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On parabolic problems involving fractional p-Laplacian via topological
degree
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Abstract. The main objective of this paper is to establish the existence result of weak solutions for the
initial boundary value parabolic problems involving p-Laplacian operator. The main tool used here is the
topological degree method combined with the theory of fractional Sobolev spaces.

1. Introduction

In this research paper, we focus on the parabolic problems, which is represented by the following
equation

∂u
∂t + (−∆)s

pu = f (x, t) inKT = Ω × (0,T),
u = 0 in (Rn

\Ω) × (0,T),
u(x, 0) = u0(x) in Ω.

(1)

Here, Ω denotes a bounded open domain of Rn(n ⩾ 2), T a positive real number, f is a given function. The
operator (−∆)s

pu known as the fractional p-Laplacian is defined in the following manner:

(−∆)s
pu(x, t) = P.V

∫
Rn

|U(x, y, t)|p−2U(x, y, t)
|x − y|n+ps dy, x ∈ Rn,

where U(x, y, t) = u(x, t) − u(y, t) and P.V, which stands for ”in the principal value sense,” is a frequently
used abbreviation, with 1 < p < ∞. For more information on this operator see [10].

Many mathematicians, physicists, economics, biologists, and other scientists, have recently become
interested in studying problems involving fractional and nonlocal operators. Find more details at [3, 5, 7,
9, 11, 14, 16–18, 22, 24].

For the nonlocal fractional p-Laplacian operator, there are a large number of references in the literature
studied th problem (1). Among all of them, [2] proved the existence results when ( f ,u0) ∈ L1(KT) × L1(Ω).
See also [25] for more results.
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When p = 2, problem (1) reduces to the fractional Laplacian problem
∂u
∂t + (−∆)su = f (x, t) inKT = Ω × (0,T),
u = 0 in (Rn

\Ω) × (0,T),
u(x, 0) = u0(x) in Ω.

(2)

The existence, uniqueness and summa-bility of the solutions to the problem (2), was proved in [20], We
refer also to [15] for more details and results.

On the other hand, the topological degree theory is developed in [4] for operators of type P + Q + C,
where P is maximal monotone, Q is bounded and of type (S+) and C compact such that D(P) ⊂ D(C).
Authors in [19] studied nonlinear equations for compact identity perturbations in the framework of infinite
dimensional Banach spaces, where the concept of topological degree was first established. We suggest to
the readers to consult [1, 6, 12], which has been applied to some elliptic and parabolic problems.

Based on the work of Asfaw [4], and from the works cited above. We investigate the existence result of
weak solutions to the problem (1) involving nonlocal fractional p-Laplacian operator by using the tool of
topological degree. To our knowledge, the problem (1) has never been studied by the topological degree
theory.

2. Preliminaries

2.1. Fractional Sobolev spaces
In this section, we present some definitions, notations, and properties of functional spaces which will

be used in the sequel.
Let s, p be two real numbers such that 0 < s < 1 and 1 < p < ∞. We define p∗s the fractional critical

exponent as follows

p∗s =
{

∞ if ps ≥ n,
np/(n − ps) if ps < n.

Let Ω be an open subset of Rn, CΩ = Rn
\Ω and KΩ = (Rn

×Rn) \(CΩ × CΩ). It is clear that Ω × Ω
is strictly contained in KΩ. Let W be a linear space of measurable Lebesgue functions defined from Rn

to R which satisfy two conditions: their restriction on Ω belongs to Lp(Ω), and they satisfy the following
inequality"

KΩ

|u(x) − u(y)|p

|x − y|n+ps dydx < ∞.

In this context, W has a norm defined as follows

∥u∥W = ∥u∥Lp(Ω) +

("
KΩ

|u(x) − u(y)|p

|x − y|n+ps dydx
) 1

p

.

Moreover, there exists a closed linear subspace of W denoted W0, consisting of the elements u of W that
satisfy the following condition

u = 0 almost everywhere in CΩ.

In the subspace W0, a norm can also be defined as follows

∥u∥W0 =

("
KΩ

|u(x) − u(y)|p

|x − y|n+ps dy dx
) 1

p

.

It is well known that the pair
(
W0, ∥ · ∥W0

)
is a uniformly convex reflexive Banach space, see [26]. The dual

space of
(
W0, ∥ · ∥W0

)
is indecated by

(
W∗

0, ∥ · ∥W∗

0

)
.
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Lemma 2.1. [13] The following embedding W0 ↪→ Lθ (Ω) is compact for each 1 ≤ θ < p∗s, and continuous for each
1 ≤ θ ≤ p∗s.

Lemma 2.2. [23] For any ξ, η ∈ Rn, we get|ξ − η|p ≤ cp

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η); p ≥ 2

|ξ − η|p ≤ Cp

[(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η)

] p
2 (
|ξ|p + |η|p

) 2−p
2 ; 1 < p < 2,

(3)

where cp =
(

1
2

)−p
and Cp =

1
p−1 .

In the sequel, let ps < n and denote the following functional space

Γ := Lp(0,T; W0), T > 0.

This space is a separable and reflexive Banach space, equipped with the following norm

∥u∥Γ =
(∫ T

0
∥u|pW0

dt
) 1

p

.

2.2. Topological degree theory
Consider a real, separable, and reflexive Banach space X, its dual space represented by X∗ with a

continuous pairing ⟨·, ·⟩. In this context, we use ∥ · ∥ to denote the norm of the space X and its dual X∗. We
will indicate strong (weak) convergence by the symbol→ (⇀).

Let F : X → 2X∗ be a multi-valued mapping, where the values are subsets of X∗. The graph of F is
defined by

G(F ) =
{
(u,w) ∈ X × X∗ : w ∈ F (u)

}
.

Definition 2.3. Under the above notation, we say that F is monotone, if for each (u1,w1) , (u2,w2) in G(F ) we have

⟨w1 − w2,u1 − u2⟩ ≥ 0.

Definition 2.4. We say that the map F is maximal monotone if
i. F is monotone,

ii. for any (u0,w0) ∈ X × X∗ such that ⟨w0 − w,u0 − u⟩ ≥ 0, for each (u,w) ∈ G(F ), then (u0,w0) ∈ G(F ).

Definition 2.5. The map F : D(F ) ⊂ X → Y is demicontinuous if for each (uk)k ⊂ Ω such that uk → u, implies
that F (uk)⇀ F (u).

Definition 2.6. The map F is called of type (S+), if for every (uk) ⊂ D(F ) such that uk converges weakly to u and
lim sup

k→+∞
⟨F uk,uk − u⟩ ≤ 0, it implies that uk converges strongly to u.

Let P : D(P) ⊂ X → X∗ be a linear maximal monotone mapping such that D(P) = X and E be an open
bounded subset of X. We define the following classes of operators

NE :=
{

P +Q : E ∩D(P)→ X∗| Q is bounded, demicontinuous map of type

(S+) with respect to D(P) from E to X∗
}
,

HE :=
{

P +Q(t) : E ∩D(P)→ X∗| Q(t) is a bounded homotopy of type

(S+) with respect to D(P) from E to X∗
}
.
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It is clear that the setHE (set of admissible homotopies) includes all affine homotopies P + (1 − t)Q1 + tQ2
with (P +Qi) ∈ NE, i = 1, 2.

Theorem 2.7. Let P : D(P) ⊂ X → X∗ be a maximal monotone densely linear mapping. There exists a function
which is called the topological degree function

d :
{
(N,E, h) : N ∈ NE, E an open bounded subset of X, h < N(∂E ∩D(P))

}
→ Z

satisfying the following properties:

1. (Existence) If d(N,E, h) , 0, then there is a solution to the equation Nu = h in the set E ∩D(P).
2. (Additivity) For any E1 and E2 two disjoint open subsets of E with h < N[(E\(E1 ∪ E2))∩D(P)], then we get

d(N,E, h) = d (N,E1, h) + d (N,E2, h) .

3. (Invariance under homotopies) If N(t) ∈ HE and h(t) < N(t)(∂E ∩ D(P)) for each t in the interval [0, 1],
with h(t) is a continuous curve in X∗, then the following can be concluded

d(N(t),E, h(t)) remains constant for all t in [0, 1].

4. (Normalization) Let P+M be a normalising map such that M : X→ X∗ is a duality mapping. Then, we have

d(P +M,E, h) = 1, for every h ∈ (P +M)(E ∩D(P)).

Theorem 2.8. Let P + Q ∈ NX with 0 ∈ P(0) and h ∈ X∗. Suppose that there exists a strictly positive real number
R such that

⟨Pu +Qu − h,u⟩ > 0, (4)

for every u ∈ ∂BR(0) ∩D(P). Then, we get

(P +Q)(D(P)) = X∗,

provided that P +Q is coercive.

Proof. Let ν > 0 and t ∈ [0, 1]. We define de following operator

Hν(t,u) = Pu + (1 − t)Mu + t(Qu + νMu − h).

Since 0 ∈ P(0) and according to the boundary condition (4), we can obtain

⟨Hν(t,u),u⟩ = ⟨t(Pu +Qu − h,u⟩ + ⟨(1 − t)Pu + (1 − t + ν)Mu,u⟩
≥ ⟨(1 − t)Pu + (1 − t + ν)Mu,u⟩
= (1 − t)⟨Pu,u⟩ + (1 − t + ν)⟨Mu,u⟩

≥ (1 − t + ν)∥u∥2 = (1 − t + ν)R2 > 0.

This means that 0 is not an element of Hν(t,u). Moreover, since M and Q+ νM are bounded, continuous
and of type (S+), then {Hν(t, ·)}t∈[0,1] is an admissible homotopy. Consequently, from the normalisation and
invariance under homotopy in Theorem 2.7, we can conclude that

d (Hν(t, ·),BR(0), 0) =d (P +M,BR(0), 0)
=d (νM,BR(0), 0)
=1,
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that is d(P +Q + νM,BR(0), f ) = 1. From Theorem 2.7, we can deduce that

f ∗ ∈ (P +Q + νM)(D(P) ∩ BR(0)).

Therefore, for every ϵn → 0+, there exist yn ∈ D(P) ∩ BR(0), v∗n ∈ Pyn, and w∗n ∈ Qyn such that

v∗n + w∗n + ϵnMyn = f ∗ for all n ∈N. (5)

Since (yn)n is bounded, it follows that ϵnMyn → 0 as n tends to infinity. By using (5) and letting limit as
n→ +∞, we get

f ∗ ∈ (P +Q + νM)(D(P) ∩ BR(0)).

If P+Q is coercive, then for any f ∗ ∈ X∗, there exists a positive constant R = R( f ∗) > 0 such that the boundary
condition is satisfied. As f ∗ ∈ X∗ is chosen arbitrarily, we can deduce that

(P +Q)(D(P)) = X∗.

The proof is complete.

Throughout the paper, we denote Uk(x, y, t) and V(x, y, t) by uk(x, t)−uk(y, t) and v(x, t)−v(y, t) respectively.

3. Main result

In this section, we demonstrate our main results. The first result is the following lemma.

Lemma 3.1. Let Q : Γ→ Γ∗ be an operator defined by

⟨Qu, ϕ⟩ =
∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)
|x − y|n+ps (ϕ(x, t) − ϕ(y, t))dxdydt,

for all u, ϕ ∈ Γ. Then, Q is
i) bounded,
ii) continuous,
iii) of type (S+).

Proof. i) We will prove that Q is bounded. For all u, ϕ ∈ Γ, we have

|⟨Qu, ϕ⟩| =

∣∣∣∣∣∣
∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)
|x − y|n+ps (ϕ(x, t) − ϕ(y, t))dxdydt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)

|x − y|(n+ps) p−1
p

(ϕ(x, t) − ϕ(y, t))

|x − y|
n+ps

p

dxdydt

∣∣∣∣∣∣∣
≤||u||p−1

Γ
||ϕ||Γ

≤C||ϕ||Γ.

ii) We are going to prove that the operator Q is continuous. Let uk → u in Γ and ϕ ∈ Γ, we have

⟨Q(uk), ϕ⟩ − ⟨Q(u), ϕ⟩

=

∫ T

0

"
KΩ

|Uk(x, y, t)|p−2Uk(x, y, t)(ϕ(x, t) − ϕ(y, t))
|x − y|n+ps dxdydt

−

∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)(ϕ(x, t) − ϕ(y, t))
|x − y|n+ps dxdydt.
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Then,

⟨Q(uk),ϕ⟩ − ⟨Q(u), ϕ⟩

=

∫ T

0

"
KΩ

[
|Uk(x, y, t)|p−2Uk(x, y, t) − |U(x, y, t)|p−2U(x, y, t)

|x − y|n+ps (ϕ(x, t) − ϕ(y, t))
]
dxdydt

=

∫ T

0

"
KΩ

[  |Uk(x, y, t)|p−2Uk(x, y, t)

|x − y|(n+ps) p−1
p

−
|U(x, y, t)|p−2U(x, y, t)

|x − y|(n+ps) p−1
p

 (ϕ(x, t) − ϕ(y, t))

|x − y|
n+ps

p

]
dxdydt.

Let p′ = p
p−1 and denote

Ak =
|Uk(x, y, t)|p−2Uk(x, y, t)

|x − y|(n+ps) p−1
p

∈ Lp′ (KΩ × (0,T)),

A =
|U(x, y, t)|p−2U(x, y, t)

|x − y|(n+ps) p−1
p

∈ Lp′ (KΩ × (0,T)),

ϕ(x, y, t) =
(ϕ(x, t) − ϕ(y, t))

|x − y|
n+ps

p

∈ Lp(KΩ × (0,T)).

Then, we have by Hölder inequality that

|⟨Q(uk), ϕ⟩ − ⟨Q(u), ϕ⟩|

=

∣∣∣∣∣∣∣
∫ T

0

"
KΩ

[  |Uk(x, y, t)|p−2Uk(x, y, t)

|x − y|(n+ps) p−1
p

−
|U(x, y, t)|p−2U(x, y, t)

|x − y|(n+ps) p−1
p

 (ϕ(x, t) − ϕ(y, t))

|x − y|
n+ps

p

]
dxdydt

∣∣∣∣∣∣∣
≤ ∥Ak − A∥Lp′ (KΩ×(0,T))

∥∥∥ϕ∥∥∥Lp(KΩ×(0,T))
.

Now, we denote

Bk =
Uk(x, y, t)

|x − y|
n+ps

p

∈ Lp(KΩ × (0,T)),

B =
U(x, y, t)

|x − y|
n+ps

p

∈ Lp(KΩ × (0,T)).

Since uk → u in Γ, then
Bk → B in Lp(KΩ × (0,T)).

As a result, there exists a subsequence (still denoted by (Bk)k) of Bk such that

Bk → B a.e. inKΩ × (0,T),

and there exists a function b(x, y, t) such that |Bk| ≤ b(x, y, t).
Hence

Ak → A a.e. inKΩ × (0,T),

and
Ak = |Bk|

p−1
≤ |b|p−1.

Then, by the Dominated convergence theorem, we deduce that

Ak → A in Lp′ (KΩ × (0,T)).

This implies that the operator Q is continuous on Γ.
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iii) Now, we will show that Q is of type (S+). Let (uk)k ∈ D(Q) be a sequence with

uk ⇀ u in Γ and lim sup
k→+∞

⟨Q (uk) −Q(u),uk − u⟩ ≤ 0. (6)

Firstly, we prove the strict monotonicity of Q. For any u, v ∈ Γ, we have

⟨Q(u) −Q(v),u − v⟩
= ⟨Q(u),u − v⟩ − ⟨Q(v),u − v⟩

=

∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)
|x − y|n+ps ((u − v)(x, t) − (u − v)(y, t))dxdydt

−

∫ T

0

"
KΩ

|V(x, y, t)|p−2V(x, y, t)
|x − y|n+ps ((u − v)(x, t) − (u − v)(y, t))dxdydt

= ||u||p
Γ
+ ||v||p

Γ
− ⟨Q(u), v⟩ − ⟨Q(v),u⟩

⩾ ||u||p
Γ
+ ||v||p

Γ
− ||u||p−1

Γ
||v||Γ − ||v||

p−1
Γ
||u||Γ

=
(
||u||p−1
Γ
− ||v||p−1

Γ

)
(||u||Γ − ||v||Γ) . (7)

By Lemma 2.2. If p ⩾ 2, then from (7) we have

cp ⟨Q(u) −Q(v),u − v⟩ ⩾ cp

(
||u||p−1
Γ
− ||v||p−1

Γ

)
(||u||Γ − ||v||Γ)

⩾ cp

(
||u||p−2
Γ
||u||Γ − ||v||

p−2
Γ
||v||Γ

)
(||u||Γ − ||v||Γ)

⩾ |||u||Γ − ||v||Γ|p > 0.

If 1 < p < 2, using (7) we get

Cp (⟨Q(u) −Q(v),u − v⟩)
p
2
(
||u||p
Γ
− ||v||p

Γ

) 2−p
2 ⩾ |||u||Γ − ||v||Γ|p .

For u , v, Q is strictly monotone. Therefore, using (6), we can deduce that

lim
k→+∞

⟨Q (uk) −Q(u),uk − u⟩ = 0. (8)

According to [21, Theorem 5.1] and Lemma 2.1, we can get

uk → u a.e. inKT. (9)

This along with Fatou’s lemma yield

lim inf
k→+∞

∫ T

0

"
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt ≥
∫ T

0

"
KΩ

∣∣∣U(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt. (10)

On the other hand, we know that

lim
k→+∞

⟨Q (uk) ,uk − u⟩ = lim
k→+∞

⟨Q (uk) −Q(u),uk − u⟩ = 0. (11)
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Now, by applying Young’s inequality, we can find a positive constant C such that

⟨Q (uk),uk − u⟩

=

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt

−

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p−2 (

Uk(x, y, t)
)

U(x, y, t)

|x − y|n+ps dxdydt

≥

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt

−

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p−1

U(x, y, t)

|x − y|n+ps dxdydt

≥ C

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt −
∫ T

0

∫
KΩ

∣∣∣U(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt

 .

(12)

As a consequence of (10), (11) and (12), we get

lim
k→+∞

∫ T

0

∫
KΩ

∣∣∣Uk(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt =
∫ T

0

∫
KΩ

∣∣∣U(x, y, t)
∣∣∣p

|x − y|n+ps dxdydt. (13)

By combining (9) and (13) with [8, Brezis-Lieb Lemma], we have established our result.

Next, we prove the existence of weak solutions to problem (1) using the topological degree theory
introduced in the above section.

Theorem 3.2. Let f ∈ Γ∗ and u0 ∈ L2(Ω). Then, the problem (1) has at least one weak solution u ∈ D(P) in the
following sense∫

KT

∂u
∂t
ϕdxdt +

∫ T

0

"
KΩ

|U(x, y, t)|p−2U(x, y, t)
|x − y|n+ps (ϕ(x, t) − ϕ(y, t))dxdydt

=

∫
KT

f (x, t)ϕdxdt

for all ϕ ∈ Γ.

Proof. Let P : D(P) ⊂ Γ→ Γ∗ be an operator defined by

⟨Pu, v⟩ =
∫
KT

∂u
∂t

vdxdt, for every u ∈ D(P), v ∈ Γ,

where

D(P) =
{
v ∈ Γ :

∂v
∂t
∈ Γ∗, v(0) = 0

}
.

As in [27], it can be shown that P is a densely defined maximal monotone operator. According to the
monotonicity of P (i.e. ⟨Pu,u⟩ ≥ 0 for every u ∈ D(P)), we get

⟨Pu +Qu,u⟩ ≥ ⟨Qu,u⟩

=

∫ T

0

"
KΩ

|U(x, y, t)|p

|x − y|n+ps dxdydt

= ∥u∥p
Γ
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for all u ∈ Γ. Clearly, the right-hand side of the above inequality grows towards infinity as ∥u∥Γ approaches
infinity. This implies that for any f ∈ Γ∗ we can find a constant R = R( f ) such that ⟨Pu +Qu − f ,u⟩ > 0 for
every u ∈ BR(0) ∩D(P). By using Theorem 2.8, we can deduce that the equation Pu +Qu = f has a solution
in the domain D(P). This demonstrates that the problem (1) possesses at least one weak solution.
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