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Abstract. Introducing the notion of probabilistic convergence ring, and probabilistic limit ring, our
motivations among others are, to focus at two vital issues, such as, (a) to provide characterization theorems
on probabilistic convergence rings, (b) probabilistic uniformizability of probabilistic limit rings, and discuss
some results on probabilistic Cauchy rings, and their relationship with probabilistic convergence rings.
In doing so, we produce various examples, particularly, from function space structure of continuous
probabilistic convergence. Moreover, we observe that the category of probabilistic convergence ring in the
sense of Richardson-Kent is a reflective subcategory of the category of probabilistic convergence rings in
our sense.

1. Introduction

Following Menger’s statistical metrics [26], the notion of probabilistic metrics got prominence - a notion
that can be seen as one of the most influential generalizations of metric spaces. This underlines the
importance of probabilistic structures and their applications. The study of compatibility of probabilistic
structures with algebraic structures lead to enormous contributions in functional analysis, particularly, the
role of probabilistic metric groups are worth mentioning; we quote here a few references for the convenience
of the reader, cf. [3, 5, 7, 8, 10–15, 18, 25, 28–30, 35, 36, 38]. The fact of the matter is, the probabilistic
metric space serves as a natural example of probabilistic convergence spaces, [19], and probabilistic metric
groups used as natural example of probabilistic convergence groups, [3]. The theory of topological rings,
[9, 23, 27, 39] is quite rich, and an extensive amount of work has been done in this area but we do not see much
work on probabilistic convergence rings as well as probabilistic topological rings. It may be mentioned here
that the category of classical convergence spaces, Conv is a supercategory of the category of topological
spaces, Top, and Conv is a Cartesian closed category whereas Top is not, [31]. Inspired by the work on
probabilistic convergence spaces, [19, 20], a Cartesian closed category, several papers were published on the
compatibility of probabilistic convergence structures on group structures; and a good number of examples
are also provided which are themselves interesting in their own right. The motivation of this work is to
introduce the notion of probabilistic convergence ring, and probabilistic limit ring and its natural uniform
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convergence structure together with the notion of probabilistic Cauchy ring, and provide various examples.
We arrange our work as follows. In Section 3, after a brief note on probabilistic metric space and its so-called
Tardiff neighborhood system, we recall the notion of probabilistic convergence space and probabilistic limit
space from [19]. In Section 4, the notion of probabilistic convergence ring and probabilistic limit ring are
introduced, and we show that the category of probabilistic convergence rings is a topological category over
the category of rings. As every probabilistic convergence ring is homogeneous, we are able to provide two
fundamental characterization theorems, including various examples. In Section 5, we provide the notion
of probabilistic convergence ring in the sense of Richardson-Kent showing that this category is a reflective
subcategory of our category of probabilistic convergence rings. The natural uniform convergence structure
for probabilistic limit ring is considered in Section 6. Presenting the category of probabilistic Cauchy rings
in Section 7, we show that the category of probabilistic Cauchy rings is topological, and we produce an
example relating to function space structure. Furthermore, we show that every probabilistic convergence
ring is a probabilistic Cauchy ring.

2. Preliminaries

If (A,≤) is an ordered set, we denote by
∧

j∈J α j the infimum, while
∨

j∈J α j denotes the supremum, if
they exist, of the set {α j : j ∈ J} ⊆ A. In case of a two-point set {α, β}we write α ∧ β and α ∨ β, respectively.

A function φ : [0,∞] −→ [0, 1], which is non-decreasing, left-continuous on (0,∞) and satisfies φ(0) = 0
and φ(∞) = 1, is called a distance distribution function [34]. The set of all distance distribution functions is
denoted by ∆+. For example, for each 0 ≤ a < ∞ the functions

ϵa(x) =
{

0 if 0 ≤ x ≤ a
1 if a < x ≤ ∞ and ϵ∞(x) =

{
0 if 0 ≤ x < ∞
1 if x = ∞

belong to ∆+. The set ∆+ is ordered pointwisely, i.e., for φ,ψ ∈ ∆+ we define φ ≤ ψ if for all x ≥ 0, we have
φ(x) ≤ ψ(x). The smallest element of ∆+ is then ϵ∞ and the largest element is ϵ0.

The following result is mentioned in Schweizer and Sklar [34].

Lemma 2.1. 1. If φ,ψ ∈ ∆+, then also φ ∧ ψ ∈ ∆+.
2. If φ j ∈ ∆

+ for all j ∈ J, then also
∨

j∈J φ j ∈ ∆
+.

Here, φ ∧ ψ denotes the pointwise minimum of φ and ψ in (∆+,≤) and
∨

j∈J φ j denotes the pointwise
supremum of the family {φ j : j ∈ J} in (∆+,≤). On the set ∆+ we consider the modified Lévy metric [37],
which is defined below for the convenience of the reader.

Let φ,ψ ∈ ∆+ and ϵ > 0. Consider the following properties

A
(
φ,ψ; ϵ

)
⇐⇒ φ(x − ϵ) − ϵ ≤ ψ(x), if x ∈ [0, 1

ϵ );
and B

(
φ,ψ; ϵ

)
⇐⇒ φ(x + ϵ) + ϵ ≥ ψ(x), if x ∈ [0, 1

ϵ ).

Then the modified Lévy metric dL on ∆+ × ∆+ is given by

dL
(
φ,ψ
)
=
∧
{ϵ > 0: A

(
φ,ψ; ϵ

)
and B

(
φ,ψ; ϵ

)
hold }.

Definition 2.2. ([34]) A triangle function is a function τ : ∆+ × ∆+ −→ ∆+ such that the following conditions
are satisfied for all φ,ψ, ξ ∈ ∆+:
(i) τ(τ(φ,ψ), ξ) = τ(φ, τ(ψ, ξ));
(ii) τ(φ,ψ) = τ(ψ,φ);
(iii) φ ≤ ψ =⇒ τ(φ, ξ) ≤ τ(ψ, ξ);
(iv) τ(φ, ϵ0) = φ.

The largest triangle function is the pointwise minimum µ(φ,ψ) = φ∧ψ. It is easy to prove that a triangle
function that is idempotent, i.e., for which τ(φ,φ) = φ for all φ ∈ ∆+, must be the largest triangle function.
A triangle function is called continuous [34, 38] if it is a continuous function with respect to the topology
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and product topology induced by the modified Lévy metric. A triangle function is called sup-continuous
[34, 38] if τ(

∨
j∈J φ j, ψ) =

∨
j∈J τ(φ j, ψ) for all φ j, ψ ∈ ∆+ ( j ∈ J). For further study on sup-continuity and its

relation to continuity, we refer to [34], and for a good survey on triangle functions, see e.g. [33].
An example for a continuous triangle function with a left-continuous t-norm ∗, [34], is τ∗ defined by

τ∗(φ,ψ)(x) =
∨

s+t=x φ(s) ∗ ψ(t), for φ,ψ ∈ ∆+.

For φ ∈ ∆+, we define the right-hand limit φ(0+) = limx→0+ φ(x).

Lemma 2.3. ([19]) For a continuous t-norm ∗, the triangle function τ∗ satisfies τ∗(φ,ψ)(0+) = φ(0+) ∗ ψ(0+).

For a set S, we denote P(S) its power set. We denote the set of filters on the set S by F(S). We order this
set by set inclusion, and we denote for s ∈ S the point filter by [s] = {F ⊆ S : s ∈ F}. If F ∈ F(S) andG ∈ F(T),
then the filter on S×T generated by the sets of the form {F×G : F ∈ F,G ∈ G} is denoted by F×G. If (R,+, ·)
is a ring, and F,G ∈ F(R), then we define F⊕G as a filter generated by the sets F+G = {p+ q : p ∈ F, q ∈ G},
where F ∈ F and G ∈ G. For the multiplicative operation, we define F ⊙ G as a filter generated by the sets
F · G = {pq : p ∈ F, q ∈ G}, where F ∈ F and G ∈ G. The filter −F is generated by the sets −F = {−p : p ∈ F}
for F ∈ F.

For filters on R × R we use later the letters Φ, Ψ, etc. If Φ ∈ F(R × R), then Φ−1 is generated by the set
H−1 = {(p, q) : (q, p) ∈ H}with H ∈ Φ. If Φ,Ψ ∈ F(R×R), then Φ ◦Ψ, the composition of Φ andΨ, is defined
to be a filter generated by the filterbasis {H ◦K : H ∈ Φ,K ∈ Ψ}, where H ◦K = {(p, q) ∈ R×R : ∃ r ∈ R such
that (p, r) ∈ K and (r, q) ∈ H}, and whenever H ◦ K , ∅, for all H ∈ Φ,K ∈ Ψ.

For notions of category theory we refer to Adámek et. al. [1]. However, we recall a few notions for the
convenience of the reader. A category C consists of three items; namely,
• a class of objects usually denote by S, T,...,
• a class of morphisms between objects of C, which is denoted by f : S −→ T having domain and codomain,
dom( f ) = S and cod( f ) = T,
• a composition law which assigns to each pair of morphisms ( f , 1) with dom( f ) = cod(1), a composite
morphism f ◦ 1 : dom(1) −→ cod( f ) subject to satisfy (i) associativity: f ◦ (1 ◦ h) = f ◦ (1 ◦ h), and (ii) for each
object S, there exists an identity morphism idS : S −→ S, such that f ◦ idS = f and idS ◦ 1 = 1, whenever the
composition is defined.

Examples of categories include Top, the category of topological spaces as objects and continuous map-
pings between them as morphisms; Conv, the category of convergence spaces as objects and continuous
mappings between them as morphisms. Likewise, the category of all probabilistic metric spaces as objects
and non-expansive maps as morphisms is denoted by PMet; Rng, the category of rings as objects and ring
homomorphisms as morphisms, and so on.

A functor A : C −→ D is a morphism between categories, precisely it consists of mappings between
objects of C and objects of D (sometime we write |C| to denote the class of objects of C), and mappings
between morphisms of C and morphism of D such that (i) if f : S −→ T, then A( f ) : A(S) −→ A(T); (ii)
A( f ◦ 1) = A( f ) ◦ A(1), whenever f ◦ 1 is defined; (iii) A(idS) = idA(S).

A construct is a category Cwhose objects are structured sets (S, ξ) and morphisms are suitable mappings
between the underlying sets. A construct is called topological if it allows initial constructions, i.e., if for any
source

(
f j : S −→

(
S j, ξ j

))
j∈J

, there is a unique structure ξ on S such that a mapping 1 :
(
T, η
)
−→ (S, ξ) is a

morphism if and only if for each j ∈ J the composition f j ◦ 1 :
(
T, η
)
−→

(
S j, ξ j

)
is a morphism, where

(
T, η
)

is a structured set.
A topological construct is called Cartesian closed if for each pair of objects (S, ξ) ,

(
T, η
)
, there is a structure

on the set C(S,T) of morphisms from S to T such that mapping ev : C(S,T) × S −→ T, defined for any
f ∈ C(S,T) and s ∈ S by ev( f , s) = f (s) (called an evaluation mapping) is a morphism, and for each object (Z, ζ),
and each morphism f : S×Z −→ T the mapping f̂ : Z −→ C(S,T) defined by f̂ (z)(x) = f (x, z) is a morphism.

Let C be a subcategory of a category A. Then C is said to be reflective in A (or C is a reflective subcategory
of A) if for each X ∈ |A| there exists a C-object XC and an A-morphism rX : X −→ XC such that for each C-
object C and each A-morphism f : X −→ C there exists unique morphism f ′ : XC −→ C such that f ′ ◦ rX = f .
The notion of coreflective subcategory is defined dually.
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3. Probabilistic metric spaces and probabilistic convergence spaces

Definition 3.1. ([34]) A probabilistic metric space under a triangle function τ is a pair (S,F), where F : S×S −→ ∆+

such that for all p, q ∈ S the following properties hold:
(PM1) F(p, q) = ϵ0 ⇐⇒ p = q;
(PM2) F(p, q) = F(q, p);
(PM3) τ(F(p, q),F(q, r)) ≤ F(p, r).
A mapping f : (S,F) −→ (S′,F′) is called non-expansive if F(p, q) ≤ F′( f (p), f (q)) for all p, q ∈ S.

Definition 3.2. ([19]) Let S be a set. A family of mappings
(
cφ : F(S) −→ P(S)

)
φ∈∆+

which satisfies the axioms

(PC1) p ∈ cφ([p]), p ∈ S, φ ∈ ∆+;
(PC2) if F ≤ G, then cφ(F) ⊆ cφ(G), ∀F,G ∈ F(S) and ∀φ ∈ ∆+;
(PC3) if φ ≤ ψ, then cψ(F) ⊆ cφ(F), ∀F ∈ F(S) and ∀φ,ψ ∈ ∆+ ;
(PC4) p ∈ cϵ∞ (F) ∀p ∈ S, F ∈ F(S),
is called a probabilistic convergence structure on S. The pair

(
S, c = (cφ)φ∈∆+

)
is called a (distance distribution

function indexed) probabilistic convergence space.

If (S, c) satisfies further the axiom (PC5)

cφ(F) ∩ cφ(G) ⊆ cφ (F ∧G) , ∀φ ∈ ∆+, ∀F,G ∈ F(S),

then we speak of a probabilistic limit space.

A mapping f : (S, c) −→
(
S′, c′
)

between probabilistic convergence spaces (resp. probabilistic limit
spaces) is called continuous if f (p) ∈ c′φ( f (F)) whenever p ∈ cφ(F) for every p ∈ S and for every F ∈ F(S), and
φ ∈ ∆+. PConv denotes the category of probabilistic convergence spaces as objects and continuous maps
as morphisms while the category of all probabilistic limit spaces and continuous mappings between them
is denoted by PLim. Clearly, PLim is a full subcategory of PConv.

We now recall Tardiff’s neighborhood systems [38] that are based on the so-called profile functions [16].
A profile function is in fact just an element φ ∈ ∆+, where φ(x), x > 0, is interpreted as the maximum
probability assigned to the event that the distance between p and q is less than x. Given a φ ∈ ∆+, ϵ > 0 and
p ∈ S, the (φ, ϵ)-neighborhood of p is defined by

Nφ,ϵ
p = {q ∈ S : Fp,q(x + ϵ) + ϵ ≥ φ(x),∀x ∈ [0,

1
ϵ

)}.

The set {Nφ,ϵ
p : ϵ > 0} is then a filter basis, and the filter generated by this basis is denoted byNφ

p [19].

For a probabilistic metric space (S,F), define p ∈ cF
φ(F) ⇐⇒ F ≥ N

φ
p . Then

(
S, cF
)

is a probabilis-
tic convergence space and a non-expansive mapping f : (S,F) −→ (S′,F′) is continuous as a mapping
f :
(
S, cF
)
−→

(
S′, cF′

)
. It follows from [19] that every probabilistic metric space gives rise to a natural

probabilistic convergence space.

4. Probabilistic convergence rings

Lemma 4.1. Let (R,+, ·), (R′,+, ·) ∈ |Rng|, and F,G,H ∈ F(R). Let h : R×R −→ R, (x, y) 7−→ x+ y, m : R×R −→
R, (x, y) 7−→ xy, ȷ : R −→ R, x 7−→ −x and k : R × R −→ R, (x, y) 7−→ R, (x, y) 7−→ x − y be mappings and
f : R −→ R′ be a ring homomorphism. Then:
(1) −(−F) = F;
(2) F ≤ G =⇒ −F ≤ −G;
(3) [x] ⊕ [−x] = [0];
(4) [x] ⊕ [−y] = [x − y];
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(5) [x] ⊕ [y] = [x + y];
(6) P ∈ (F ⊕ [x])⇔ (P − x) ∈ F;
(7) [0] ⊕ F = F, [0] ⊖ F = −F;
(8) F ⊕ (G ⊕H) = (F ⊕G) ⊕H; F ⊙ (G ⊙H) = (F ⊙G) ⊙H;
(9) F ⊕ (−G) = F ⊖G
(10) f (F ⊕G) = f (F) ⊕ f (G); f (F ⊙G) = f (F) ⊙ f (G).

Definition 4.2. A quadruple
(
R,+, ·, c = (cφ)φ∈∆+

)
is called a probabilistic convergence ring under the triangle

function τ if for all φ,ψ ∈ ∆+ and for all filter F,G ∈ F(R)
(PCR1) (R,+, ·) is a ring;
(PCR2) (R, c) is a probabilistic convergence space;
(PCRA) p + q ∈ cτ(φ,ψ)(F ⊕G) whenever p ∈ cφ(F) and q ∈ cψ(G);
(PCRI) −p ∈ cφ(−F) whenever p ∈ cφ(F);
(PCRM) pq ∈ cτ(φ,ψ)(F ⊙G) whenever p ∈ cφ(F) and q ∈ cψ(G);
Furthermore, if (PCR2) is replaced by (R, c) the probabilistic limit space, then the quadruple

(
R,+, ·, c = (cφ)φ∈∆+

)
is called a probabilistic limit ring under the triangle function τ.

The category of probabilistic convergence rings under the triangle function τ and continuous ring
homomorphisms is denoted by PConvRngτ while PLimRngτ denotes the category of probabilistic limit
rings under the triangle function τ whence objects are probabilistic limit rings under the triangle function
τ, and morphisms are continuous ring homomorphisms. Clearly, the category of probabilistic limit rings
under the triangle function τ, PLimRngτ is a full subcategory of PConvRngτ.

Proposition 4.3. Let
(
R,+, ·, c = (cφ)φ∈∆+

)
∈ |PConvRngτ|. Then for all φ,ψ ∈ ∆+ and for all filter F,G ∈ F(R)

the following are fulfilled:
(PCRS) p ∈ cφ(F) and q ∈ cψ(G) implies p − q ∈ cτ(φ,ψ)(F ⊖G)⇐⇒
(PCRA) and (PCRI′) p ∈ cφ(F)⇒−p ∈ cφ(0 ⊖ F).

Proof. (PCRS) =⇒ (PCRA) and (PCRI′). Let F ∈ F(R). Then −F ∈ F(R). Let p ∈ cφ(F). Since [0] ∈ cϵ0 ([0]),
we have by Lemma 4.1(7), −p = 0 − p ∈ cτ(ϵ0,φ)([0] ⊖ F) = cφ([0] ⊖ F) and hence −p ∈ cφ([0] ⊖ F), which is
(PCRI′). For (PCRA), let p ∈ cφ(F) and q ∈ cψ(G). Then since F ⊕ G = F ⊖ ([0] ⊖ G), due to (PCRI′) and
(PCRS), we have p + q ∈ cτ(φ,ψ)(F ⊕G).

(PCRA) and (PCRI′) =⇒ (PCRS). Let F,G ∈ F(R). Then if p ∈ cφ(F) and q ∈ cψ(G), we have
−q ∈ cψ([0] ⊖ G), and hence p − q ∈ cτ(φ,ψ)(F ⊕ ([0] ⊖ G) which by using Lemma 4.1(7) and (8), we get
p − q ∈ cτ(φ,ψ)(F ⊖G).

Lemma 4.4. Let (R,+, ·) ∈ |Rng| and (R, c) ∈ |PConv|. Then the quadruple
(
R,+, ·, c = (cφ)φ∈∆+

)
is a proba-

bilistic convergence ring under the largest triangle function τ, i.e. τ(φ,φ) = φ for all φ ∈ ∆+, if and only if
k :
(
R × R, c × c

)
−→ (R, c) , (p, q) 7→ p − q, and m :

(
R × R, c × c

)
−→ (R, c) , (p, q) 7→ pq are continuous.

Proof. Let Φ ∈ F(R × R), φ ∈ ∆+ and (p, q) ∈ (c × c)φ(Φ). Then p = pr1(p, q) ∈ cφ(pr1(Φ)) and q = pr2(p, q) ∈
cφ(pr2(Φ)), where pr1 and pr2 are projection maps. But then k(p, q) = p − q ∈ cτ(φ,φ)(k(pr1(Φ) × pr2(Φ)))
by (PCRS). Since pr1(Φ) × pr2(Φ) ≤ Φ and τ(φ,φ) = φ, we have by Proposition 4.3, p − q ∈ cφ(k(Φ)),
proving that k is continuous. For the converse part, let p ∈ cφ(F) and q ∈ cψ(G). As τ(φ,ψ) ≤ φ,ψ, then
p ∈ cτ(φ,ψ)(F) and q ∈ cτ(φ,ψ)(G). Hence (p, q) ∈ (c × c)τ(φ,ψ)(F × G), and therefore, by continuity of k, we get
p − q ∈ cτ(φ,ψ)(k(F ×G)) = cτ(φ,ψ)(F ⊖G).

For the continuity of m, we proceed as follows. Let Φ ∈ F(R × R), φ ∈ ∆+ and (p, q) ∈ (c × c)φ(Φ). Then
p = pr1(p, q) ∈ cφ(pr1(Φ)) and q = pr2(p, q) ∈ cφ(pr2(Φ)), where pr1 and pr2 are projection maps. But then
m(p, q) = pq ∈ cτ(φ,φ)(m(pr1(Φ) × pr2(Φ))) by (PCRM). Since pr1(Φ) × pr2(Φ) ≤ Φ and τ(φ,φ) = φ, we have by
(PCR2) that pq ∈ cφ(m(Φ)), proving that m is continuous. For the converse part, let p ∈ cφ(F) and q ∈ cψ(G).
As τ(φ,ψ) ≤ φ,ψ, then p ∈ cτ(φ,ψ)(F) and q ∈ cτ(φ,ψ)(G). Hence (p, q) ∈ (c × c)τ(φ,ψ)(F × G), and therefore, by
continuity of m, we get pq ∈ cτ(φ,ψ)(m(F ×G)) = cτ(φ,ψ)(F ⊙G).
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Example 4.5. Let (R,+, ·) be a ring equipped with an indiscrete probabilistic convergence structure given
by

p ∈ cϵ0 (F), ∀F ∈ F(R) and p ∈ R.

Then the quadruple (R,+, ·, c) is a probabilistic convergence ring under the triangle function τ, called
indiscrete probabilistic convergence ring under the triangle function τ.

Example 4.6. Let (R,+, ·) be a ring equipped with a discrete probabilistic convergence structure given for
all F ∈ F(R), φ ∈ ∆+, φ , ϵ∞, and p ∈ R by

p ∈ cφ(F)⇔ F ≥ [p].

Then the quadruple (R,+, ·, c) is a probabilistic convergence ring under the triangle function τ, called
discrete probabilistic convergence ring. In fact, one can easily check that (R, c) is a discrete probabilistic
convergence space. If now p, r ∈ R and F,G ∈ F(R), then for p ∈ cφ(F) and r ∈ cψ(G), F ≥ [p] and G ≥ [r],
respectively. Since F ⊖ G ≥ [p] ⊖ [r] = [p − r], and τ(φ,ψ) ≤ φ,ψ, we have p ∈ cτ(φ,ψ)(F) and r ∈ cτ(φ,ψ)(G).
Hence p − r ∈ cτ(φ,ψ)(F ⊖G). Condition (PCRM) is shown in a similar way.

Example 4.7. Let λ be the Lebesque measure on [0, 1], and T be usual topology on ℜ. Consider R =
{ f : [0, 1] −→ ℜ; f measurable}. Then (R,+, ·) is a ring under the operations: ( f + 1)(p) = f (p) + 1(p),
(− f )(p) = −( f (p)), and ( f · 1)(p) = f (p)1(p).

Define for F ∈ F(ℜ), f ∈ R, and φ ∈ ∆+,

f ∈ cφ(F)⇐⇒ ∃A ⊆ [0, 1] with λ(A) ≤ 1 − φ(0+) and F(p)→ f (p) ∀p < A.

Then (R, c) is a probabilistic convergence space under continuous triangle function τ∗ induced by the
Lukasiewicz t-norm α ∗ β = (α + β − 1) ∨ 0. Note that cϵ0 describes convergence almost everywhere.

Now we check (PCRA) and (PCRM). For, let f ∈ cφ(F) and 1 ∈ cψ(G), there are A,B ⊆ [0, 1] with
λ(A) ≤ 1−φ(0+) and λ(B) ≤ 1−ψ(0+) such thatF(p) −→ f (p) ∀p < A, andG(p) −→ 1(p) ∀p < B. For p < A∪B,

we have (F⊕G)(p) = F(p)⊕G(p) T
−→ f (p)+1(p) = ( f+1)(p) and (F⊙G)(p) = F(p)⊙G(p) T

−→ f (p)·1(p) = ( f1)(p)
and we have λ(A ∪ B) ≤ λ(A) + λ(B) = 1 − φ(0+) + 1 − ψ(0+) = 1 − φ(0+) ∗ ψ(0+), upon using Lukasiewicz
t-norm, cf. [24]. Therefore, f + 1 ∈ cφ(0+)∗ψ(0+)(F ⊕ G) and f · 1 ∈ cφ(0+)∗φ(0+)(F ⊙ G). In view of Lemma 2.3,
one obtains: f + 1 ∈ cτ∗(φ(0+),ψ(0+))(F ⊕ G) and f · 1 ∈ cτ∗(φ(0+),φ(0+))(F ⊙ G) under continuous t-norm ∗. The
missing part, i.e., (PCRI), f ∈ cφ(F) implies − f ∈ cφ(−F) follows at ease. Thus, the quadruple (R,+, ·, c) is a
probabilistic convergence ring under the continuous triangle function τ∗.

Definition 4.8. ([19]) Let
(
S, cS = (cS

φ)φ∈∆+
)
,
(
T, cT = (cT

φ)φ∈∆+
)
∈ |PCONV|, and consider C(S,T) = { f : S −→

T, f is continuous}. The probabilistic convergence structure c = (ccφ)φ∈∆+ on C(S,T), called the structure of
continuous probabilistic convergence, is defined for Φ ∈ F (C(S,T)) and f ∈ C(S,T) by

f ∈ ccφ(Φ)⇐⇒ f (p) ∈ cT
ψ(ev(Φ × F)) whenever ψ ≤ φ and p ∈ cS

φ(F),

where ev : C(S,T) × S −→ T, ( f , s) 7→ f (s) is the evaluation mapping.

Example 4.9. Let τ(φ,φ) = φ, for all φ ∈ ∆+, i.e., τ is the largest triangle function. Let (S, c) be a probabilistic
convergence space, and

(
T,+, ·, d

)
be a probabilistic convergence ring under the largest triangle function

τ. Then
(
C(S,T),+, ·, c

)
is a probabilistic convergence ring under the largest triangle function τ, where for

any f , 1 ∈ C(S,T), ( f+1)(s) = f (s)+1(s), f ·1(s) = f (s)1(s), and the inverse, written as f ∗(s) = − f (s), for all s ∈ S.

We only check the condition (PCRA). For, let Φ,Ψ ∈ F(C(S,T) and F ∈ F(R). Further, let f ∈ ccφ(Φ) and
1 ∈ ccψ(Ψ). Then for γ ≤ φ and γ ≤ ψ, with s ∈ cS

γ(F), we get f (s) ∈ cT
γ(ev(Φ × F)) and 1(s) ∈ cT

γ(ev(Ψ × F)),

respectively. Since
(
T,+, ·, d

)
is a probabilistic convergence ring under the largest triangle function τ, we

have by (PCRA),
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( f + 1)(s) = f (s) + 1(s) ∈ cT
γ(ev(Φ × F) ⊕ ev(Ψ × F)), for γ ≤ τ(φ,φ) and s ∈ cS

γ(F).

But since ev(Φ × F) ⊕ ev(Ψ × F) ≤ ev ((Φ ⊕Ψ) × F), we have f + 1 ∈ cτ(φ,φ)(Φ ⊕Ψ). Similarly, one can prove
(PCRM) and (PCRI) by using the inequality ev(Φ × F) ⊙ ev(Ψ × F) ≤ ev ((Φ ⊙Ψ) × F), and the equality
ev(−Φ × F) = −ev(Φ × F), respectively.

Lemma 4.10. Let
(
R,+, ·, c = (cφ)φ∈∆+

)
be a probabilistic convergence ring and x ∈ R. Then

(a) the left homothety x
H : (R, c) −→

(
R′, c′

)
, z 7−→ xz (resp. right homothetyHx : (R, c) −→

(
R′, c′

)
, z 7−→ zx) is

continuous. If x is the unit element of R, then each homothety is a homeomorphism.
(b) the translation Tx : (R, c) −→ (R, c) , z 7−→ z+ x, and the inversion ȷ : (R, c) −→ (R, c) , z 7−→ −z are homeomor-
phisms.

Proof. We only check (a). To show that the left homothey x
H is continuous, for p ∈ R, let p ∈ cφ(F). Since

x ∈ cϵ0 ([x]), one obtains: xp ∈ cτ(φ,ϵ0)([x] ⊙ F) by using Definition 2.2(ii) and (iv) for triangle function τ. But
then it follows that x

H(p) = xp ∈ cφ(x
H(F)), i.e., x

H(p) ∈ cφ(x
H(F)). Considering the right homothety, we

have for p ∈ cφ(F) and x ∈ cϵ0 ([x]), Hx(p) = px ∈ cφ(Hx(F)) = cφ(Hx(F)), i.e., Hx(p) ∈ cφ(Hx(F)). All other
proofs for missing items can be verified analogously by using definitions.

Proposition 4.11. PConvRngτ is topological over Rng.

Proof. Let
(

f j : (R,+, ·) −→
(
R j,+ j, · j, (c

j
φ)φ∈∆+

))
j∈J

be a source, where each f j, for j ∈ J is a ring homomorphism.

From the initial probabilistic convergence structure on R under a triangle function τ, it follows from [19]:

p ∈ cφ(F)⇐⇒ ∀ j ∈ J : f j(p) ∈ c j
φ

(
f j(F)
)
, ∀p ∈ R, ∀F ∈ F(R), ∀φ ∈ ∆+.

If now p ∈ cφ(F) and q ∈ cψ(G), then f j(p) ∈ c j
φ( f j(F)) and f j(q) ∈ c j

ψ( f j(G)), for all j ∈ J. Hence, by (PCRA),

for the spaces
(
R j,+ j· j, c j

)
, f j(p + q) = f j(p) + f j(q) ∈ c j

τ(φ,ψ)

(
f j(F) ⊕ f j(G)

)
= c j

τ(φ,ψ)

(
f j(F ⊕G)

)
, for all j ∈ J

which in turn implies that p + q ∈ cτ(φ,ψ) (F ⊕G), proving that (R,+, ·, c) satisfies (PCRA). Now we verify
(PCRI). If p ∈ cφ(F), then f j(p) ∈ c j

φ( f j(F)) for all j ∈ J and hence f j(−p) = −( f j(p)) ∈ c j
φ

(
( f j(−F)

)
= c j

φ

(
f j(−F)

)
.

Therefore, −p ∈ cφ(−F). Final part follows almost the same way as in [3].

Lemma 4.12. Let
(
R,+, ·, c = (cφ)φ∈∆+

)
and
(
R′,+, ·, c′ = (cφ)φ∈∆+

)
be probabilistic convergence rings under the

triangle function τ, and f : R −→ R′ is a ring homomorphism. Then f : (R,+, ·, c) −→
(
R′,+, ·, c′

)
is continuous if

and only if it is continuous at 0.

Proof. Let us assume that f is continuous at 0 ∈ R, F ∈ F(R) and p ∈ R. Now let for any φ ∈ ∆+,
p ∈ cφ(F). Then 0 = −p + p ∈ cφ(−[p] ⊕ F). By continuity at 0, we get f (0) ∈ (−[ f (p)] ⊕ f (F)). Then
f (p) = f (0)+ f (p) ∈ cφ( f (F)), i.e., f (p) ∈ cφ( f (F)), proving that f is continuous at p. The converse is obviously
true.

Definition 4.13. Let (R,+, ·) be a ring with 0 as its identity, and
(
cφ : F(R) −→ P(R)

)
φ∈∆+

be a probabilistic

convergence structure on R. Then the pair
(
R, c = (cφ)φ∈∆+

)
is called homogeneous if and only if for each filter

F on R and p ∈ R, 0 ∈ cφ(F) ⇐⇒ p ∈ cφ
(
[p] ⊕ F

)
.

Proposition 4.14. Every probabilistic convergence ring under the triangle function τ is homogeneous.

Proof. Let (R,+, ·, c) ∈ |PConvRngτ|, F ∈ F(R) and p ∈ R. Now assume that 0 ∈ cφ(F). As p ∈ cϵ0 ([p]), we
have p = p+ 0 ∈ cτ(φ,ϵ0)([p]⊕F) meaning p ∈ cφ([p]⊕F). Conversely, from p ∈ cφ([p]⊕F), and −p ∈ cϵ0 (−[p]),
we have 0 = −p + p ∈ cτ(φ,ϵ0)(−[p] ⊕ ([p] ⊕ F)) implies 0 ∈ cφ(F).
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Theorem 4.15. Let (R,+, ·) ∈ |Rng|, and
(
R, c = (cφ)φ∈∆+

)
∈ |PConv|. Then the quadruple

(
R,+, ·, c = (cφ)φ∈∆+

)
∈

|PConvRngτ| if and only if the following are satisfied:
(1) 0 ∈ cφ([0]) for all φ ∈ ∆+;
(2) ∀F,G ∈ F(R) with F ≤ G, 0 ∈ cφ(F) implies 0 ∈ cφ(G), for all φ ∈ ∆+;
(3) ∀F,G ∈ F(R), 0 ∈ cφ(F) and 0 ∈ cψ(G) imply 0 ∈ cτ(φ,ψ) (F ⊕G), for all φ,ψ ∈ ∆+;
(4) ∀F ∈ F(R), 0 ∈ cφ(F) implies 0 ∈ cφ(−F), for all φ ∈ ∆+;
(5) (i) ∀F ∈ F(R), 0 ∈ cφ(F) implies 0 ∈ cφ

(
[p0] ⊙ F

)
, for all p0 ∈ R and φ ∈ ∆+;

(ii) ∀F ∈ F(R), 0 ∈ cφ(F) implies 0 ∈ cφ
(
F ⊙ [p0]

)
, for all p0 ∈ R and φ ∈ ∆+;

(6) ∀F,G ∈ F(R), 0 ∈ cφ(F) and 0 ∈ cψ(G) imply 0 ∈ cτ(φ,ψ) (F ⊙G), for all φ,ψ ∈ ∆+;
(7) ∀F ∈ F(R) and p ∈ R, and φ ∈ ∆+, p ∈ cφ(F) implies 0 ∈ cφ

(
F ⊖ [p]

)
, for all φ ∈ ∆+ (resp. 0 ∈ cφ(F) ⇐⇒ p ∈

cφ
(
F ⊕ [p]

)
, for all φ ∈ ∆+).

Proof. If
(
R,+, ·, c = (cφ)φ∈∆+

)
∈ |PConvRngτ|, then items (1)-(7) are fulfilled. Conversely, first, we show that

the condition (PCRA) is true. Assume (1)-(7) are true. Let F,G ∈ F(R). Let p ∈ cφ(F) and q ∈ cψ(G). Then by
using (7), 0 ∈ cφ(F ⊖ [p]) and 0 ∈ cψ(G ⊖ [q]). By (3) these together imply that

0 ∈ cτ(φ,ψ)
(
(F ⊖ [p]) ⊕ (G ⊖ [q])

)
= cτ(φ,ψ)

(
(F ⊕G) ⊖ ([p] + [q])

)
= cτ(φ,ψ)

(
(F ⊕G) ⊖ [p + q]

)
which implies that p + q ∈ cτ(φ,ψ) (F ⊕G). Next, we check condition (PCRM). For, let F,G ∈ F(R), and
p0 ∈ cφ(F) and q0 ∈ cψ(G). In view of (7), 0 ∈ cφ(F ⊖ [p0]) and 0 ∈ cψ(G ⊖ [q0]). Then by (6), 0 ∈
cτ(φ,ψ)

(
(F ⊖ [p0]) ⊙ (G ⊖ [q0])

)
. As 0 ∈ cφ(F⊖[p0]) and 0 ∈ cψ(G⊖[q0]), using (5)(i), 0 ∈ cψ

(
[p0] ⊙ (G ⊖ [q0])

)
and

by 5(ii), 0 ∈ cφ
(
(F ⊖ [p0]) ⊙ [q0]

)
which upon using (3), imply that 0 ∈ cτ(φ,ψ)

(
([p0] ⊙ (G ⊖ [q0])) ⊕ ((F ⊖ [p0]) ⊙ [q0])

)
.

Thus, upon using (1) and (3), we get

0 ∈ cτ(φ,ψ)(((F ⊖ [p0]) ⊙ (G ⊖ [q0])) ⊕ ([p0] ⊙ (G ⊖ [q0]))) ⊕((F ⊖ [p0]) ⊙ ([q0] ⊕ [p0q0] ⊖ [p0q0]))

which implies that

0 ∈ cτ(φ,ψ)
(
((F ⊖ [p0]) ⊕ [p0]) ⊙ ((G ⊖ [q0]) ⊕ [q0]) ⊖ [p0q0]

)
,

that is, p0q0 ∈ cτ(φ,ψ)(F ⊙G). This end the proof of the theorem.

Theorem 4.16. Let (R,+, ·) be a ring, and let
(
dφ : F(R) −→ P(X)

)
φ∈∆+

be a family of mappings such that the
following conditions are fulfilled:
(1) 0 ∈ dφ([0]) for all φ ∈ ∆+;
(2) (i) ∀F,G ∈ F(R) with F ≤ G, 0 ∈ dφ(F) implies 0 ∈ dφ(G), for all φ ∈ ∆+;
(ii) if φ ≤ ψ, then for 0 ∈ dψ(F) implies 0 ∈ dφ(F), for all F ∈ F(R);
(3) ∀F,G ∈ F(R), 0 ∈ dφ(F) ∩ dψ(G) imply 0 ∈ dτ(φ,ψ) (F ⊕G), for all φ,ψ ∈ ∆+;
(4) ∀F ∈ F(R), 0 ∈ dφ(F) implies 0 ∈ dφ(−F), for all φ ∈ ∆+;
(5) (i) ∀F ∈ F(R), 0 ∈ dφ(F) implies 0 ∈ dφ

(
[p0] ⊙ F

)
, for all p0 ∈ R and φ ∈ ∆+;

(ii) ∀F ∈ F(R), 0 ∈ dφ(F) implies 0 ∈ dφ
(
F ⊙ [p0]

)
, for all p0 ∈ R and φ ∈ ∆+;

(6) ∀F,G ∈ F(R), 0 ∈ dφ(F) ∩ dψ(G) implies 0 ∈ dτ(φ,ψ) (F ⊙G), for all φ ∈ ∆+.
Then there exists a unique probabilistic convergence structure c = (cφ)φ∈∆+ on R that satisfies 0 ∈ cφ(F) ⇐⇒ 0 ∈
dφ(F), for all F ∈ F(R) such that the quadruple

(
R,+, ·, c = (cφ)φ∈∆+

)
is a homogeneous probabilistic convergence

ring.

Proof. Define the mapping cφ : F(R) −→ P(R) by

p ∈ cφ(F)⇔ 0 ∈ dφ(F ⊖ [p]), for all F ∈ F(R) and p ∈ R.

We need to verify the following:
(PC1) In view of (1), 0 ∈ dφ([0]) implies 0 ∈ dφ([p] ⊖ [p]) implies p ∈ cφ([p]).
(PC2) Let F ≤ G, and for any φ ∈ ∆+, let p ∈ cφ(F). Then 0 ∈ dφ(F ⊖ [p]), so, by (2)(i), 0 ∈ dφ(G ⊖ [p]) which
in turn yields that p ∈ cφ(G).
(PC3) Let φ,ψ ∈ ∆+ with φ ≤ ψ. If then p ∈ cψ(F), for F ∈ F(R), then 0 ∈ dψ(F ⊖ [p]) implies by (2)(ii),
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0 ∈ dφ(F ⊖ [p]) implies p ∈ cφ(F).
(PC4) Clearly for any F ∈ F(R), p ∈ cϵ∞ (F).
Hence (R, c = (cφ)φ∈∆+ ) is a probabilistic convergence space. That the conditions (PCRA), (PCRI) and (PCRM)
follow from the preceding theorem. The uniqueness follows from the construction while the homogeneity
is obviously true. Consequently, for any F ∈ F(R) and p ∈ R,

0 ∈ cφ(F)⇔ p ∈ cφ(F ⊕ [p])⇔ 0 ∈ dφ
(
(F ⊕ [p]) ⊖ [p]

)
⇔ 0 ∈ dφ(F).

5. Example: Richardson-Kent probabilistic convergence rings

Definition 5.1. ([19, 32]) Let R be a set and q =
(
{qλ : F(R) −→ P(R)}

)
λ∈[0,1] be a family of maps such that

(PCR1∗) p ∈ qα([p]) for all α ∈ [0, 1] and p ∈ R;
(PCR2∗) qα(F) ⊆ qα(G) whenever F ≤ G;
(PCR3∗) qβ(F) ⊆ qα(F) whenever α ≤ β;
(PCR4∗) q0(F) = R.
Then the pair

(
R, q
)

is called a Richardson-Kent probabilistic convergence space.
If, moreover, the axiom (PCR5∗)

qα(F) ∩ qα(G) ⊆ qα (F ∧G) , ∀α ∈ [0, 1], and ∀F,G ∈ F(R),

is satisfied, then
(
R, q
)

is called a Richardson-Kent probabilistic limit space. A map f :
(
R, q
)
−→

(
R′, q′

)
between

probabilistic convergence spaces is called continuous if and only if for all α ∈ [0, 1], F ∈ F(R) and for all
p ∈ R, p ∈ qα(F) implies f (p) ∈ q′α( f (F)).

RK-PConv denotes the category of all Richardson-Kent probabilistic convergence spaces and continuous
maps.

Definition 5.2. A probabilistic convergence ring under a t-norm ∗ is a quadruple(
R,+, ·, q = (qα)α∈[0,1]

)
such that

(PCR1) (R,+, ·) is a ring;
(PCR2∗)

(
R, q = (qα)α∈[0,1]

)
is a Richardson-Kent probabilistic convergence space;

(PCRA∗) p + q ∈ qα∗β (F ⊕G) whenever p ∈ qα(F) and q ∈ qβ(G);
(PCRI∗) −p ∈ qα(−F) whenever p ∈ qα(F).
(PCRM∗) pq ∈ qα∗β (F ⊙G) whenever p ∈ qα(F) and q ∈ qβ(G);

We denote by PConvRng∗ the category of probabilistic convergence rings under a t-norm ∗ and contin-
uous ring homomorphisms.

Given
(
R,+, ·, q

)
∈ |PConvRng∗|, we define p ∈ cq

φ(F) iff p ∈ qφ(0+)(F), ∀F ∈ F(R) and p ∈ R.

Lemma 5.3. Let
(
R,+, ·, q = (qα)α∈[0,1]

)
∈ |PConvRng∗| with a continuous t-norm ∗. Then

(
R,+, ·, cq

= (cq
φ)φ∈∆+

)
∈

|PConvRngτ∗ |.

Proof. In view of [Example 3.3, [19]], we only show that condition (PCRA∗) of the Definition 5.2 implies
condition (PCRA) of the Definition 4.2, let F,G ∈ F(R), and φ,ψ ∈ ∆+. If p ∈ cq

φ(F) and r ∈ cq
ψ(G), then we

have p ∈ qφ(0+)(F) and r ∈ qψ(0+)(G). From (PCRA∗), it follows that p+ r ∈ qφ(0+)∗ψ(0+)(F⊕G) = qτ∗(φ,ψ)(0+)(F⊕G).

Hence p + r ∈ cq
τ∗(φ,ψ)(F ⊕G); the missing parts follow in a similar way, cf. [3].
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Lemma 5.4. Let
(
R,+, ·, q = (qα)α∈[0,1]

)
,
(
R′,+, ·, q′ = (q′α)α∈[0,1]

)
∈ |PConvRng∗| with a continuous t-norm ∗, and

let f : (R,+, ·) −→ (R′,+, ·, ) be a ring homomorphism.
If f :

(
R,+, ·, q = (qα)α∈[0,1]

)
−→

(
R′,+, ·, q′ = (q′α)α∈[0,1]

)
is continuous,

then f :
(
R,+, ·, (cq

φ)φ∈∆+
)
−→

(
R′,+, ·, (cq′

φ )φ∈∆+
)

is continuous.

Remark 5.5. Lemmas 5.3 and 5.4 show that

E :


PConvRng∗ −→ PConvRngτ∗(

R,+, ·, q
)
7−→

(
R,+, ·, cq

)
f 7−→ f ,

is a functor from PConvRng∗ to PConvRngτ∗ . This functor is injective on objects and hence is an embedding.
Indeed, if (R,+, ·, q) , (R,+, ·, q′), then there are α ∈ [0, 1], p ∈ R and F ∈ F(R) such that p ∈ qα(F) but

p < q′α(F). Then φα ∈ ∆+ defined by φα(x) = α for 0 < x < ∞ shows that p ∈ cq
φα (F) but p < cq′

φα (F), i.e.,

(R,+, ·, cq) , (R,+, ·, cq′ ).

For (R,+, ·, c) ∈ |PConvRngτ∗ |, define p ∈ qc
α(F) iff ∃φ ∈ ∆+ such that φ(0+) = α and p ∈ cφ(F).

Lemma 5.6. Let ∗ be a continuous t-norm and let (R,+, ·, c) ∈ |PConvRngτ∗ |.
Then

(
R,+, ·, qc

= (qc
α)α∈[0,1]

)
∈ |PConvRng∗|.

Proof. Here, we only show that (PCRA) implies (PCRA∗). In fact, if for any F,G ∈ F(R), and α, β ∈ [0, 1],
p ∈ qc

α(F) and r ∈ qc
β(G), there are φ,ψ ∈ ∆+ such that φ(0+) = α and ψ(0+) = β with p ∈ cφ(F) and r ∈ cψ(G),

respectively. Consequently, there are φ,ψ ∈ ∆+ such that φ(0+) ∗ ψ(0+) = α ∗ β with p ∈ cφ(F) and r ∈ cψ(G).
But then by (PCRA) we get that p+r ∈ cτ∗(φ,ψ)(F⊕G), and hence, because of τ∗(φ,ψ)(0+) = φ(0+)∗ψ(0+) = α∗β,
we obtain p + r ∈ qα∗β(F ⊕G).

Lemma 5.7. Let
(
R,+, ·, c = (cφ)φ∈∆+

)
,
(
R′,+, ·, c′ = (c′φ)φ∈∆+

)
∈ |PConvRngτ∗ | and ∗ be a continuous t-norm, and

let f : (R,+, ·) −→ (R′,+, ·) be a ring homomorphism.
If f :

(
R,+, ·, c = (cφ)φ∈∆+

)
−→

(
R′,+, ·, c′ = (c′φ)φ∈∆+

)
is continuous,

then f :
(
R,+, ·, (qc

α)α∈[0,1]

)
−→

(
R′,+, ·, (qc′

α )α∈[0,1]

)
is continuous.

Due to Lemmas 5.6 and 5.7, there is a functor

K :


PConvRngτ∗ −→ PConvRng∗

(R,+, ·, c) 7−→

(
R,+, ·, qc

)
f 7−→ f .

Theorem 5.8. PConvRng∗ is a reflective subcategory of PConvRngτ∗ .

Proof. From Lemmas 5.3 and 5.4, we obtain the embedding PConvRng∗ E
−→ PConvRngτ∗ . Likewise, from

Lemmas 5.6 and 5.7 we have the functor PConvRngτ∗
K
−→ PConvRng∗. It follows that K ◦ E = idPConvRng∗ ,

while E ◦ K ≥ idPConvRngτ∗
.

6. Probabilistic uniformizability of probabilistic convergence rings

Definition 6.1. ([2]) A pair
(
R,Λ =

(
Λφ
)
φ∈∆+

)
is called a probabilistic uniform convergence space under the

triangle function τ, where Λφ ⊆ F(R × R) is such that the following conditions are fulfilled:
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(PUC1) [(p, p)] ∈ Λφ, ∀p ∈ R, ∀φ ∈ ∆+;
(PUC2) Φ ∈ Λφ,Ψ ≥ Φ impliesΨ ∈ Λφ;
(PUC3) Φ,Ψ ∈ Λφ implies Φ ∧Ψ ∈ Λφ;
(PUC4) Φ ∈ Λφ implies Φ−1

∈ Λφ;
(PUC5) Φ ∈ Λφ andΨ ∈ Λψ such that Φ ◦Ψ ∈ F(R × R) implies Φ ◦Ψ ∈ Λτ(φ,ψ);
(PUC6) φ ≤ ψ implies Λψ ⊆ Λφ;
(PUC7) Λϵ∞ = F(R × R).
A mapping f :

(
R,Λ
)
−→

(
R′,Λ′

)
between probabilistic uniform convergence spaces under the triangle

functions τ is called uniformly continuous if for all φ ∈ ∆+, ∀Φ ∈ F(R × R), Φ ∈ Λφ implies ( f × f )(Φ) ∈ Λ′φ.

If
(
R,Λ
)

is a probabilistic uniform convergence space under the triangle function τ, then the probabilistic

convergence structure cΛ is defined by p ∈ cΛφ (F)⇐⇒ F × [p] ∈ Λφ [2].

It follows from [2] that every probabilistic metric space under the continuous triangle function τ can
serve as a natural example of probabilistic uniform convergence space under τ.

The category of probabilistic uniform convergence spaces under the triangle function τ, and uniformly
continuous mappings is denoted by PUConvτ.

Let
(
R,+, ·, c = (cφ)φ∈∆+

)
∈ |PConvRngτ|. Define a mapping ω : R × R −→ R, by ω(p, q) = p − q.

Lemma 6.2. Let (R,+), and (R′,+′) be additive groups, and f : R −→ R′ be group homomorphism. Then for any
p ∈ R, F,G ∈ F(R), Φ,Ψ ∈ F(R × R), we have
(1) ω([p], [p]) = [0];
(2) ω(F ×G) = F ⊖G;
(3) ω(−Φ) = −ω(Φ);
(4) ω(Φ) ⊕ ω(Ψ) ≤ ω(Φ ◦Ψ);
(5) f (ω(Φ)) = ω( f × f (Φ)).

Proof. (1) ω([p], [p]) = ([p] ⊖ [p]) = [0];

(2) ω(F ×G) = {ω(F × G) : F ∈ F,G ∈ G} = {F − G : F ∈ F,G ∈ G} = F ⊖G.

(3) Let H ⊆ R×R. Then z ∈ −ω(H) if and only if z = −u with u ∈ ω(H) if and only if there exists (x, y) ∈ H
such that z = −u = −(x − y) = y − x = ω(y, x), i.e., z ∈ ω(−H).

(4) Let H ∈ ω(Φ) and K ∈ ω(Ψ). We show that ω(H ◦ K) ⊆ ω(H) + ω(K). Let z ∈ ω(H ◦ K), then there is
(x, y) ∈ H ◦ K such that z = x − y; hence there is u ∈ R such that (x,u) ∈ K and (u, y) ∈ H such that z = x − y.
Consequently, ω(x,u) + ω(u, y) = x − u + u − y = x − y = z so that z ∈ ω(H) + ω(K).

Theorem 6.3. Every probabilistic limit ring under the triangle function τ is a probabilistic uniform convergence
space under the triangle function τ.

Proof. Let
(
R,+, ·, c = (cφ)φ∈∆+

)
be a probabilistic limit ring under the triangle function τ. Define Λc

φ by

Φ ∈ Λc
φ ⇔ 0 ∈ cφ(ω(Φ)). We show that

(
R,Λ = (Λc

φ)φ∈∆+
)

is a probabilistic uniform convergence space
under the triangle function τ. (PUC1)-(PUC4) and (PUC7) are easy to prove. We only check (PUC5) and
(PUC6). To prove (PUC5), let Φ ∈ Λc

φ and Ψ ∈ Λc
ψ such that Φ ◦ Ψ ∈ F(R × R). Then 0 ∈ cφ(ω(Φ)) and

0 ∈ cψ(ω(Ψ)). These together imply that 0 = 0 + 0 ∈ cτ(φ,ψ(ω(Φ) ⊕ ω(Ψ)). But then by the preceding Lemma
6.2, 0 ∈ cτ(φ,ψ)(ω(Φ ◦Ψ)) implies Φ ◦Ψ ∈ Λc

τ(φ,ψ). For (PUC6), we let φ,ψ ∈ ∆+ with φ ≤ ψ, and let Φ ∈ Λc
ψ.

Then 0 ∈ cψ(ω(Φ)) implies 0 ∈ cφ(ω(Ψ)) and this yields that Φ ∈ Λc
φ.
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Proposition 6.4. Let (R,+, ·, c), (R′,+′, ·′, c′) be probabilistic convergence rings under the triangle function τ, and
f : (R,+, ·) −→ (R′,+′, ·′) be a ring homomorphism. Then the following statements are equivalent:
(a) f : (R, c) −→ (R′, c′) is continuous;
(b) f : (R,Λc) −→ (R,Λc′ ) is uniformly continuous.

Proof. Let f : (R, c) −→ (R′, c′) be continuous, and Φ ∈ Λc
φ. Then 0 ∈ cφ(ω(Φ)) and hence 0 = f (0) ∈

c′φ( f (ω(Φ))) = cφ(ω( f × f (Φ))). Hence ( f × f )(Φ) ∈ Λc′
φ .

Conversely, assume that f : (R,Λc) −→ (R,Λc′ ) is uniformly continuous, and p ∈ cφ(F). Then 0 ∈
(F⊖[p]) = cφ(ω(F×[p])) impliesF×[p] ∈ Λc

φ implies ( f × f )(F×[p]) ∈ Λc′
φ . This implies 0 ∈ c′φ(ω( f (F)×[ f (p)]))

implying 0 ∈ c′φ(ω( f (F) ⊖ [ f (p)])) which implies that f (p) ∈ c′φ( f (F)).

Then there is a functor

B :


PLimRngτ −→ PUConvτ
(R,+, ·, c) 7−→ (R,Λc)

f 7−→ f

Proposition 6.5. The functor B preserves initial constructions.

Proof. Let ( f j : (R,+, ·) −→ (R j,+ j, · j, c j)) j∈J be a family of ring homeomorphisms and denote the initial

structure on R with respect to this source by init(c j). Then ( f j : R −→ (R j,Λc j )) j∈J is a source in PUConvτ

and we denote the initial structure on R with respect to this source by init(Λc j ).

We further define for j ∈ J the mapping ω j : R j × R j −→ R j, (p j, q j) 7−→ p j − j q j, and we denote

ω : R × R −→ R, (p, q) 7−→ p − q. It is not difficult to see that f j ◦ ω = ω j ◦ ( f j × f j). Hence, Φ ∈ init(Λc j )φ if,

and only if, ( f j × f j)(Φ) ∈ Λc j

φ for all j ∈ J. This is equivalent to 0 = f j(0) ∈ c j
φ(ω j(( f j × f j)(Φ))) = c j

φ( f j(ω(Φ)))

for all j ∈ J, i.e., to 0 ∈ init(c j)φ(ω(Φ)) which means to Φ ∈ Λinit(c j)
φ .

7. Category of probabilistic Cauchy rings and its relationship with the category of probabilistic limit
rings

Definition 7.1. A pair
(
R, p = (pφ)φ∈∆+ )

)
is called a probabilistic Cauchy space under the triangle function τ if

the following conditions are fulfilled:
(PChy1) [p] ∈ pφ for all p ∈ R and φ ∈ ∆+;
(PChy2) F ∈ pφ and F ≤ G, implies G ∈ pφ;
(PChy3) φ ≤ ψ, F ∈ pψ implies F ∈ pφ;
(PChy4) pϵ∞ = F(R);
(PChy5) F ∈ pφ, G ∈ pψ, F ∨G exits, implies F ∧G ∈ pτ(φ,ψ).
A mapping f : (R, p) −→ (R′, p′) is called probabilistic Cauchy-continuous if for all F ∈ F(R), for all φ ∈ ∆+,
F ∈ pφ implies f (F) ∈ p′φ.

The category of all probabilistic Cauchy spaces under the triangle function τ and Cauchy-continuous
mappings is denoted by PChyτ. Given a probabilistic uniform convergence space (R,Λ) under the triangle
function τ, we define probabilistic Cauchy structure p by F ∈ pΛφ ⇔ F × F ∈ Λφ, for all φ ∈ ∆+.
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Definition 7.2. Let
(
R, p = (pφ)φ∈∆+ )

)
be a probabilistic Cauchy space under the triangle function τ. Then a

quadruple
(
R,+, ·, p = (pφ)φ∈∆+ )

)
is called a probabilistic Cauchy ring under the triangle function τ provided

the following are satisfied.
(PChyR) (R,+, ·) is a ring;
(PChyRA) ∀φ,ψ ∈ ∆+, ∀F,G ∈ F(R), F ∈ pφ,G ∈ pψ, F ⊕G ∈ pτ(φ,ψ);
(PChyRI) ∀φ ∈ ∆+, ∀F ∈ F(R), F ∈ pφ, −F ∈ pφ;
(PChyRM) ∀φ,ψ ∈ ∆+, ∀F,G ∈ F(R), F ∈ pφ,G ∈ pψ, F ⊙G ∈ pτ(φ,ψ).
The category of probabilistic Cauchy rings under the triangle function τ and Cauchy-continuous ring
homomorphisms is denoted by PChyRngτ.

Proposition 7.3. Let (R,+, ·, p) ∈ |PChyRngτ|. Then for all F,G ∈ F(R), and for all φ,ψ ∈ ∆+ the following are
fulfilled.
(PChyRS) F ∈ pφ and G ∈ pψ implies F ⊖G ∈ pτ(φ,ψ) ⇐⇒

(PChyRA), and (PChyRI′) F ∈ pφ implies ([0] ⊖ F) ∈ pφ.

Proof. (PChyRS) =⇒ (PChyA) and(PChyRI′). Let F ∈ F(R). Then −F ∈ F(R), and so, let F ∈ pφ. Since
[0] ∈ pϵ0 , we have by Lemma 4.1(7), ([0]⊖F) ∈ pτ(ϵ0,φ) = pφ and hence ([0]⊖F) ∈ pφ which is (PChyRI′). For
(PChyRA), let F ∈ pφ and G ∈ pψ. Since F ⊕ G = F ⊖ ([0] ⊖ G), due to (PChyRI′) and (PChyRS), we have
F ⊕G ∈ pτ(φ,ψ).

(PChyRA) and (PChyRI′) =⇒ (PChyRS). Let F,G ∈ F(R). Then if F ∈ pφ and G ∈ pψ, then as G ∈ pψ
and ([0]⊖G) ∈ pφ, by applying symmetry of τ in Definition 2.2(ii), one obtains: F⊕ ([0]⊖G) ∈ pτ(φ,ψ) which
by using Lemma 4.1(7) and (8), we get F ⊖G ∈ pτ(φ,ψ).

Example 7.4. In view of [21], the category of probabilistic Cauchy spaces under the largest triangle function
τ is a Cartesian closed; therefore, it has function spaces structure. Let

(
S, p = (pφ)φ∈∆+

)
∈ |PChyτ|,

and
(
T,+, ·, p′ = (p′φ)φ∈∆+

)
∈ |PChyRngτ|. Consider C(S,T) = { f : (S, p) −→ (R,+, ·, p′); f is Cauchy-continuous

}. Then one can check that (C(S,T),+, ·) is a ring (for classical case, cf. [6, 17]). We show that
(
C(S,T),+, ·, c

)
is a probabilistic Cauchy ring under the largest triangle function τ. In accordance to the Proposition 3.2[21],
define for Φ ∈ F(C(S,T)),

Φ ∈ cC(S,T)
φ ⇔ ∀ψ ≤ φ ∀F ∈ pψ : ev(Φ × F) ∈ p

′

ψ

where ev : C(S,T)×S −→ T, ( f , x) 7−→ f (x), is the evaluation mapping. Following the Proposition 3.2[21](see
also, [22]), one can prove that

(
C(S,T), c

)
is a probabilistic Cauchy space under the largest triangle function

τ. It suffices to check conditions (PChyRS) and (PChyRM). Fist, let us verify condition (PChyRM). For, let
φ,ψ, γ ∈ ∆+, Φ,Ψ ∈ F(C(S,T)), F ∈ F(S), Φ ∈ cC(S,T)

φ and Ψ ∈ cC(S,T)
ψ . Let F ∈ pγ with γ ≤ φ, γ ≤ ψ. Then

ev(Φ×F) ∈ p′ψ and ev(Ψ×F) ∈ p′ψ. Since (T,+, ·, p′ψ) is a probabilistic Cauchy ring under the largest triangle
function τ, ev(Φ × F) ⊙ ev(Ψ × F) ∈ p′τ(φ,ψ). But ev(Φ × F) ⊙ ev(Ψ × F) ≤ ev((Φ ⊙Ψ) × F), hence by (Pchy2),
ev((Φ ⊙Ψ) × F) ∈ p′τ(φ,ψ). Now γ ≤ φ ∧ ψ = τ(φ,ψ), and by (PChy3), ev((Φ ⊙Ψ) × F) ∈ p′γ. Consequently,
Φ ⊙Ψ ∈ cτ(φ,ψ). In a similar fashion one can prove (PChyRS).

In view of [21], we have the following

Proposition 7.5. Every probabilistic uniform convergence space (R,Λ) under the triangle τ is a probabilistic Cauchy

space (R, pΛ) under the triangle function τ.

Proposition 7.6. Every probabilistic limit ring under the triangle function τ is a probabilistic uniform convergence
space under the triangle function τ, and hence a probabilistic Cauchy space under the triangle function τ.

Proof. Let (R,+, ·, c) be a probabilistic limit ring under the triangle function τ. Then it follows from Theorem
6.3, (R,Λc) is a probabilistic uniform convergence space under the triangle function τ. Define a probabilistic
Cauchy filter in the probabilistic uniform space (R,Λc) as follows:
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F ∈ pc
φ ⇔ F × F ∈ Λ

c
φ.

(Pchy1) This follows from the definition.

(PChy2) Obvious.

(PChy3) Let φ,ψ ∈ ∆+ with φ ≤ ψ and F ∈ pc
ψ. Then F×F ∈ Λc

ψ. But then F×F ∈ Λc
φ, and hence F ∈ pc

φ.

(PChy4) Obvious.

(PChy5) Let F ∈ pc
φ and G ∈ pc

ψ such that F ∨ G exists. These imply F × F ∈ Λc
φ and G × G ∈ Λc

ψ. Then

F×G = (F×G)◦(F×G) ∈ Λτ(φ,ψ). Also,G×F ∈ Λc
τ(φ,ψ). Since (F∧G)×(F∧G) = (F×F)∧(F×G)∧(G×F)∧(G×G).

We get (F ∧G) × (F ∧G) ∈ Λc
τ(φ,ψ), and hence F ∧G ∈ pc

τ(φ,ψ).

Note that we can describe the probabilistic Cauchy structure of a probabilistic limit ring directly by
F ∈ pφ if, and only if, 0 ∈ cφ(F ⊖ F).

Theorem 6.3 in conjunction with Propositions 7.5 and 7.6 lead to the following situation.

PLimRngτ
J
−→ PUConvτ
K◦J↘ K↓

PChyτ

Proposition 7.7. PChyRngτ is topological over Rng.

Proof. Invoking Proposition 3.2[21], we only describe the initial construction that involves ring structure.
Let (R,+, ·) be a ring, and for each j ∈ J, let f j : R −→ R j be a ring homomorphism and (R j,+, ·, p j) j∈J be a
family of probabilistic Cauchy rings under the triangle function τ. IfS = ( f j : R −→ (R j,+, ·, p j) j∈J) is a source,
define for F ∈ F(R), F ∈ pφ ⇐⇒ f j(F) ∈ p j

φ for all j ∈ J. Then (R,+, ·, p) is a probabilistic Cauchy space

under the triangle function τ. Now let F ∈ pφ, and G ∈ pψ. Then for each j ∈ J, f j(F) ∈ p j
φ, f j(G) ∈ p j

ψ. Thus

for all j ∈ J, f j(F) ⊖ f j(G) ∈ pτ(φ,ψ) implies by applying Lemma 4.1 that f j(F ⊖G) ∈ p j
τ(φ,ψ) for all j ∈ J. Hence

F ⊖ G ∈ pτ(φ,ψ). Similarly, one can verify (PChyRM). Finally, it is easy to show that a ring homomorphism
1 : (R,+, ·, p) −→ (R′,+, ·, p′) is Cauchy-continuous if and only if f j ◦ 1 : (R,+, ·, p) −→ (R j,+, ·, p′) is Cauchy
continuous for all j ∈ J.

Theorem 7.8. Every probabilistic Cauchy ring under the triangle function τ is a probabilistic convergence ring
under the triangle function τ; it is also a probabilistic limit ring under the triangle function τ.

Proof. Let (R,+, ·, p) be a probabilistic Cauchy ring under the triangle function τ, F,G ∈ F(R), and p, q ∈ R.
In view of [21], the underlying probabilistic convergence space (R, cp) is described as follows:

p ∈ cpφ(F)⇔ F ∧ [p] ∈ pφ, for all φ ∈ ∆+.

In view of (PChyRA), for F ∈ pφ and G ∈ pψ, we have F ⊖ G ∈ pτ(φ,ψ). Let p ∈ cpφ(F) and q ∈ cpψ(G). Then
([p]∧F) ∈ pφ and ([q]∧G) ∈ pψ implying ([p]∧F)⊖ ([q]∧G) ∈ pτ(φ,ψ). But then ([p]− [q])∧ (F⊖G) ∈ pτ(φ,ψ)

implying (([p−q])∧(F⊖G)) ∈ pτ(φ,ψ). Hence p−q ∈ cp
τ(φ,ψ)(F⊖G). Similarly, one can check item (PCRM). That

(R, cp) is a probabilistic limit space follows at once from the definition and hence (R,+, ·, cp) is a probabilistic
limit ring under the triangle function τ as all other conditions remain the same, see for instance, Definitions
3.2 and 4.2.
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Proposition 7.9. Let f : (R,+, ·, p) −→ (R′,+, ·, p′) be Cauchy-continuous ring homomorphism between proba-

bilistic Cauchy rings under the triangle function τ. Then f : (R,+, ·, cp) −→ (R′,+, ·, cp′ ) is continuous ring
homomorphism between probabilistic convergence rings under the triangle function τ.

Proof. Let F ∈ F(R), and φ ∈ ∆+. Consider p ∈ cpφφ (F). Then F ∧ [p] ∈ pφ. By Cauchy-continuity, we get

f (F ∧ [p]) ∈ p′φ. But then f (F) ∧ [ f (p)] ∈ p′φ and hence f (p) ∈ c
p′φ
φ ( f (F)). Since ring homomorphism remains

the same we are done.

As a consequence of Theorem 7.8 and Proposition 7.9 above, we have the following functor as given below.

I :


PChyRngτ −→ PConvRngτ(

R,+, ·, p
)
7−→

(
R,+, ·, cp

)
f 7−→ f

Proposition 7.10. The functor I preserves initial constructions.

Proof. For a source ( f j : R −→ (R j, p j)) j∈J we have the initial structure init(p j) and from this the prob limit
structure cinit(p j). Likewise, the source ( f j : R −→ (R j, cp

j
)) j∈J has the initial structure init(cp j

) and we have
p ∈ init(cp j

)φ(F) if, and only if, f j(p) ∈ cp
j

φ ( f j(F)) for all j ∈ J if, and only if, f j([p] ∧ F) = [ f j(p)] ∧ f j(F) ∈ p f
φ for

all j ∈ J if, and only, [p] ∧ F ∈ init(p j) if, and only if, F ∈ cinit(p j).

8. Conclusion

In this paper, we have shown that every probabilistic limit ring gives rise to a natural probabilistic
uniform convergence structure. Various natural and interesting examples are provided for the notions of
probabilistic convergence rings, and probabilistic Cauchy rings that we considered in this text. As we
pointed out that probabilistic metric spaces are influential generalization of classical metric spaces, we
obtained in our previous work numerous results on probabilistic metric groups and obtained probabilistic
metrization of probabilistic convergence groups, and much beyond, cf. [3, 4, 19]. Unfortunately, at
this moment we are unable to add a well formulated notion of probabilistic metric ring that can lead
to an arbitrary probabilistic convergence ring, and also, unable to provide probabilistic metrizability of
probabilistic convergence ring. We intend to pursue these open problems in our future research.
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