ζdζ − a(t) f (t, y)z2

− b(t)11(y)y − a(t) f (t, y)xz

− b(t)11(y)x − c(t)12(x)x + 2xy + yz + z2 + c(t)1̇2(x)y2 + σ2x2(t)

+ (x + y + z)
{
b(t)
∫ t

t−r(t)
1̇1(y(s))z(s)ds + c(t)

∫ t

t−r(t)
1̇2(x(s))y(s)ds

+ P(t, x)
∫ t

0
G(s, y(s))y(s)ds

}
+ λ1r(t)y2 + λ2r(t)z2

− λ1(1 − ṙ(t))
∫ t

t−r(t)
y2(u)du − λ2(1 − ṙ(t))

∫ t

t−r(t)
z2(u)du

−
3
2
|P(t, x(t))|

∫ t

0
G(s)y2(s)ds +

3
2

G(t)y2(t)
∫
∞

t
|P(η, x(η))|dη.

Since |G(s, y(s)| ≤ G(s) and P(t, x) ≤M and using the fact 2mn ≤ m2 + n2, we have

zP(t, x(t))
∫ t

0
G(s, y(s))y(s)ds ≤ |z||P(t, x)|

∫ t

0
G(s)|y(s)|ds

≤
1
2
|P(t, x)|

∫ t

0
G(s)(y2(s) + z2(t))ds

≤
1
2

Mz2
∫
∞

0
G(s)ds +

1
2
|P(t, x)|

∫ t

0
G(s)y2(s)ds.

(2.11)

Also, we obtain

yP(t, x(t))
∫ t

0
G(s, y(s))y(s)ds ≤ |y||P(t, x)|

∫ t

0
G(s)|y(s)|ds

≤
1
2
|P(t, x)|

∫ t

0
G(s)(y2(s) + y2(t))ds

≤
1
2

My2
∫
∞

0
G(s)ds +

1
2
|P(t, x)|

∫ t

0
G(s)y2(s)ds.

(2.12)

Similarly, we find

xP(t, x(t))
∫ t

0
G(s, y(s))y(s)ds ≤

1
2

Mx2
∫
∞

0
G(s)ds +

1
2
|P(t, x)|

∫ t

0
G(s)y2(s)ds. (2.13)

In view of the assumptions (A1) − (A4), the above inequalities (2.11), (2.12) and (2.13), we get
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LV(t, xt, yt, zt) ≤
1
2

a0 f2y2
− a1 f1z2

− b1ky2
− a1 f1xz − b1kxy − c1δ1x2

+ 2xy + yz + c210y2 + z2 + σ2x2 + λ1γy2 + λ2γz2 +
1
2

Mx2
∫
∞

0
G(s)ds

+ (x + y + z)
{
b(t)
∫ t

t−r(t)
1′1(y(s))z(s)ds + c(t)

∫ t

t−r(t)
1′2(x(s))y(s)ds

}
+

1
2

My2
∫
∞

0
G(s)ds +

1
2

Mz2
∫
∞

0
G(s)ds − λ1(1 − β)

∫ t

t−r(t)
y2(u)du

− λ2(1 − β)
∫ t

t−r(t)
z2(u)du +

3
2

Ny2(t)
∫
∞

t
|P(η, x(η))|dη.

Applying the inequality |mn| ≤ 1
2 (m2 + n2), we obtain

LV(t, xt, yt, zt) ≤ −
1
2

{
2c1δ1 − a1 f1 − b1k − 2 −M

∫
∞

0
G(s)ds − 2σ2

− (b2L1 + c2L2)γ
}

−
1
2

{
b1k − a0 f2 − 2c210 − 3 −M

∫
∞

0
G(s)ds −N

∫
∞

0
P(s)ds

− (b2L1 + c2L2 + 2λ1)γ
}

y2
−

1
2

{
a1 f1 − 3 −M

∫
∞

0
G(s)ds

− (b2L1 + c2L2 + 2λ2)γ
}
z2 +
{3

2
c2L2 − λ1(1 − β)

}∫ t

t−r(t)
y2(s)ds

+
{3

2
b2L1 − λ2(1 − β)

}∫ t

t−r(t)
z2(s)ds.

Choosing λ1 =
3c2L2

2(1−β) , λ2 =
3b2L1
2(1−β) and from (A5), we get

LV(t, xt, yt, zt) ≤ −
1
2

{
2c1δ1 − a1 f1 − b1k − 2 −D1 − 2σ2

− (b2L1 + c2L2)γ
}

−
1
2

{
b1k − a0 f2 − 2c210 − 3 −D2 −

b2L1(1 − β) + c2L2(4 − β)
(1 − β)

γ
}

y2

−
1
2

{
a1 f1 − 3 −D1 −

b2L1(4 − β) + c2L2(1 − β)
(1 − β)

γ
}
z2.

Suppose that (x(t), y(t), z(t)) is a solution of system (2.3) with initial condition (x0, y0, z0). Since V(t) is a
positive definite and decreasing functional on the trajectories of system (2.3) also we have

LV(t, xt, yt, zt) ≤ 0,

then, we can say that V(t) is bounded on [t0,T]. Now, integrating the above inequality from t0 to T, we
obtain

V(T, x(T), y(T), z(T)) ≤ V(t0, x(t0), y(t0), z(t0)) = V0.

Thus, it follows from (2.8) that

x2(T), y2(T), z2(T) ≤
V0

δ6
.

Therefore, we conclude that |x(t)|, |y(t), |z(t)| are bounded on t → T−. Hence, we can conclude that
T < ∞ is impossible and we must have T = ∞.
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Example 2.1. Here, as an application, we give the following numerical example

...
x (t) +

(
260 − 5t + cos t

)(
2 + 100 sin2 y +

sin2 y
1 + t2

)
ẍ(t)

+
(
2 +

1
1 + t

)(
sin(y(t − r(t)) + 15y(t − r(t))

)
+
(
10 +

1
1 + t5

)( x
1 + x2(t − r(t))

+ 10x
)

+
1
2

sin(x(t −
1
2

e−t))ω̇(t) =
e−t

1 + x2

∫ t

0

e−s

1 + ẋ2(s)
ẋ(s)ds.

(2.14)

The following system can be implied from the equation above as the following

ẋ = y,
ẏ = z,

ż =
e−t

1 + x2

∫ t

0

e−s

1 + y2(s)
y(s)ds −

(
260 − 5t + cos t

)(
2 + 100 sin2 y +

sin2 y
1 + t2

)
z

−

(
2 +

1
1 + t

)
(sin y + 15y) −

1
2

sin(x(t −
1
2

e−t))ω̇(t)

+
(
2 +

1
1 + t

) ∫ t

t−r(t)
(cos(y(s)) + 15)ds −

(
10 +

1
1 + t5

)( x
1 + x2 + 10x

)
+
(
10 +

1
1 + t5

) ∫ t

t−r(t)

( 1 − x2(s)
(1 + x2(s))2 + 10

)
ds.

(2.15)

If we compare the above system with (2.3) and by using the conditions of Theorem 2.1, we can obtain the following
estimates:

a(t) = 260 − 5t + cos t, 10.6 ≤ a(t) ≤ 261, then a1 = 10.6, a2 = 261,

a′(t) = −5 − sin t ≤ −4 = a0,

Figure 1: Path of a(t), a′(t)
.
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Figure 1, shows the path of a(t), a′(t), on the interval t ∈ [0, 50].

b(t) = 2 +
1

1 + t
, 2 ≤ b(t) ≤ 3, therefore, b1 = 2, b2 = 3,

b′(t) =
−1

(1 + t)2 ≤ 0,

c(t) = 10 +
1

1 + t5 , 10 ≤ c(t) ≤ 11 so, c1 = 10, c2 = 11,

c′(t) =
−5t4

(1 + t5)2 ≤ 0,

Figure 2: Path of b(t), b′(t).

Figure 3: Path of c(t), c′(t)
.
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we can see that Figures 2 and 3, illustrate the behaviour of b(t), b′(t), c(t) and c′(t), through the interval
t ∈ [−50, 50].

The function

11(y) = sin y + 15y,
11(y)

y
=

sin y
y
+ 15,

since | sin y
y | ≤ 1, we have

−1 ≤
sin y

y
≤ 1, then

11(y)
y
=

sin y
y
+ 15 ≥ 14 = k.

It follows that

1′1(y) = cos y + 15, |1′1(y)| ≤ 16 = L1.

Figure 4: Trajectory of 11(y)
y , 1′1(y)

.

The behavior of the functions 11(y)
y , 1′1(y) are shown in Figure 4 on the interval y ∈ [−50, 50].

Also, we get

12(x) =
x

1 + x2 + 10x,
12(x)

x
≥ 10 = δ1.

Hence, the derivative of the function 12(x) with respect to x, is

1′2(x) =
1 − x2

(1 + x2)2 + 10, |1′2(x)| ≤ 11 = L2, sup{1′2(x)} = 11 = 10.

Then, we have

k = 14 ≥ L2.

The path of the functions 12(x)
x , 1′2(x) appear in Figure 5 through the interval x ∈ [−100, 100].

Moreover, the function

|P(t, x)| =
e−t

1 + x2 ≤ |e
−t
| ≤ 1 =M, |G(t, y(t))| =

e−t

1 + y2 ≤ |e
−t
| ≤ 1 = N.

Therefore, we get

M
∫
∞

0
G(s)ds ≤ 1 = D1.
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Figure 5: Trajectory of 12(x)
x , 1′2(x)

.

Now, we have∫
∞

0
G(s)ds =

∫
∞

0
e−sds = 1,

∫
∞

0
P(s)ds =

∫
∞

0
e−sds = 1,

M
∫
∞

0
G(s)ds +N

∫
∞

0
P(s)ds ≤ 2 = D2,

σx(t − h(t)) = 1
2 sin(x(t − 1

2 e−t)), then σ = 1
2 and h(t) = 1

2 e−t,

which implies that

|h′(t)| =
1
2

e−t
≤

1
2
.

Figure 6, shows the behaviour of the function 1
2 sin(x(t − 1

2 e−t)) through the intervals t ∈ [−5, 5], x ∈ [−1, 1], and it
proves that |h′(t)| ≤ 1

2 on the interval [0, 30].

Figure 6: Trajectory of 1
2 sin(x(t − 1

2 e−t)) and h′(t)
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Also the function

2 ≤ f (t, y) = 2 + 100 sin2 y +
sin2 y
1 + t2 ≤ 102, then f1 = 2, f2 = 102.

Figure 7, shows the behavior of the function f (t, y) through the interval t, y ∈ [0, 90].

Figure 7: behaviour of f (t, y)
.

Thus, we conclude the following estimates

2σ2 =
1
2
< 2c1δ1 − a1 f1 − b1k − 2 −D1 = 147.8,

D2 = 2 < b1 − a0 f2 − 2c210 − 3 = 165,

and

D1 = 1 < a1 f1 − 3 = 18.2.

Hence, we obtain

a1 f1 > 2.

Thus, all assumptions of Theorem 2.1 are satisfied.

3. Numerical Simulations

Here, we study the behaviour of the solution for equation (2.14) using a numerical method based on the
Euler-Maruyama which enables us to get approximate numerical solutions for the considered system.

We illustrate the stability and the boundedness of the solutions for different values of the stepsize h of the numerical
method and we chose the initial solution of (x(t), y(t), z(t)) be (x(0) = 1, y(0) = 1, z(0) = 1).

The results can be distilled into the following :
• Figure 8, shows the behaviour of the solutions with h = 0.007, σ = 0.5 and we note that the error value
ε = 7.4 × 10−7, makes it obvious that we have a stable system.

• If we change the value of h, as h = 0.009, h = 0.05 with σ = 0.5, we obtain Figures 9 and 10, respectively, with
the error value being ε = 5.1 × 10−4 and ε = 0.02. We note that all solutions are stable, as can be seen.
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Figure 8: The behaviour of the solution of (2.14) with h = 0.007 and σ = 0.5.

Figure 9: The path of the stochastic solutions of (2.14) with h = 0.009 and σ = 0.5.
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Figure 10: The path of the stochastic solutions of (2.14) with h = 0.05 and σ = 0.5.

Figure 11: Stochastic evolution of (2.14) with h = 0.005 and σ = 50 .

• More clearly Figures 11 and 12, illustrate the behaviour of solutions when σ = 50,with h = 0.005 and h =
0.01, respectively. It may be observed that the stochasticity increases as the noise level rises and it reaches the
maximum level of stability as in Figure 12.

• On the other hand, Figure 13, shows the behaviour of the solutions when h = 0.18, σ = 0.5, we note that, when
the value of h increases, the value of ε increases and we suddenly don’t have a stable system, but we can see that
when h is very small as in Figure 14, the behavior of solution seems stable and bounded.



A. M. Mahmoud, D. A. M. Bakhit / Filomat 38:2 (2024), 487–504 501

Figure 12: The stochastic behaviour of (2.14) with σ = 50 and h = 0.01.

Figure 13: the instability behaviour for (2.14) with h = 0.18 and σ = 0.5
.
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Figure 14: Trajectory of the solution of (2.14) with σ = 0.5 and h = 0.002
.

4. Conclusion

The significance of stochastic IDE of the form (1.1) lies in the fact that they arise in many situations. For
example, equations of this kind occur in the stochastic formulation of problems in reactor dynamics, due
to the complex random nature of the situation, the phenomenon being studied should be more realistically
considered in a stochastic framework, resulting in a stochastic integro-differential equation, also in the
study of the growth of biological populations, and in many other problems occurring in the general areas
of biology, physics, and engineering.

Now all of the above will be summarized in the following points :

• The third-order non-autonomous stochastic SIDE with time delay that appeared in (1.1) has been
considered.

• To reach the goal of this paper, by constructing a new suitable LF, we established the sufficient
conditions of Theorem 2.1 to study the continuability and boundedness of solutions for (1.1).

• As an application, a numerical example was proposed to perform the given results all functions were
drawn, next, we use the Euler-Maruyama method to prove an approximate numerical solution for
the considered system and also orbits of the numerical solutions were drawn with assigned initial
conditions to demonstrate the effectiveness of the obtained results.

Besides, to the best of our information, we did not see any previous paper in the literature showing the
behaviors of the paths of the considered (VIDEs), clearly, as in our work. This paper may be the first attempt
in the literature on the topic of that kind of retarded (VIDEs). From all of the above, we can conclude the
new and novel properties of the present paper and the Motivation to study this paper.
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