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Abstract. This study delves into the investigation of positive solutions for a specific class of such problems,
namely double multi-point boundary value problems. In this research, we employ a monotone iterative
approach combined with the theory of the fixed point index within a cone to establish the existence and
multiplicity of positive solutions for double multi-point boundary value problems associated with nonlinear
fractional differential equations involving the p-Laplacian operator. These findings not only advance the
theoretical understanding of fractional differential equations but also hold promise for applications in
diverse scientific and engineering disciplines. Additionally, we present straightforward and illustrative
examples that reinforce the core findings of this study.

1. Introduction

Fractional differential equations, with derivatives of non-integer order, have emerged as a powerful
mathematical framework for modeling intricate phenomena with applications spanning across various
scientific and engineering disciplines. These equations provide a more accurate representation of systems
that exhibit memory effects, non-local interactions, and anomalous diffusion. Some examples are seen in
biology, economics, control theory, chemistry, physics and biophysics, just to mention but a few [11]-[14].
In particular, the incorporation of the p-Laplacian operator adds an extra layer of complexity and relevance
to the study of such equations. Double multi-point boundary conditions are of particular interest as they
arise in many real-world applications. Understanding the existence of positive solutions in the context of
double multi-point boundary value problems for such equations is a fundamental endeavor with broad
implications. This trend comes about due to advances in fractional calculus theories with its widespread
applications as evidently seen in [1],[15]-[20].

Moreover, the use of fractional differential equations has extended to hereditary properties of diverse
materials and processes. This has caught the attention of a lot of researchers who have over the years
concentrated on the study of existence and uniqueness of solutions for boundary value problems (BVP)
of fractional differential equations involving nonlocal boundary conditions through means of techniques
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f.serap.topal@ege.edu.tr (Fatma Serap Topal)



T. G. Chakuvinga et al. / Filomat 38:20 (2024), 7183–7198 7184

of nonlinear such as the upper and lower solution method, fixed point theorems and the Leray-Schauder
theory among others [2]-[5], [7], [8], [10].

In [6], the following fractional differential systemsDα0+ y(x) + µ1 f (x, v(x)) + µ21(x, v(x)) = 0, x ∈ (0, 1),
Dα0+v(x) + µ1 f (x, y(x)) + µ21(x, y(x)) = 0, x ∈ (0, 1),

and Dα0+ y(x) + µ1 f (x, y(x)) + µ21(x, v(x)) = 0, x ∈ (0, 1),
Dα0+v(x) + µ1 f (x, v(x)) + µ21(x, y(x)) = 0, x ∈ (0, 1),

with the multipoint boundary conditionsDβ0+ y(1) =
∑m−2

k=1 ξkDβ0+y(ηk), y(0) = 0,
Dβ0+v(1) =

∑m−2
k=1 ξkDβ0+v(ηk), v(0) = 0,

were considered, where Dα0+ , Dβ0+ are the Riemann-Liouville fractional derivatives, f : [0, 1]× [0,∞)→ [0,∞)
is continuous, 1 < α ≤ 2, 0 ≤ β ≤ 1 with 1 ≤ α − β, 0 < ξk, ηk < 1, k = 1, 2, · · · ,m − 2, such that∑m−2

k=1 ξkη
α−β−1
k < 1 andµ1, µ2 ∈ (0,+∞) such thatµ1 ≥ µ2. The application of fixed-point theorems concerning

γ concave and (−γ) convex operators played a pivotal role in verifying the existence of positive solutions
in fractional differential systems subjected to multipoint boundary conditions.

In [9], the following BVP was investigatedDγ(φp(Dαy(x))) = f (x, y(x)), 0 < x < 1,
y(0) = Dαy(0) = 0, Dβy(1) = aDβy(ξ), Dαy(1) = bDαy(η),

where α, β, γ ∈ R, 1 < α, γ ≤ 2, β > 0 such that 1 + β ≤ α, ξ, η ∈ (0, 1), a, b ∈ [0,+∞) such that
1 − aξα−β−1 > 0, 1 − bp−1ηγ−1 > 0, φp(t) = |t|p−2t, p > 1, φq = (φp)−1, 1

p +
1
q = 1, Dα,Dβ and Dγ are the

Riemann-Liouville derivatives and f : [0, 1] × [0,∞) → [0,∞). The authors applied a monotone iterative
method to obtain some existence results for positive solutions of the BVP of nonlinear fractional differential
equations with the p-Laplacian operator.

As far as the authors are aware, there is a limited body of work that delves into the investigation of the
Riemann-Liouville fractional derivative involving a p-Laplacian operator and double multi-point boundary
value conditions. The inclusion of double multi-point boundary conditions introduces additional layers of
complexity and mathematical richness, making this problem both challenging and captivating. Motivated
by the literature mentioned, in this study we concentrate on the existence results of the following BVP of
fractional differential equations

Dβ(φp(Dαy(x))) + λh(x) f (x, y(x)) = 0, x ∈ (0, 1),
y(0) = 0, φp(Dαy(0)) = 0,
Dγy(1) =

∑m−2
k=1 akDγy(ηk), φp(Dαy(1)) =

∑m−2
k=1 bkφp(Dαy(ξk)),

(1)

where 1 < α, β ≤ 2, 0 < γ ≤ 1 such that 1 ≤ α − γ, 0 ≤ ak, bk, ηk, ξk ≤ 1, for k = 1, 2, · · · ,m − 2 such that∑m−2
k=1 akη

α−γ−1
k < 1,

∑m−2
k=1 bkξ

β−1
k < 1, f : [0, 1] × [0,∞) → [0,∞), h : [0, 1] → [0,+∞)), φp(t) = |t|p−2t, p >

1, φ−1
p = φq, 1

p +
1
q = 1, with Dα,Dβ and Dγ are the standard Riemann-Liouville fractional derivatives.

The primary objective of this study is to explore the existence of positive solutions for this class of
nonlinear fractional differential equations. This pursuit holds significant value not only from a theoretical
perspective but also for its potential implications in real-world problem-solving. Positive solutions often
represent physical quantities of interest, and their existence or non-existence can profoundly affect the
outcome of mathematical models.
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In Section 2 of this paper, we present essential definitions and lemmas that serve as the foundational
elements for our main findings. Additionally, for the reader’s convenience, we introduce a fixed point
theorem. In Section 3, we consider the nonlinear BVP (1) and give the existence results of this problem. In
this section, we also present multiplicity results for the BVP (1). In addition, some comprehensive examples
to illustrate our main results are provided herein. Finally, Section 4 concludes the paper, emphasizing the
significance of our results and suggesting avenues for future research.

In summary, this study contributes to the understanding of fractional differential equations with the
p-Laplacian operator, particularly in the context of double multi-point boundary value problems. The
exploration of positive solutions not only advances the theoretical understanding but also holds promise
for applications in diverse scientific and engineering disciplines.

2. Basic Definitions and Preliminaries

In this section, we commence by presenting crucial definitions and lemmas. These auxiliary lemmas are
indispensable for demonstrating the existence of solutions for the problem (1).

Definition 2.1. (see [19], [20]) The integral

Iβa1(x) =
∫ x

a

(x − t)β−1

Γ(β)
1(t)dt,

the fractional order integral operation onto the function 1 ∈ L1([a, b),R+) with order β ∈ R+ and lower limit a, where
Γ represents the gamma function.

Definition 2.2. (see [19], [20]) The definition of the Riemann-Liouville fractional-order derivative of a function 1 at
order β denoted as,

Dβ0+1(x) =
1

Γ(n − β)

(
d

dx

)n ∫ 1

0
(x − t)n−β−11(t)dt,

where β ∈ R+

Lemma 2.3. (see [1]) Suppose that 1 ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order β > 0 that belongs to
domain C(0, 1) ∩ L(0, 1). Then

IβDβ1(x) = 1(x) + c1xβ−1 + c2xβ−2 + · · · + cNxβ−N,

for some ck ∈ R, k = 1, 2, · · · ,N, where the number N is the smallest integer greater than or equal to β.

Lemma 2.4. (see [6]) Let e ∈ C[0, 1]. Then the linear fractional BVP

Dαy(x) + e(x) = 0

y(0) = 0, Dγy(1) =
m−2∑
k=1

akDγy(ηk)

has a unique solution which is given by

y(x) =
∫ 1

0
G(x, t)e(t)dt,

where

G(x, t) = G1(x, t) + G2(x, t),
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in which

G1(x, t) =

 xα−1(1−t)α−γ−1
−(x−t)α−1

Γ(α) , 0 ≤ t ≤ x ≤ 1,
xα−1(1−t)α−γ−1

Γ(α) , 0 ≤ x ≤ t ≤ 1,

G2(x, t) =


∑

0≤t≤ηi
[aiη

α−γ−1
i xα−1(1−t)α−γ−1

−aixα−1(ηi−t)α−γ−1]
AΓ(α) , x ∈ [0, 1],∑

ηi≤t≤1 aiη
α−γ−1
i xα−1(1−t)α−γ−1

AΓ(α) , x ∈ [0, 1],
(2)

where
A = 1 −

∑m−2
k=1 akη

α−γ−1
k .

Lemma 2.5. (see [4]) Let e ∈ C[0, 1]. Then the linear fractional BVP

Dβ(φp(Dαy(x))) + e(x) = 0, x ∈ [0, 1],

y(0) = 0, φp(Dαy(0)) = 0, φp(Dαy(1)) =
m−2∑
k=1

bkφp(Dαy(ξk)), Dγy(1) =
m−2∑
k=1

akDγy(ηk)

admits a unique solution expressed as

y(x) =
∫ 1

0
G(x, t)φq(ρ(t))dt,

where
G(x, t) is given in Lemma 2.2 and

ρ(x) =
∫ 1

0
H(x, t)e(t)ds +

xβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, t)e(t)dt,

in which

B = 1 −
m−2∑
k=1

bkξ
β−1
k ,

H(x, t) =

 xβ−1(1−t)β−1
−(x−t)β−1

Γ(β) , 0 ≤ t ≤ x ≤ 1,
xβ−1(1−t)β−1

Γ(β) , 0 ≤ x ≤ t ≤ 1.
(3)

Lemma 2.6. ( see[4], [6]) The functions G(x, s) and H(x, s) given by (2) and (3) respectively meet the following
conditions:

1. For t, x ∈ [0, 1],G(x, t) ≥ 0,H(x, t) ≥ 0,H(x, t) ≤ H(t, t) and if
∑m−2

k=1 akη
α−γ−1
k < 1,

G(x, t) ≤ G(x, t),
where

G(x, t) = G1(x, t) + G2(x, t),

in which

G1(x, t) =
xα−1(1 − t)α−γ−1

Γ(α)

and

G2(x, t) =

∑m−2
k=1 akη

α−γ−1
k xα−1(1 − t)α−γ−1

AΓ(α)
,
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2. G(x, t) ≥ xα−1G(1, t) for all t, x ∈ [0, 1] and there exists a positive function 12 ∈ C(0, 1) such that

min
ϑ≤x≤δ

H(x, t) ≥ 12(t)H(t, t) for t ∈ (0, 1),

where

12(t) =

 δ
β−1(1−t)β−1

−(δ−t)β−1

xβ−1(1−t)β−1 , if t ∈ [0,m1],

(ϑt )β−1, if t ∈ [m1, 1]

for 0 ≤ ϑ < m1 < δ ≤ 1.

3. For t, x ∈ [0, 1],max0≤x≤1

∫ 1

0 H(x, t)ds = Γ(β)
Γ(2β) and

G∗(t, t) = max
x∈[0,1]

G1(x, t) + max
x∈[0,1]

G2(x, t),

where

max
x∈[0,1]

G1(x, t) =
(1 − t)α−γ−1

Γ(α)

and

max
x∈[0,1]

G2(x, t) =

∑m−2
k=1 akη

α−γ−1
k (1 − t)α−γ−1

AΓ(α)
.

Moreover, we leverage the following fixed point theorems to establish the existence of results.

Theorem 2.7. (Schauder-Tychonov Fixed Point Theorem)(see [21]) Let E be a Banach space and P be a bounded,
closed, convex subset of E. If Θ : P→ P is compact, then Θ has a fixed point in P.

Theorem 2.8. (see [5]) Let E be a Banach space, D ⊂ E be a cone and ΩR = {v ∈ D : ∥v∥ ≤ R}. Let the operator
Θ : D ∩ΩR → D be completely continuous that satisfying Θw , w, ∀w ∈ ∂ΩR.
Then

1. If ∥Θw∥ ≤ ∥w∥, ∀w ∈ ∂ΩR, then i(Θ,ΩR,D) = 1,
2. If ∥Θw∥ ≥ ∥w∥, ∀w ∈ ∂ΩR, then i(Θ,ΩR,D) = 0.

3. Existence of Solutions for BVP (1)

We examine the Banach space E = C([0, 1],R) equipped with the norm ∥y∥ = sup0≤x≤1 |y(x)|. Let we
define the set D = {y ∈ E : y(x) ≥ 0}, then D is a cone within E.

Define the operator Θ : D→ D as follows:

(Θy)(x) =
∫ 1

0
G(x, t)φq

∫ 1

0
H(t, τ)λh(τ) f (τ, y(τ))dτ +

tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ, y(τ))dτ

 dt.

Then, the operator Θ has a fixed point if and only if the BVP (1) has a solution.

Lemma 3.1. Suppose f ∈ C([0, 1] × [0,+∞), [0,+∞)) and h ∈ C([0, 1], [0,+∞)), then the operator Θ : D→ D is a
completely continuous operator.
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Proof. From the non-negativeness and continuity of G(x, t), H(x, t), f (x, y(x)) and h(x), we see that the
operator Θ : D→ D is continuous.

Let Ω ⊂ D be bounded. So, for all x ∈ [0, 1] and y ∈ Ω, there exists a positive constant M such that
| f (x, y(x))| ≤M. Then, we get

|(Θy)(x)| =

∣∣∣∣∣∣
∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ, y(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ, y(τ))dτ

 dt

∣∣∣∣∣∣∣
≤(λ∥h∥M)q−1

∫ 1

0
G(x, t)φq

(∫ 1

0

τβ−1(1 − τ)β−1

Γ(β)
dτ

+
1
B

m−2∑
k=1

bk

∫ 1

0

τβ−1(1 − τ)β−1

BΓ(β)
dτ

 dt

≤(λ∥h∥M)q−1
∫ 1

0
G∗(t, t)φq

∫ 1

0
H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 dτ

 dt

≤L

λ∥h∥MΓ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

,

where

L =
∫ 1

0
G∗(t, t)dt,

which shows that Θ(Ω) is uniformly bounded.
Also, by the continuity of G(x, t) on [0, 1]× [0, 1], we know that this function is uniformly continuous on

[0, 1] × [0, 1]. Therefore, for any ε > 0, there exists a constant δ > 0, such that x1, x2 ∈ [0, 1] and |x1 − x2| < δ,

|G(x1, t) − G(x2, t)| < φp

λ∥h∥MΓ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk


 ε,

for fixed t ∈ [0, 1].
Thus, for all y ∈ Ω, we get

|(Θy)(x2) − (Θy)(x1)| ≤
∫ 1

0
|G(x2, t) − G(x1, t)|φq

(
ρ(t)

)
dt

≤

∫ 1

0
|G(x2, t) − G(x1, t)|

λ∥h∥MΓ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

dt

= φq

λ∥h∥MΓ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk


 ∫ 1

0
|G(x2, t) − G(x1, t)|dt

≤ ε,

which gives that the operatorΘ is an equicontinuous operator. Thus, using the Arzella-Ascoli theorem, we
get Θ : D→ D is completely continuous operator.

Definition 3.2. Let p(x) be a solution of the BVP (1). The p(x) is said to be a maximal solution of the BVP (1), if
every solution y(x) of the BVP (1) satisfies y(x) < p(x) for x ∈ [0, 1]. A minimal solution q(x) can be defined by
similar way by reversing the above inequality, i.e y(x) > q(x) for x ∈ [0, 1].
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Theorem 3.3. Suppose f : [0, 1]× [0,∞)→ [0,∞) and h : [0, 1]→ [0,+∞) are continuous and f is non-decreasing
in the second variable, then BVP (1) has a maximal positive solution w and a minimal positive solution v such that
wn(x)→ w(x) and vn(x)→ v(x) as n→∞ uniformly on [0, 1], where

vn(x) =
∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ, vn−1(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ, vn−1(τ))dτ

 dt, (4)

and

wn(x) =
∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ,wn−1(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ,wn−1(τ))dτ

 dt. (5)

Proof. Let

Br = {y ∈ D : ∥y∥ ≤ r},

where

r ≥ L

λ∥h∥Q1Γ(β)
Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

.

Step 1: Firstly, let show BVP (1) has at least one solution.
For y ∈ Br, there exists a positive constant Q1 such that | f (x, y(x))| ≤ Q1,

|(Θy)(x)| =

∣∣∣∣∣∣
∫ 1

0
G(x, t)φq

(
ρ(t)

)
dt

∣∣∣∣∣∣
≤ L

λ∥h∥Q1Γ(β)
Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

.

Therefore,

Θ : Br → Br.

By Lemma 3.1, we can easily say that the operator Θ : Br → Br is completely continuous. Hence, by
using the Schauder fixed point theorem, it is clear that the operator Θ has at least one fixed point in Br and
so BVP (1) has at least one solution in the set Br.

Step 2: BVP (1) has a positive solution in the set Br, that is a minimal positive solution. Let v0(x) = 0, x ∈ [0, 1]
and v1(x) = Θv0(x). From Θ : Br → Br, we have v1 ∈ Br. From (4), it is obvious that

vn(x) = (Θvn−1)(x), x ∈ [0, 1], f or n = 1, 2, 3, . . . . (6)

Also, since f (x, y) is non-decreasing in the second variable y, we have

0 = v0(x) ≤ v1(x) ≤ · · · vn(x) ≤ · · · , x ∈ [0, 1],

so we get {vn} is a sequentially compact set sinceΘ is compact. Consequently, there exists a v ∈ Br such that
vn → v as n→∞.
Let y(x) be any positive solution of BVP (1) in the set Br. It is easily seen that

0 = v0(x) ≤ y(x) = (Θy)(x).
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Therefore,

vn(x) ≤ y(x) f or n = 0, 1, 2, · · · . (7)

If we take a limit as n→∞ in (7), we have v(x) ≤ y(x) for x ∈ [0, 1].

Step 3: BVP (1) has a positive solution in Br, that is a maximal positive solution. Let
w0(x) = r, x ∈ [0, 1] and w1(x) = Tw0(x). From Θ : Br → Br, we get w1 ∈ Br. So we have

0 ≤ w1(x) ≤ r = w0(x).

Moreover, since f (x, y) in non-decreasing in y, we obtain

· · · ≤ wn(x) ≤ · · · ≤ w1(x) ≤ w0(x) = r, x ∈ [0, 1].

Following the same steps used in Step 2, we see that

wn(x)→ w(x) as n→∞

and

w(x) =
∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ,w(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ,w(τ))dτ

 dt.

Let y(x) be any positive solution of BVP (1) in Br.
Trivially,

y(x) ≤ w0(x).

Thus,

y(x) ≤ wn(x). (8)

If we take a limit as n→∞ in (8), we have y(x) ≤ w(x) for x ∈ [0, 1].

Let we define the numbers f 0, f0, f∞, f∞ as followings:

f 0 = lim
y→0+

sup
x∈[0,1]

f (x, y)
φp(r1∥y∥)

, f0 = lim
y→0+

inf
x∈[0,1]

f (x, y)
φp(r2∥y∥)

,

f∞ = lim
y→+∞

sup
x∈[0,1]

f (x, y)
φp(r3∥y∥)

, f∞ = lim
y→+∞

inf
x∈[0,1]

f (x, y)
φp(r4∥y∥)

,

where r1, r2, r3, r4 are any positive numbers.

Let

A1 = L

∥h∥Γ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

and

A2 =

∫ δ

ϑ
G(1, t)φq

∫ δ

ϑ
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 dt,

where ϑ and δ are given in Lemma 2.4.
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Theorem 3.4. Assume that f : [0, 1] × [0,∞) → [0,∞) and h : [0, 1] → [0,+∞) are continuous and the following
conditions hold:

(C1) f0 = f∞ = +∞,
(C2) There exists a constant ρ1 > 0 such that f (t, y) ≤ φp(r5∥y∥) for t ∈ [0, 1] with r5 > 0 and y ∈ [0, ρ1].

Then, BVP (1) has at least two positive solutions y1 and y2 such that

0 < ∥y1∥ < ρ1 < ∥y2∥,

for

λq−1
∈

( 1
r2A2

,
1

r5A1

)
∩

( 1
r4A2

,
1

r5A1

)
, (9)

where r2A2 > r5A1 and r4A2 > r5A1.

Proof. Since

f0 = lim
y→0+

inf
x∈[0,1]

f (x, y)
φp(r2∥y∥)

= +∞,

there is ρ0 ∈ (0, ρ1) such that

f (x, y) ≥ φp(r2∥y∥) for x ∈ [0, 1], y ∈ [0, ρ0].

Let

Ωρ0 = {y ∈ D : ∥y∥ ≤ ρ0}.

Then, for any y ∈ ∂Ωρ0 , it follows from Lemma 2.6 that

(Θy)(x) =

∫ 1

0
G(x, t)φq

(
ρ(t)

)
dt

≥ min
ϑ≤x≤δ

{∫ 1

0
G(x, t)φq

(
ρ(t)

)
dt

}
≥ r2λ

q−1
∥y∥

∫ 1

0
xα−1G(1, t)φq

∫ 1

0
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 dt

≥ r2λ
q−1
∥y∥

∫ δ

ϑ
G(1, t)φq

∫ δ

ϑ
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 dt.

Therefore,

∥Θy∥ ≥ λq−1r2A2∥y∥.

Considering also (9), we obtain

∥Θy∥ ≥ ∥y∥, for all y ∈ ∂Ωρ0 .

By Lemma 2.8, we have

i(Θ,Ωρ0 ,D) = 0. (10)
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Also, since

f∞ = lim
y→∞

inf
x∈[0,1]

f (x, y)
φp(r4∥y∥)

= +∞,

there is a number ρ∗0 with ρ∗0 > ρ1, such that

f (x, y) ≥ φp(r4∥y∥) for x ∈ [0, 1], y ∈ [ρ∗0,+∞).

Let

Ωρ∗0 = {y ∈ D : ∥y∥ ≤ ρ∗0}.

Then, for any y ∈ ∂Ωρ∗0 , it follows from Lemma 2.6 that

(Θy)(x) =

∫ 1

0
G(x, t)φq

(
ρ(s)

)
dt

≥ min
ϑ≤t≤δ

{∫ 1

0
G(x, t)φq

(
ρ(t)

)
dt

}
≥ r4λ

q−1
∥y∥

∫ 1

0
xα−1G(1, t)φq

∫ 1

0
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 ds

≥ r4λ
q−1

∫ δ

ϑ
G(1, t)φq

∫ δ

ϑ
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 dt.

Therefore,

∥Θy∥ ≥ λq−1r4A2∥y∥.

Considering also (9), we get

∥Θy∥ ≥ ∥y∥, for all y ∈ ∂Ωρ∗0 .

By Lemma 2.8, we get

i(Θ,Ωρ∗0 ,D) = 0. (11)

Finally, let Ωρ1 = {y ∈ D : ∥y∥ ≤ ρ1} for any y ∈ ∂Ωρ1 , it follows from Lemma 2.6 and (C2) that

(Θy)(x) =

∫ 1

0
G(x, t)φq

(
ρ(t)

)
dt

≤ L

λ∥h∥Γ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

.

Therefore,

∥Θy∥ ≤ λq−1r5A1∥y∥.

Considering also (9), we have

∥Θy∥ ≤ ∥y∥, for all y ∈ ∂Ωρ1 .

By Lemma 2.8, we get

i(Θ,Ωρ1 ,D) = 1. (12)
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From (10)-(12) and ρ0 < ρ1 < ρ∗0, we get

i(Θ,Ωρ∗0 \Ωρ1 ,D) = −1, i(Θ,Ωρ1 \Ωρ0 ,D) = 1.

Thus,Θ has a fixed point y1 ∈ Ωρ1 \Ωρ0 and a fixed point y2 ∈ Ωρ∗0 \Ωρ1 . Trivially, y1, y2 are both positive
solutions of BVP (1) and 0 < ∥y1∥ < ρ1 < ∥y2∥.

Similarly, we can get the following results;

Corollary 3.5. Assume that f : [0, 1] × [0,∞)→ [0,∞) and h : [0, 1]→ [0,+∞) are continuous and the following
conditions hold:

(C3) f 0 = f∞ = 0.
(C4) There exists a constant ρ2 > 0 such that f (x, y) ≥ φp(r6∥y∥) for x ∈ [0, 1] with r6 > 0 and y ∈ [0, ρ2].

Then BVP (1) has at least two positive solutions y1 and y2 such that

0 < ∥y1∥ < ρ2 < ∥y2∥

for

λq−1
∈

( 1
r6A2

,
1

r3A1

)
∩

( 1
r6A2

,
1

r1A1

)
,

where r6A2 > r3A1 and r6A2 > r1A1.

Example 3.6. Consider the following boundary value problem:
D

4
3 (φ2(D

3
2 y(x))) + λh(x) f (t, y(x)) = 0, x ∈ [0, 1],

y(0) = 0, φ2(D
4
3 y(0)) = 0,

D
1
2 y(1) =

∑m−2
k=1 bkD

1
2 y(ηk), φ2(D

3
2 y(1)) =

∑m−2
k=1 akφ2(D

3
2 y(ξk)),

(13)

where

h(x) =
x

1 + x
, f (x, y(x)) = 3| cos(x + y(x))|,

α = 3
2 , β =

4
3 , γ =

1
2 , p = q = 2, m = 4, a1 = b1 =

1
2 , a2 = b2 =

1
4 , ξ1 = η1 =

1
8 , ξ2 = η2 =

1
3 ,

λ ∈ (0,+∞) and f ∈ C([0, 1] × [0,+∞), [0,+∞)).
Then,

M = | f (x, y(x))| = 3,

A = 1 −
2∑

k=1

aiη
α−γ−1
k =

1
4
,

B = 1 −
2∑

k=1

bkξ
β−1
k = 1 − (b1ξ

β−1
1 + b2ξ

β−1
2 ) = 0.57666.

By computation we see that

L =
∫ 1

0
G∗(t, t)dt =

1
AΓ(α)

∫ 1

0
(1 − t)α−γ−1dt =

8
√
π
,



T. G. Chakuvinga et al. / Filomat 38:20 (2024), 7183–7198 7194

r ≥ L

λ∥h∥M1Γ(β)
Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

= 9.2450λq−1.

Hence, according the Theorem 3.3, we can say that BVP (13) has a minimal positive solution v in Br and a maximal
positive solution w in Br.

Example 3.7. Consider the following fractional boundary value problem:
D

4
3 (φ2(D

3
2 y(x))) + λh(x) f (t, y(x)) = 0, x ∈ [0, 1],

y(0) = 0, φ2(D
4
3 y(0)) = 0,

D
1
2 y(1) =

∑m−2
k=1 bkD

1
2 y(ηk), φ2(D

3
2 y(1)) =

∑m−2
k=1 akφ2(D

3
2 y(ξk)),

(14)

where

h(x) = 2 sin
( x
π

)
, f (x, y(x)) = 3|y(x)|

1
2 + ∥y∥,

α = 3
2 , β =

4
3 , γ =

1
2 , p = q = 2, m = 4, a1 = b1 =

1
2 , a2 = b2 =

1
4 , ξ1 = η1 =

1
8 , ξ2 = η2 =

1
3 ,

λ ∈ (0,+∞) and f ∈ C([0, 1] × [0,+∞), [0,+∞)).

We set ϑ = 1
3 and δ = 2

3 .

By computation, we find A = 1
4 , B = 0.57666,

A1 = L

∥h∥Γ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

= 12.327

and

A2 =

∫ δ

ϑ
G(1, t)φq

∫ δ

ϑ
12(τ)H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 h(τ)dτ

 dt = 0.22150.

Taking ρ1 = 9, r5 = 2, we get

f (x, y) ≤ 3(3) + 9 = 18 = φp(r5∥y∥) = φ2(2 × 9), for x ∈ [0, 1], y ∈ [0, ρ1].

Therefore, condition (C2) is satisfied. It can be easily seen that condition (C1) holds.
Also, let r2 = 200 and r4 = 150, we have r2A2 > r5A1 and r4A2 > r5A1.
Hence, by Theorem 3.4, for

λ ∈
( 1

r2A2
,

1
r5A1

)
∩

( 1
r4A2

,
1

r5A1

)
=

( 1
r4A2

,
1

r5A1

)
= (0.0300, 0.0406),

BVP (14) has at least two solutions y1 and y2 which satisfy the inequality 0 < ∥y1∥ < 9 < ∥y2∥ for the given values
of r5, r2 and r4.

Theorem 3.8. Assume that f : [0, 1] × [0,∞) → [0,∞) and h : [0, 1] → [0,+∞) are continuous and there exist
constants γ1, γ2 > 0 such that:

(C5) f (x, y1) ≤ f (x, y2) for any 0 ≤ x ≤ 1 and 0 ≤ y1 ≤ y2 ≤ γ2,
(C6) max0≤x≤1 f (x, γ2) ≤ φp(γ2γ1),
(C7) f (x, 0) , 0 for 0 ≤ x ≤ 1.
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Then BVP (1) has at least two positive solutions u∗ and v∗ such that

0 < ∥u∗∥ ≤ γ2 and lim
n→∞
Θnu0 = u∗, where u0(x) = γ2,

0 < ∥v∗∥ ≤ γ2 and lim
n→∞
Θnv0 = v∗, where v0(x) = 0.

for

λq−1
∈

(
0,

1
γ1A1

)
where γ1A1 > 0.

Proof. We define Bγ2 = {u ∈ D : ∥u∥ ≤ γ2}. We proceed to prove that ΘBγ2 ⊆ Bγ2 . Let u ∈ Bγ2 , then
0 ≤ u(x) ≤ ∥u∥ ≤ γ2.
By assumptions C5 and C6, we obtain 0 ≤ f (x,u(x)) ≤ f (x, γ2) ≤ φp(γ2γ1).
For any u ∈ Bγ2 , by Lemma 3.1, Θu ∈ D, then

∥Θu∥ =max
0≤x≤1

{∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ, y(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ, y(τ))dτ

 dt

≤γ2γ1(λ∥h∥)q−1
∫ 1

0
G∗(t, t)φq

∫ 1

0
H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 dτ

 dt

=γ2λ
q−1γ1L

∥h∥Γ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

= γ2λ
q−1γ1A1

≤γ2.

Therefore, Θu ∈ Bγ2 . Hence, we obtain ΘBγ2 ⊆ Bγ2 . Let u0(x) = γ2, 0 ≤ x ≤ 1, then ∥u0∥ = γ2 and u0 ∈ Bγ2 .
Let u1(x) = Θu0(x), thus u1 ∈ Bγ2 .

We define

un+1 = Θun = Θ
n+1u0, n = 0, 1, 2, · · · .

Since ΘBγ1 ⊆ Bγ1 , un ∈ Bγ1 (n = 0, 1, 2, · · · ) by using Lemma 3.1, Θ is compact, we see that {un}
∞

n=1 has a
convergent subsequence {unk }

∞

k=1 and there exists u∗ ∈ Bγ2 such that unk → u∗. By the definition of Θ and
(C5), for any x ∈ [0, 1], we get

u1(x) =(Θu0)(x)

=

∫ 1

0
G(x, t)φq

(∫ 1

0
H(t, τ)λh(τ) f (τ,u0(τ))dτ

+
tβ−1

B

m−2∑
k=1

bk

∫ 1

0
H(ξk, τ)λh(τ) f (τ,u0(τ))dτ

 dt

≤γ2γ1(λ∥h∥)q−1
∫ 1

0
G(x, t)φq

(∫ 1

0

τβ−1(1 − τ)β−1

Γ(β)
dτ
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+
1
B

m−2∑
k=1

bk

∫ 1

0

τβ−1(1 − τ)β−1

BΓ(β)
dτ

 dt

≤γ2γ1(λ∥h∥)q−1
∫ 1

0
G∗(t, t)φq

∫ 1

0
H(τ, τ)

1 +
1
B

m−2∑
k=1

bk

 dτ

 dt

=γ2λ
q−1γ1L

∥h∥Γ(β)Γ(2β)

1 +
1
B

m−2∑
k=1

bk




q−1

=γ2λ
q−1γ1A1

≤γ2 = u0(x).

Therefore, we get

u2(x) = Θu1(x) ≤ Θu0(x) = u1(x), 0 ≤ x ≤ 1.

Thus, by induction method, we obtain

un+1 ≤ un, n − 0, 1, 2, · · · .

for 0 ≤ x ≤ 1.
Therefore, there exists a u∗ ∈ Bγ2 such that un → u∗. By the continuity of the operator Θ and un+1 = Θun, we
have Θu∗ = u∗.
We let v0 = 0, 0 ≤ x ≤ 1, then v0 ∈ Bγ2 . Let v1 = Θv0, then v1 ∈ Bγ2 .
We define

vn+1 = Θvn = Θ
n+1v0, n = 0, 1, 2, · · · .

Since Θ : Bγ2 → Bγ2 , we obtain vn ⊆ Bγ2 , n = 0, 1, 2, · · · . Since also Θ is completely continuous, we see that
{vn}

∞

n=1 is a sequentially compact set.

Also, v1(x) = Θv0(x) = (Θ0)(x) ≥ 0, 0 ≤ x ≤ 1, it implies that

v2(x) = Θv1(x) ≥ (Θ0)(x) = v1(x), 0 ≤ x ≤ 1.

Thus, by induction method, we obtain

vn+1 ≥ vn, 0 ≤ x ≤ 1, n = 0, 1, 2, · · · .

Therefore, there exists a v∗ ∈ Bγ1 such that vn → v∗. By the continuity of the operator Θ and vn+1 = Θvn, we
obtain Θv∗ = v∗.

It is evident that every fixed point of the operator Θ in D is also a solution of BVP (1). In addition, if
f (x, 0) , 0 for x ∈ [0, 1], then the zero function is not the solution of BVP (1). Thus, we get ∥u∗∥ > 0, ∥v∗∥ > 0.
Then u∗ and v∗ are two positive solutions of BVP (1). So, the proof is completed.

Applying Theorem 3.8, we obtain the following corollary.

Corollary 3.9. Suppose f : [0, 1] × [0,∞) → [0,∞) and h : [0, 1] → [0,+∞) are continuous, also C7 and the
following conditions hold:

(C8) f (x, y1) ≤ f (x, y2) for any 0 ≤ x ≤ 1 and 0 ≤ y1 ≤ y2;

(C9) limy→∞max0≤x≤1
f (x,y)
yp−1 ≤ φp(γ1), in particular limy→∞max0≤x≤1

f (x,y)
yp−1 = 0.
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Then BVP (1) has two positive solutions u∗ and v∗, for

λq−1
∈

(
0,

1
γ1A1

)
where γ1A1 > 0.

Example 3.10. We consider the following BVP:
D

4
3 (φ2(D

3
2 y(x))) + λh(x) f (x, y(x)) = 0, x ∈ [0, 1],

y(0) = 0, φ2(D
4
3 y(0)) = 0,

D
1
2 y(1) =

∑m−2
i=1 biD

1
2 y(ηi), φ2(D

3
2 y(1)) =

∑m−2
i=1 aiφ2(D

3
2 y(ξi)),

(15)

where

h(x) = 2 sin
( x
π

)
, f (x, y(x)) = ex + 3|y(x)|x

1
2 + ∥y∥,

α = 3
2 , β =

4
3 , γ =

1
2 p = q = 2, m = 4, a1 = b1 =

1
2 , a2 = b2 =

1
4 , ξ1 = η1 =

1
8 , ξ2 = η2 =

1
3 ,

λ ∈ (0,+∞) and f ∈ C([0, 1] × [0,+∞), [0,+∞)).

We set ϑ = 1
3 and δ = 2

3 . By computation, A = 1
4 ,B = 0.57666 and A1 = 12.327. Taking γ2 = 9 and γ1 = 2.5. Thus,

f (x, y) satisfies

1. f (x, y1) ≤ f (x, y2) for any 0 ≤ x ≤ 1, 0 ≤ y1 ≤ y2 ≤ 9;
2. max0≤x≤1 f (x, γ2) = f (1, 9) ≈ 20.718 < φ2(γ2γ1) ≈ 22.5;
3. f (x, 0) , 0 for 0 ≤ x ≤ 1.

Then by Theorem 3.8, BVP (15) has two positive solutions u∗ and v∗ such that

0 < ∥u∗∥ ≤ 9 and lim
n→∞
Θnu0 = u∗, where u0(x) = 9,

0 < ∥v∗∥ ≤ 9 and lim
n→∞
Θnv0 = v∗, where v0(x) = 0,

for

λq−1
∈

(
0,

1
γ1A1

)
or

λ ∈(0, 0.00361).

4. Conclusion

In this study, we have explored the existence of positive solutions for a class of nonlinear fractional
differential equations subjected to the influence of the p-Laplacian operator within double multi-point
boundary value problems. These equations hold significant importance in modeling complex phenomena
across various applications. Our research aspires to produce results that aid in both the theoretical under-
standing and practical applications of fractional differential equations. Our findings lay a foundation that
may benefit mathematicians and engineers seeking to investigate such equations.

Our results demonstrate the existence of positive solutions in double multi-point boundary value prob-
lems, a key finding of relevance to researchers and engineers tackling problems across diverse application
domains. Furthermore, it is anticipated that our results will make a meaningful contribution to the existing
body of literature in the field of fractional differential equations.
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Future studies may extend the scope to encompass a broader class of equations or investigate more
complex boundary value problems involving different operators. Additionally, exploring the implications
of our theoretical results in practical applications through numerical solution techniques and stability
analysis could offer valuable insights.

In summary, this study offers a valuable contribution to the field of fractional differential equations by
giving the existence results for positive solutions within double multi-point boundary value problems. This
derived results hold promise for advancing both theoretical and practical understanding in this intricate
domain, serving as a foundation for further research and exploration.
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