Filomat 38:20 (2024), 7215-7234

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/F1L2420215Z

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
2 S
) @
b, &
Ty s

5
TIprpor®

Spectral extremal problems for nearly k-uniform hypergraphs

Junpeng Zhou®®, Meng Zhang®, Zhongxun Zhu¢, Xiying Yuan*""

?Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
YNewtouch Center for Mathematics of Shanghai University, Shanghai 200444, P.R. China
Faculty of Mathematics and Statistics, South-Central Minzu University, Wuhan 430074, P.R. China

Abstract. A hypergraph G = (V,E) is called R-graph if R = {le| : ¢ € E}. The spectral radius of G is the
maximum modulus of eigenvalues of its adjacency tensor. Let G, , be the class of connected {k, k —1}-graphs

of n vertices with r pendent vertices. In this paper, we characterize the hypergraphs with the maximum
spectral radius in G,,, forn —r >k, n —r = 2,k — 1, respectively.

1. Introduction

It is well known that hypergraphs are generalizations of graphs. At present, hypergraphs have a wide
range of applications, such as obtaining multidimensional relationships [11] and constructing relational
networks (protein-protein interaction, coauthorship, film actor/actress) [9]. In recent years, research on
spectral theory of hypergraphs has attracted extensive attention. There are many results on uniform
hypergraphs, see [2, 5-7, 10, 12, 13]. However, there are only few results on general hypergraphs, such
as [4, 14]. The purpose of this paper is to study the spectral extremal problems for a class of general
hypergraphs.

Let G = (V,E) be a hypergraph with V = [n] = {1,2,...,n} and E C P(V), where P(V) is the power set of
V. The rank #(G) = max{|e| : ¢ € E}. For each edge e € E, we name an ordered sequence u = (i1, i, ..., i) as
an k-expanded edge from e (e-expanded edge), denoted by e < y, if the set of distinct vertices in y is e. Let
S() = {u : e < u} and S(G) = U,egS(e). Furthermore, let S;i(e) = {u € S(e) : i be the first element of ordered
sequence p} and S;(G) = U,eg,Si(e), where E; = {e : i € e € E}. If |E;| = 1, then vertex i is called pendent vertex.
For each edge ¢ € E satisfying i € e and |e| = 5, we have |S(e)| = s5|S;(e)| and

k!

1S(e)l = kol

ki, ks>15k1 +-+ks=k

The adjacency tensor Ag = (aj,..4,) of G is defined as follows

le]

ok ale), ife<(i,..., i) forsomee € E,
Aiyiy--iy = .
R 0, otherwise.
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For a vector x = (x1,X2,...,%,)" € C" and an k-expanded edge u = (i, ia,..., i), we write a;;,.; = a,
x(u) = x;; +xp, +o x5, 08 = x5,x;, o, and T =g - xg, XG0 X Then
n

(Acx); = Z L R Z axt = Zﬂ(é’) Z Xt (1.1)

in, =1 1€5,(G) eeE; LES;(e)

If Acx = AxF1 and x # 0, then A is called an eigenvalue of A and x is its corresponding eigenvector,
where xIF1 = (A1 651 xk"1)T. The spectral radius of Ag is the largest modulus of the eigenvalues
of Ag. If G is connected, then Ag is weakly irreducible [14]. Further by the Perron-Frobenious theorem
for weakly irreducible tensor [3], there is a unique eigenvector x satisfying ||x||x = 1 associated with p(Ag),
is called Perron vector of Ag. The maximum and minimum entries of x are denoted by Xmax and Xmin,
respectively. We call y := i:““ Perron ratio of Ag.

A hypergraph G = (V, E) is called R-graph if R = {|e| : e € E}. For a set S and integer i, let (f) be the family
of all i-subsets of S. A R-graph G with vertex set [n] and edge set ;cx ([';]) is called complete R-graph. In
particular, if R = {k}, then G is k-uniform hypergraph (k-graph). A hypergraph is non-uniform if [R| > 2.
For a vertex i, let R(i) = {le| : e € E;} [4]. In 1986, Brualdi and Solheid [1] posed the following problem:

Problem 1.1. Maximizing the spectral radius and determining the extremal 2-graph for a given class of 2-graphs.
Generally, we may ask a similar problem for R-graphs as Problem 1.1.
Problem 1.2. Maximizing the spectral radius and determining the extremal R-graph for a given class of R-graphs.

For R = {k}, that is the case for uniform hypergraphs. For |R| > 2, Problem 1.2 becomes more difficult
because of more complex structure of general hypergraphs. In this paper, we will study the spectral
extremal problems of {k, k — 1}-graphs. Let G, , be the class of connected {k, k — 1}-graphs of n vertices with
r pendent vertices.

2. Preliminaries

In this section, we present some notations and lemmas which will be used in our proof.

Lemma 2.1. For a connected general hypergraph G = (V, E) with rank k, let x be its Perron vector and u,v € V(G).
Ifi € e implies j € e for each e € E, then x; > x;. Moreover, if there is an edge ey such that j € ey but i & eg, then
Xj > Xi.

Proof. Since G is connected, p(G) > 0and x € R},. Let Ay ={e€E:ijecejand Ay ={ecE:jeeid¢el,
then E; = A U Ay, Ay N Ay = 0 and Ay = E;. By (1.1), we have

(A = Y a(e) Y ¥ =pGT,
e€E; UES;(e)

(Acx); = Za(e) Z x“‘j+Za(e) Z Xt = p(G)x’;‘l.
ecE; ues;(e) ecAy uesS;(e)

Then
P(G)(XI; - = Z a(e) Z x>0,

ecA; ueS;(e)
so x; > x;. If there is an edge ¢y € Ay, we have p(G)(x’]? —xf)>0andx;j>x. O
For a general hypergraph G, its weighted incidence matrix M = (M(u, €’))vixs(c)| is defined as following;:

M, ¢') >0, foru € eand e-expanded edge ¢/,
""71=0, otherwise.
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Definition 1. [14] A general hypergraph G = (V, E) with rank k is called p-normal, if it has a weighted incidence
matrix M such that the following conditions hold.

(1) Yeesic a@M(v,e’) =1, for any i € V and any e-expanded edge ¢'.
(2) Ilyew M(v,€’) = B, for any e-expanded edge €’
(3) M(u,e}) = M(u,e}), if € is deferent from e} only their order.

Furthermore, M is referred as consistent if for any cycle ugeurey - - - uj(u; = uo) and any e;-expanded edge e;,
ﬁ M(u; ¢ )
M(ul 1,€
In this situation, G is named consistently p-normal.

Lemma 2.2. [14] The spectral radius of a general hypergraph G = (V,E) with rank k is p(G) if and only if G is
consistently p(G)™*-normal.

Definition 2. A general hypergraph G = (V, E) with rank k is called p-subnormal, if it has a weighted incidence
matrix M such that the following conditions hold.

(1) Leesic a@M(v,e’) <1, for any i € V and any e-expanded edge ¢'.
(2) Tloee M(v,€’) > B, for any e-expanded edge e’.
(3) M(u,e;) = M(u,e}), if €] is deferent from e, only their order.

Furthermore, B-subnormal hypergraph G is referred as strictly if it isn’t -normal.

Lemma 2.3. For a general hypergraph G = (V, E) with rank k, if it is B-subnormal, then p(G) < B~+. Furthermore,
for strict B-subnormal hypergraph G, p(G) < B+

Proof. Assume that M be a weighted incidence matrix satisfying the conditions in Definition 2. Then for
any unit positive vector x = (x1, X2, ..., x,)T, we have

2 ) @] [

e€L e’eS(e) vee’

P IEC) | (O

€S(G) vee’

ﬂcxk

IA

IA

L Z Zvee’ a(e)(M(v,e’)xf,)
Bk k
¢'eS(G)

L kY., ZB’ESU(G) a(e)(M(v, e’)x’;,)
ﬁl/k k

Yoxg _ 1

B
Then p(G) < ﬁ‘%, and if f-subnormal hypergraph G is strictly, p(G) < ‘8‘%. O

Lemma 2.4. [14] If G is a subgraph of H with r(G) = r(H), then p(G) < p(H).

Lemma 2.5. [14] Suppose that H is a connected general hypergraph with r(H) = k and H’ is the hypergraph obtained
from H by moving edges (e1, . . ., e;) from (vy,...,v,) to u, where v; € e;, u & e; and H' contains no multiple edges. If
x € IR" is the Perron eigenvector of H and x,, > max<i</{xy,}, then p(H") > p(H).

Lemma 2.6. [14] If H is the hypergraph with the maximum spectral radius among connected general hypergraphs
with fixed number of edges, then H contains a vertex adjacent to all the other vertices.
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3. {k, k — 1}-graphs with the maximum spectral radius

Denote the complete {k, k — 1}-graph with order n by K, (k,k — 1). If n —r > k, let A},(k,k — 1) be the
general hypergraph obtained from K,_,(k, k — 1) by adding r new edges and r new pendent vertices, each
of new edge contains exactly the same k — 1 distinct vertices in V(K,_,(k, k — 1)) and a new pendent vertex.
See Figure 1. Obviously, A%(k, k — 1) = K, (k, k — 1).

A (ke k=1 B (k,k-1)

Figure 1: The hypergraph A} (k, k — 1) and Bj,(k, k — 1)

Theorem 3.1. IfH € G,,, and n —r > k, then p(H) < p(Aj,(k, k — 1)) with equality if and only if H = A}, (k, k — 1).

Proof. Let G = (V(G), E(G)) be the {k, k — 1}-graph with maximum spectral radius in G, ,, and V be the set of

pendent vertices in G. According to Lemma 2.4, we claim that G[V(G)\ V] is a complete {k, k—1}-hypergraph.
Let

E={e€EG):enV #0}={ey,... e,

and V; =e; NV fori € [s]. Obviously, s < r andV=ViUV,U---UV,. Suppose that |e;| — [V1| > |ea] = |V2| >
... > les) — |Vo|. Let F(V;) = ¢;\V;, then |[F(V))| = le;] — |V;| for i € [s] and

IF(VD)I 2 [F(V2)l 2 -+ = [F(V)] 3.1)

Let x be the Perron vector of Ag, and y = ’;‘ﬂ be Perron ratio of Ag. Then

p(G) = Z a(e) Z xt.

ecE(G) UeS(e)

Fact1. F(V,) € --- € F(V3) € F(Vy).

If there have two vertices v;, v; satisfy that v; € F(V;),v; € F(V;) and v; ¢ F(V}),v; ¢ F(V;). Without loss
of generality, we assume that x;, > x,,. Let H; be the hypergrph obtained from G — ¢; by adding the edge
(¢j — vj) U {v;}. Then by Lemma 2.5, p(H;) > p(G), a contradiction. Thus F(V;) 2 F(V;) or F(V;) € F(V)).
Further by (3.1), we have Fact 1.

Let Vo = V(G) — (V U F(V4)), F(V;) = F(V)\F(Viy1) fori = 1,2,...,s — 1 and F(V;) = F(V,). Obviously,
[Vol + [F(V1)l = n —r > kand |V1| + [F(V1)| < k, then [Vo| > [V].

By Lemma 2.1, we have x,,, = x, ifuj,up € Vi, F(V;) (i=1,...,s)or V. Fori=1,2,...,s, let x, := x; for
anyu € V;, x, :=Xx; forany u € I_T(Vi), and x, := xo for u € V.

Fact 2. If there exists some i € [s — 1] such that I_f(Vi) is not empty, then x; < X; < x41 and X > x;.

It is easy to see that x; > x; for i € [s] by Lemma 2.1.

Assume that x; > x;.1. Letv € Vi1, u € I_S(Vi), €, = (eis1 —0) U {u} and ¢y be the edge containing v and

any k—1 vertices of V(G) - V. Obviously, lejs1| = le}, ;| and [S(ei+1)| = [S(e}, )| Itis easy to see that there exists
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a bijection ¢ : S(ei+1) — S(e;,,), for any u € S(eir1), p(u) = u’ € S(e;,,
and keeping its number of times unchanged. Then x* < x*".
Now let H, be the hypergraph obtained from G by deleting ¢;;; and adding edges ¢;, , and ey. Obviously,

Hy € Gy, and E(Hy) = (E(G) — eis1) U {e},, eo}. Furthermore

Z a(e) Z xt

ecE(Hy) ueS(e)

_ Z ale) Z xt +a(el,;) Z xt + aeg) Z xt

) obtained from u by replacing v by u

\%

p(Ha)

ecE(G)—eis1 HES(e) peser,,) ueS(ep)
> Z a(e) Z xt + a(eir1) Z xt + aeg) Z xt
e€E(G)—ein pes(e) peS(eir) 1ES(eo)
> ) a@ ) ¥ +atea) Y, x =p(G),
€E(C) e pes(e) peS(ers)

a contradiction.

Fact3. |Vi|=1foranyi € [s].

Assume that |V;| > 1 for some i € [s]. Note thatn —r > k > |e]] — 1. Setvg € V;, V(G)\V ={v1,02,...,0u_},
and x,, > xp, > -+ > xp, .. For any u € V(G)\{V U F(V})}, let e} = (e;\{vo}) U {u}, 81‘2 contain vy and the first
le;l — 1 vertices of {v1,v,...,0,—}. Obviously, le;] = Iel.zl and |S(¢)| = IS(el.Z)I. Similar to Fact 2, there exists a
bijection ¢1 : S(e;) = S(e?), for any u € S(e;), p1(u) = i’ € S(e?) is obtained from u by replacing ¢;\{vo} by the
first |e;| — 1 vertices of {v1, vy, ..., v,—,} and keeping its number of times unchanged. Then x# < x

Now let Hj be the hypergraph obtained from G by deleting ¢; and adding edges ¢! and ¢?. Obviously,
Hs € Gy, and E(H3) = (E(G) — ;) U {e}, e7}. Furthermore

Z a(e) Z xt

ecE(Hz) LE€S(e)

= Z a(e) Z x“+a(e}) Z xt +a(ef) Z xt

v

p(Hs)

e€E(G)—e; pes(e) pes(er) uES(e?)
> Z a(e) Z xt + a(e;) Z xH +a(el.1) Z xH
e€E(G)—e; uesS(e) HeS(e)) ues(e})
> ) a) ) x+ae) Y 2 =p(G),
e€E(G)—e; UeS(e) pes(er)

a contradiction.

By Fact 3, wehaves =rand k-2 < [F(V;)| < k- 1.

Fact 4. |ej| = k for any 7 € [s].

By Fact 1 and Fact 3, we have k > le1| > |es| > --- > |es] = k — 1. Without loss of generality, we assume
that |er| = --- = |es,| = k and |es, 41| = --- = les| = k=1, where 1 <51 < s. Let the spectral radius p(G) = p of G.
Note that x be the Perron vector of G. Define a weighted incidence matrix M as follows:

Hvee’ Xo
M(u,e’) = { pxj

, foruee,

0, otherwise.

Obviously, if e] is deferent from 7, only their order, then M(u, ¢]) = M(u, ¢)).
Then for any ¢’ € S(G) have

HM(u,e’) = H M =p k=8,

. =
uee’ uee’ P Xy
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for any u € V(G), according to the eigenequation, we have

Z a(e)M(u,e’) = Z L&fe,xv =1,

¢ESu(G) ¢€52(G) pXy

and for any cycle upejuie; - - - wy(u; = 1p) and any k-expanded edge e, have

So M satisfies Deﬁnition 1.

Since a(e) = |s( e)l we have

—_— forle =k
_ )& ,
ale) =4 S
© {—2(];!1), forle|=k-1.

Next, we analyze the edges as follows:

(i) For an (k — 1)-edge e that contains v, we can extend it into k — 1 different k-edge if we don’t consider
the order of the vertices, for convenience, denoted them as ex){v}, e){v}, ..., ex-1){v } where eg-1){0}

contains two v. For each of e;{v},i € [k — 1], if e {v} contains only one v, there are & k—expanded
edges in Sy(e); if ey {v} contains two v, there are (k — 1)! k-expanded edges in Sy(e).

(ii) For an k-edge e, there are (k — 1)! k-expanded edges in S,(e) for any v € e.

Suppose (es,\es,+1) N F(Vy,) = {w}, v € F(Vg,41), vo € V,ueV,.

C1+1| =

o Let{el,...,e,...,e} € E(GIV(G\V]) such thatw € €},i = 1,2,...,c,and |¢}| = -+ = |}, | = k, e}
P |g:| :k—l;
o Let{e],...,e/,...,e,} C E(G[V(G)\l_/]) such thatv € ¢/,i =1,2,...,¢, and |¢]| = = e/, | =k, Iec al =
1
=leLl=k-1;
o Let{e7, e, e} c E(G[V(G)\V]) suchthatu ee’,i=1,2,...,¢",and l¢]| = |e | =k, |€c~+1| =
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Now we may write:

(1) ZM(w ez)+ZM(we)+ Z[ ZM(w € lw)) + M(we nfoD] = 1;

i=c1+1 j=1

2 iM(Z_),Ei) + i ZM(Z) eij){o}) + M(Z) e; k-1){oh] + ZM(U ¢)+
i=1

i=s1+1 j=1

[od 1 k-2 2
Y LE ) M@, (D) + TME@ ey (D] = 1

i=c+1 =1

3) ZM(u &) + Z[ ZM(u ) + MG, e )] = 1;

i=cy+1
(4) M(vg,e;)) =1, forvgee;, i=1,2,...,5
=
5) - ZM(vo,el (Hivo}) + M(vo,e, e-nlvo}) =1, forvg€e;, i=51+1,.
j=1

(6) HM(U,ei) =g, fori=1,2,...,5

vee;

H M(v,eij{v}) =B, forany jelk—-1],i=s1+1,...,s

UEE‘,(]‘){U}

. 2y, _ XX
For e,,, for convenience, we set M(w, e;,) = ;x_kjo :=xp and M(v,es,) = :xgo := yo. Note that M(vy, e5,) =
=

k-2
XuXs 2Xg xwx,

= T = =1, and Xmax = X5, Xmin = Xy, by Lemma 2.1, then
0
xwxvo Xovo \ k
Yo = = (=)= ( ).
px, X5

Lete;, = e;,\w and Hy = G —¢,, + e,,. Construct a weighted incidence matrix M’ of Hy as following:

M(v,¢e’), fore ¢ S(es,),
1
kTI

M'(U 6’,) _ ﬁ e =Esl,(]-){vo},v=5,fori= 1,...,k—2,
T g, e = e k-nivo}, v =70,
1, vee €S(e)dwv) =1.

where vy € ¢;,. For some pendent vertex v € e € {ey, ..., €5}, we have

=a(e) Z xH%,

1€y ()
that is
X% _
p =ale) Z — <k/.
HESy (e) ~og
0
So, we have
k-2 2 k-2 2
‘Bk%l + E‘Bk%z = T _% + %p_ﬁ

IN
—~
=
~
s
AN
~
R‘I
KR
+
=N
—_
=
S
P
N
~
-
™l
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2k-2 k(k-1)

= (k- 2)k_ﬁy +2k_ﬁy_ﬁ

_ k=2, 2
- k% ‘)/ ka_Z
< vy =

Now for e;,, it has

GJZMwm+ZMww+2[thMMHHsz%DHn

i=1 i=c1+1 j=1
=1-M(w,es) <1;
-2

;T.

2 k=2, 2., _
M (U s1,( ]) }) + %M (U, eslr(k_l){v}) = k ﬁk% + Eﬁkd <Y = M(Z), €5 );

@

1=

> .
|
No=

o 2 _
M’ (v, e, (j{vo}) + EM (vo, €5, -1y {vo}) = 1, for vy € &;y;
=

@ [] M@z g =p forumes, 1<j<k-2

vees, () {vo}

G [[ M@l =p, foro ez,

vees, k-1){vo}

=

®)

.

So H, is strictly f-subnormal. By Lemma 2.3, p(Hy) < ‘8‘% = p(G). Then |e;| = k,i € [s] and F(v1) = F(vp) =
-+ =F(vs). SoG= Al(k,k—-1). O

Letn—r = k—1andr > 2, let B, (k, k—1) be the general hypergraph obtained from edge ey = {u1, up, ..., ur_1}
by adding r new pendent vertices and r new edges, each of new edges consists of all vertices in ¢y and a
new pendent vertex. See Figure 1.

Theorem 3.2. If H € G,,, n—r =k—1and r > 2, then p(H) < p(Bj,(k, k — 1)) with equality if and only if
H = Bl (k, k- 1).

Proof. Let G = (V(G), E(G)) be the {k.k — 1}-graph with maximum spectral radius in G, ,, and V be the set
of pendent vertices in G. Let V = V(G)\V ={uy,up, ..., ur1}and E={e € E:enV # 0} = {ey,...,e}. Let
Vi=e;NnV, thenV =V,UV,U---U V.. Obviously, we have ey = {uy, 1, ..., ux-1} € E(G) and E(G) = {eo} UE.
Without loss of generality, suppose that

leal = IVl = lea| = [Vl 2 -+ > |es| = [V].

Let x be the Perron vector of G. Similar to the proof of Facts 1-3 in Theorem 3.1, we have |V;| = 1 for any
i€[s]ands=r.

Fact 5. |ej| = k for any 7 € [r].

Noting thatk = |e1| > |eo] > - - - > |e;| > k—1, without loss of generality, we assume that |e;| = - -- = |e,| =k,
les, 41| = --- = le;| = k=1, then F(V1) = --- = F(V,,) = Vo, where 1 < s, <r. Let p(G) = p = ﬁ‘%. Define a
weighted incidence matrix M; as follows:

Hvee;{ Xo
Ml(u/ g') = qu

0, otherwise.

, foruee,

Then M; satisfies Definition 1.



J. Zhou et al. / Filomat 38:20 (2024), 7215-7234 7223

Suppose e, \e5,+1 = W,V € F(Vy11), v € V. Now we may write:

(1) ZM1(w e)+ < ZMl(w eo(Hiw}) + Ml(w eok-niw}) = 1;

) ZMl(U e;) + Z[ ZMl(U eij){o}) + Ml(v ei k-1l

i=sp+1 j=1
=
ZM1 (@, eo,j{0}) + M1(U eo,k-niv}) = 1;
j=1
(3) Mq(vg,e;)) =1, forvgee;, i=1,2,...,s
=
4) - ZMl(vo,e, (Hivo}) + Ml(vo,e, k-nivo}) =1, forvg €e;, i=s+1,...,5;
j=1

5) HMl(U,e,-) =B, fori=12,...,5

vee;

[T Mi@eploh =g foranyjek-1], i=s+1,...,5

UEE{/(;‘){U}
H M (v, eo,j{v}) = B
'(]EE(),U)[Z)}
. xl:, leo — xwxvo
For e,,, for convenience, we set My(w, e;,) = = X0, M1(v, e5,) = o2 := yp. Note that M;(vy,e;,) =
XX 2, Xy x
WX xg xedk?
e pvk‘l =1, and Xmax = X5, Xmin = Xy, by Lemma 2.1, then
XwXoy KXoy 1
Vo=—% =(2) =)

pxZ X5 Y
Let Hs = G —e;, + &5, where ¢;, = ¢;,\w. Construct a weighted incidence matrix M/ for Hs as following:

Mi(v,e), ¢ ¢S(,),
1 _ —_
1, ! = ; ,o=0vfori=1,...,k-2,
M (0,¢') = ﬁ: ¢ _st,<;>{vo} 0 =9 fori
pe, ¢ = e, k-nlvol, v =7,
1, vee €S(e,)dw)=1.

where v € ¢;,. Similar to Theorem 3.1, we have

k;zﬁklﬁ_’_

gz <y* =y,

=N
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Now fore,, it has

521

W LM+ g ZM'(w eniplol) + M3 0, o nfol) = 1= Ma(w,e.) < 1

1a 2 k-2 2
) T M (@, e,,){}) + %Mll(z_J/ESz,(k—l){E}) = BT + Eﬁﬁ < yo = Mi(v,es,);
=
132 2
©)] % M (vo, €, ,j{vo}) + %Mi(UO,Esz,(k—l){vo}) =1, for vy € &;,;

j=1
@ [] Mi@E.pled)=p foroged,, 1<j<k-2;
v€s, (j{vo}
G [[ Mi@e.xnle) =p, foro ez,
vees, (-1){vo}

So M is strictly f-subnormal. Also by Lemma 2.3, p(Hs) < Bt = p(G). Then lejl = ki =1,2,...,r and
F(v1) = F(v2) = --- = F(v,) = V. Thus we get that G = B, (k,k—1). O

Letn—r=1, Ci’ﬁlfl(k, k — 1) be the hypergraph in G, , with a k-edges and b (k — 1)-edges. See Figure 2.
Obviously, each of k-edges contains k—1 pendent vertices, each of (k—1)-edges contains k—2 pendent vertices,
then a(k —1) + b(k—2) = r. According to Theorem 4.3 in [2], we know that C”1 b *,(k, k= 1) have the maximum
spectral radius in G, ,—1, where b; is the maximum solution of congruence (n b1 (k—2)—-1) = 0(mod k — 1).

et (k k1)

Figure 2: The hypergraph C’};b 1 k=1)

Forn—r=2,let

e k'-edge be an edge consisting of two non-pendent vertices and k — 2 pendent vertices;

e k*-edge be an edge consisting of a non-pendent vertex and k — 1 pendent vertices;

e (k—1)'-edge be an edge consisting of two non-pendent vertices and k — 3 pendent vertices;
e (k—1)>-edge be an edge consisting of a non-pendent vertex and k — 2 pendent vertices.

Let D’flbcg(k k—1)bea {k, k- 1}-graph in G, , with a k'-edges, b (k— 1)'-edges, c k*-edges, d (k — 1)*-edges,

and a(k —2) + b(k — 3) + c(k — 1) + d(k — 2) = n — 2. See Figure 3. For convenience, let

e E; be the set of k'-edges in Dzhcg(k k-1);
e E; be the set of k?-edges in Dib “k, k- 1);
e Ejbe the set of (k — 1)'-edges in D" bied “o(k k—1);
e E4be the set of (k — 1)>-edges in D bcg(k k—1).
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D5 (ke ke —1)

Figure 3: The hypergraph Di’i’i’d(k, k-1)

Then E(D}"“5(k,k = 1)) = Ey UE; U E3 U Ey.

a,b,c,d

By Lemma 2.6, we may assume that k*-edges and (k — 1)*-edges of D/

vertex in common.

(k, k — 1) have a non-pendent

Lemma 3.3. Suppose that D" <4 (k, k1) and D4 (k, k—1) are two {k, k- 1}-graphs with a; (k—2) + by (k—3) =

nn—-2 yil

ay(k = 2) + ba(k — 3) and by < by. Then p(D51"5 (k, k = 1)) < (D225 (k, k = 1)).

Proof. Let uy,u; be the two non-pendent vertices in V(Dif;lbf’zc’d(k, k-1)) and E(D‘:f/;ibf’zc’d(k, k—-1)=E UEU
E3 U E4. According to the definition of D':l’l;’i’;(k,k — 1), without loss of generality, we set u; € e € E3 U E4.

Clearly, |E1| = a2, |E2| = by, |Es| = ¢, |E4| = d.

Let G := D" (k,k — 1) and p(D™"$*(k,k — 1)) = p~F, by Lemma 2.2, there is a weighted incidence
matrix M, which satisfies the following conditions:

Lees,c) 4e)Ma(v,e’) =1, VYo e V(G)and any e-expanded edge ¢/,
[Toew Ma(v,€’) =B, Y e € 5(G), (3.2)
Ma(v,e]) = Ma(v, €)), e} is deferent from e/, only their order.

For an (k — 1)!-edge ¢, we may extend it into k — 1 different k-edge if we don’t consider the order of the
vertices, denoted by eqy{u1}, ep){u1}, ..., eg-2){u1}, ex-1){u1}. We may suppose that e_»){u1} contains a 11 and
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two uy, and e_1y{u1} contains two 1, and a u,. Now we may write:

k-2
(1) Z Mo (uy, e) + Z[% Z Mo (uy, egyfur}) + %MZ(Mlze(k—l){ul})]

e€E, ecE; i=1

k-2
+ Z My(uy,e) + Z[% Z My (uy, eyfur}) + %Mz(ulze(k—l){ul})] =1

ecEs ecEy i=1

k-2
() Z My (uz, e) + Z[% Z Mo (uz, egyfur}) + %MZ(uLe(k—l){ul})] =1;

ecEq ecEy i=1

k-2 (3.3)
3) —ZMz(v,e(,){ D+ Mz(v ewiv) =1, foroce e Ey UEy, d(v) = 1;

i=1
(4) My(v,e)=1, forveee E{UE;3, d(v) =1;

() HMZ(U, ¢) = Ma(ut1,€)Ma(u, ¢) = B, for e € Ey;

vee

H M2U€(1) u1 ﬁ fore e E, UEy;

VEE(j) {ul ]

(7) My(u1,€) =B, fore € Es.

Foranye € E,, for convenience, we may write My (t11, ey {u1}) 1= x, Mo (111, eg—){u1}) := x1, Mo (11, eg-1y{u1}) :=
X2, Mo (ua, elun}) := y, Ma(uz, e—n){u1}) := y1, Mo(ua, eg—1ylur}) := y», wherei = 1,...,k — 3. Then according
to (6) of (3.3), we have

=p,
x1y =B,
2y2 = p.

Note thatx > 8,y > B,x1 > B, y2 > .

Choose by — by edges in E;, and let E/, be the set containing all these edges. Further let E] be a set having
% = a1 —ay edges, each edge in E] consists of 1, up and (k—2) pendent vertices. Then D“1 bl (k k-1)
may be obtained from D/ bt d(k k — 1) by deleting the edges in E’, and adding the edges in E.

Define a weighted incidence matrix M; for D}"""7 bued e ke —1):

My (v,¢’), fore’ ¢ S(E)),

M, (0,¢') = Xo, vee e S(E’l),v =1u,
2770 Ny, vee €SE),v=1u,
1, vee €S(E)),do) =1.

where 0 < x9, ¥ < 1 and xo, yo satisfy

1 k— 1 2
Xg < P ZeeE;[Tax + X1 + FXZ]’
1 k=3 1 2
Yo < oo Leer) [TV + 101 + 2]
XoYo = ﬁ
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where xg, 1o may be taken because

(alluz ZeeE [_x + kxl + ka])(allaz ZeeEé[k;_e'y + %]/1 + %]/2])

p
(bz — ) [Rx+ 1 + 2]y + fy + 2yl
(a1 — a2)*B
[—x + i1+ 0ll2y + i+ 2]
p
k=3 1 2x.k-3 1y 2
ettt e e

Byi B 1
k-3 01 20 k-3 1(5)? 2
et e e !
k-2 2.1 4 k=111,
=l E(ﬁz)z][T*‘%(ﬁTl)z]
> 1.

For each edge in E7, it has

k-2
1) ZMQ(MLE) = (a1 —a2)xp < Z[% ZMZ(ulle(i){ul}) + %MZ(ulre(k—l){ul})];

’ ’ P
e€E] e€E) i=1

k-2
) ZMQ(MZ,E) = (1 —a)yo < Z[% ZMz(uzle(i){Ml}) + %Mz(uz,e(k—n{m})];

’ ’ g
e€E] e€E) i=1

3) HM'Z(U, e) = Mjy(u1, e)Mj(uz, e) = xoyo > B, fore € Ej;
vee

(4) My(v,e)=1, forveeeE], dv)=1.
So M, is strictly f-subnormal. By Lemma 2.3, p(D“‘ b, Cd(k k-1)) < p(D‘” b2, Cd(k k-1)). O

Lemma 3.4. Suppose that D‘:Z’/l;l’c_lz’dl (k,k—1) and Dfl’/l;’fzz’dz (k, k—1) are two {k, k—1}-graphs with c1(k—1)+d1(k—2) =
ca(k = 1) +dy(k = 2) and dy < dy. Then p(D}" % (k,k — 1)) < p(DV %% (k,k — 1)).
Proof. Let uy,uy be the two non-pendent vertices in V(D"bc2 Ak, k — 1)) and E(D‘;bc2 Ak k—1)) = Ey UE, U
E3 U E4. According to the definition of Dzbc”](k k — 1), without loss of generality, we set u; € e € E3 U Ey.
Clearly, |E1| = a,|Ez| = b, |Es| = ¢, |E4| =

Let ‘O(D“’b’cz”’l2 (k,k-1)) = ﬁ‘%, by Lemma 2.2, there is a weighted incidence matrix M3 which satisfies the

R nn=2
following conditions:

Lees,c HeMs(v,e’) =1, Vv e V(G)and any e-expanded edge ¢/,
[Toee M3(v,¢') =B, Ve € 5(G), (3.4)
M;s(v, e]) = Ms(v, €5), e} is deferent from ¢/ only their order.
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Now we may write:

k-2
1) Z M3(uy,e) + Z[% Z Ms(uy, eiur}) + %M3(M1,€(k—1){u1})]

ecE, ecE; i=1

k=2
+ Z M3 (uy,e) + Z[% Z M3 (uy, e fur}) + %M3(u1/€(k—l){ul})] =1

ecE3 e€Ey i=1

k=2
1 2
) Z Ms(uy, e) + Z[% Z M3 (uz, e {ur}) + %M3(”2,6’(k—1){u1})] =1
ecE, ecE; i=1
) 2 ) (3.5)
(3) % ZMg(U, emiv)) + %Mg(v, ee-nio}) =1, forveee E, UEy, d(v) = 1;
i1

(4) M3(v,e) =1, forveee E{ UE3, d(v) =1;
() [ [ Ms(,6) = Ma(aur, e)Ms(ua, €) = B, for e € Ey;

vee

(6) H Ms(v,ep{ui}) = B, fore € E; UEy;

vee){u1}
(7) Ms(uq,e) =B, fore € Es.

Choose d, — d; edges in E4, and let E) be the set containing all these edges. Further let E/, be a set having

(dr—d1)(k=2)
=

may be obtained from D‘;’%izz’dz (k,k — 1) by deleting the edges in E] and adding edges in E’.

= c1 — ¢z edges, each edge in E} contains (k — 1) pendent vertices and u;. Then D’;’Z’C_lédl (kk—-1)

. . o . ’ ,b,c1,d .
Define a weighted incidence matrix Mj for Dj "% (k, k — 1):

M;s(v,¢’), fore’ ¢ S(EY),
Mj(v,e’) =45, vee €S(E),v=u,
1, vee €S(E)),d) =1.

For each edge in E7, it has

152 ) = 5
(1) ZM&(HL@) = (C1 —Cz)ﬁ < Z[%Zﬁ-'_ Eﬁ] < Z[%Zﬁ*‘ %ﬁ%]
1

’ ’ S ’ g
ek} ecE) i=1 e€E} i=

19 2
= Z[% Z Ms(uy, e fur)) + EMs(ul,e(k—l){m})];

eeEy, " i=1

@ [[Ms@e) = Miu,e) =, fore € Ey;

vee

(3) Mi(v,e)=1, forvee€E], dv)=1.
So My is strictly p-subnormal. By Lemma 2.3, (D" (k, k — 1)) < p(D**%% (k,k - 1)). O

N n,n—2

Lemma 3.5. Suppose that D" (k, k- 1) and D"k, k—1) are two {k, k—1}-graphs with by(k—3) +d3 (k- 2) =
by(k = 3) + dy(k — 2) and by > by. Then p(D“5%(k, k — 1)) > p(D“25% (k, k - 1)).

nn—-2 nn-2
Proof. Letuy, us be the two non-pendent vertices in Dfl’,lsfz’d3 (k,k—1)and IE(D‘;;ﬁ’jfz’”’3 (k,k=1)) = EyUE,UE3UE,.
According to the definition of DZ’b’C’g(k,k — 1), without loss of generality, we set u; € e € E3 U E4. Clearly,

M

|E1|l = a,|E| = b3, |E3| = ¢, |E4| = ds.
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Let p(D*?5%(k,k — 1)) = B+, by Lemma 2.2, there is a weighted incidence matrix M, which satisfies the

. n,n—2 .y
following conditions:

Yees,c Ae)My(v,e’) =1, Vv e V(G)and any e-expanded edge ¢/,
[Toee Ma(wy, e’) =B, Y e € S(G), (3.6)
My(v,€]) = My(v, €)), e} is deferent from e/ only their order.

Now we may write:

k-2
1) Z My(uy,e) + Z[% Z My(uy, eyfur}) + %M4(M1,E(k—1){u1})]

e€Eq ecE; i=1

k-2
+ Y MG, €)+ Y [e Y MaGa, elil) + TMaGun eqonliad] = 1

e€E; e€Ey i=1

k-2
1 2

(2) Z M4(u2/ e) + Z[% Z M4(u2, E(i){ul}) + %M4(Ll2, e(k—l){ul})] = 1/

e€E; e€E, i=1

1y 2 (3.7)
®) x ZM4(U/ ew{o}) + %M4(U, ex-niv}) =1, forveee E, UEy, d(v) = 1;

i=1

(4) M4(U,€) = 1, forveee El U Eg, d(’U) = 1,'

(5) | [ Ma(o,0) = M1, )My (2, €) = B, for e € Ey;

vee
© J] Maewtm)) =p, foree By UE,;
Z)EL’(,‘)lull

(7) M4(1/l1,€) = ‘3, fore e E3.

Similar to Lemma 3.3, for any e € E;, we may write My(uy, epiui}) = x, My(uy, ep—o{tn}) = x1,
My(ur, ey iu1}) == x2, Ma(uz, epiun}) == y, Ma(ug, ep—{un1}) = y1, Ma(uz, ep-1){u1}) = yo, where i =
1,...,k—3. Then according to (6) of (3.7), we have

xy =p,
x1ys =6,
Xy2 =

Note thatx > B,y > B,x1 > B, 2 > B.

Choose bs — by edges in E;, and let E/, be the set containing all these edges. Further let E} be a set having
% = dy — d3 edges, each edge in E} contains (k — 2) pendent vertices and {u;}. Then DZ’,Z{CZ’”I“ (k,k-1)
may be obtained from Di’f:ffz’d‘* (k,k — 1) by deleting the edges in E/ and adding edges in E}.

Define a weighted incidence matrix M for D’:l’,l;“fz’d4 (k, k—1):

My(o,¢), fore ¢ S(E,),

M. (0, ¢) = B, ¢ =eplmt,e€ E ,v=u,fori=1,..., k-2,
7 - 1 , ’
4 ﬁzl e = e(k—l){ul}re € E4,U = Uz,

1, vee €S(E),dwo) = 1.
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We can get

Y L 2l - - a2+ 21

e<E, k
= s - b 2 3x+im+im1( - a2 2p e 2t
L 2 22 2
>%m—ﬁb=%«£ﬁ—ﬁw
> 0.

For each edge in E}, it has

k-2
1) Z[% Z M (uy, e fur}) + %Mz’;(ulle(k—l){ul})]

eeE, " =1

k-2
< Z[% Z May(uz, elu}) + %sz(uhff(k—l){”l})]?

ek i=1
k=2
(%Zwm@+Z[ZMwmmmAmemma
e€Eq eeEz\E i=1

k=2
3) kZMg(v e lo}) + M4(v ewnfv) =1, forv e e € E, d(v) = 1;
=1
@[] Mi@ et =M@, epm) =p, foreeE, i=1,... k-2

vee){ur}

© J] Miewnimd) = My, eelmh)? = p.

VEE(k-1) {ur}

So M is strictly -subnormal. By Lemma 2.3, p(D‘flb4 Ak, k — 1)) < p(D"5(k, k= 1)). O

nn—2

Lemma 3.6. Suppose that D54 (k, k—1) and D" (k, k—1) are two {k, k- 1}-graphs with as(k—2) +cs(k—1) =

nn—2

ae(k — 2) + co(k — 1) and as > ag. Then p(D”SbC”l(k k—1)) > p(D™ <Ak, k — 1)).

nn-2 nn-2

Proof. Letuy,u; be the two non-pendent vertices of D”5 vy d(k k—1)and E(D"5 ey d(k k—1)) = E{UE,UE3UEy.

A

According to the definition of D‘;b “

|E1| = as, |E2| = b, |E3| = ¢s5, |[E4| = —]
Let p(D’;5 bics, d(k k—1)) = p7%, by Lemma 2.2, there is a weighted incidence matrix M5 which satisfies the
following condltlons

(k,k-1), w1thout loss of generality, we set u; € e € E3 U E4. Clearly,

Lees,c) #e)Ms(v,e’) =1, Vv e V(G)and any e-expanded edge ¢/,
[Toee Ms(v,¢") =B, Ve € 5(G), (3.8)
Ms(v, e]) = Ms(v, €5), e} is deferent from ¢/ only their order.
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Now we may write:

k-2
1) 2 Ms(uy,e) + Z[% Z Ms(uy, epyfur}) + %MS(”he(k—l){ul})]

ecE, e€E; i=1

k-2
+ Z Ms(uy,e) + Z[% Z Ms(uy, e fur}) + %M5(M1,€(k—1){ul})] =1

ecE3 ecEy i=1

k-2
1 2
) ZM5(M2,€) + Z[% ZMS(W, eaiut}) + %MS(MZ/E(k—l){ul})] =1
ecE, ecE, i=1

k-2
3) —ZM5(ZJ elo}) + M5(v ewfv) =1, foroce € Ey UEy, d(v) = 1;

i=1
(4) Ms(v,e) =1, forveee E{ UE3, d(v) =1;

(5) HM5(U, e) = Ms(u1,e)Ms(uz,e) = B, fore € Ey;

vee

H Ms(v, epiur}) = B, fore € Ey U Ey;

vee(fur}
(7) Ms(uq,€) =B, fore € Es.
Choose a5 —a¢ edges in Ey, and let E] be the set containing all these edges. Further let E be a set having
ms_zéﬂ = ¢ — ¢5 edges, each edge in E} contains (k — 1) pendent vertices and {u;}. Then DZG bics, d(k k-1)
may be obtained from D" besd e,k —1) by deleting the edges in E{ and adding edges in E.

’ ,b,cs,d
Define a weighted incidence matrix M, for Di“n Sk k= 1):

Ms(v,¢’), fore’ ¢ S(E}),
Mi(v,e’) = < Ms(u1,e0), v€e €S(EL),v=u,
1, vee €S(E)),d) =1.

where ¢y € E;. For each edge in Ej,, it has

(1) Y My(u,€) = (c — c5)Ms(t, e0) < Y Ms(uu1, €) = (a5 — ag)Mis (11, €o);

e€E] e€E]
k-2
@ Y Miw0)+ Y[ Y Mifus, elun]) + 2 Ms(us ey lua)] < 1
eEEl\E’ ecE, i=1

®) [[Ms@ ) = My, ) = Ms(ur, e0) > B, fore € E5;

vee

(4) Mi(v,e) =1, forveeeE], d(v) = 1.

So M, is strictly -subnormal. By Lemma 2.3, ‘O(Df;’”bcz6 (k,k—1)) < p(fo”b 5 Yk k-1). O
Lemma 3.7. Suppose that D" (k, k—1) is a {k, k—1}-hypergraph. Then p(ijﬂb 5 (k,k=1)) > p(Dy Vhedr+l (e f—
1)). ’

Proof. Letu,u; be the two non-pendent vertices of D””b’c’d7 (k,k—1)and E(D“7’b’c’d7 (k,k—1)) = E{UE,UE3UEy.

According to the definition of Dzbcg(k k-1), w1thout loss of generality, we set u; € e € E3 U E4. Clearly,

|E1l = az,|E2| = b, |E3| = ¢, |E4| =
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Let p(DZ7,’1bf2’d7 (k,k = 1)) = p = B~ and x be the Perron vector of D’:l7;lbfz’d7 (k,k — 1). Define a weighted
incidence matrix Mg as follows:

[Toee Xo
Me(u,e’) = P
0

7

, foruee,
otherwise.

Then Mg satisfies Definition 1.
Now we may write:

k-2
1) Z Me(uy,e) + Z[% Z Me(u1, eyfur}) + %M6(u1/€(k—1){u1})]

ecEq ecky i=1

k-2
+ Z Me(uy,e) + Z[% Z Me(u1, efur}) + %Mé(ulle(k—l){ul})] =1

ecE; e€Ey i=1

k-2
) Z Me(uz, e) + Z[% Z Me(uz, epyfur}) + %M6(u2/€(k—1){u1})] =1;

ecEq ecEy i=1
k-2
1 2
3) % ZMﬁ(U, e@io}) + %Me(v, ex-ni{v}) =1, forvee€ E UEy, d(v) =1;
i=1

(4) Mg(v,e) =1, forveee E{UE3, d(v) =1;
5) HMe(U/ &) = My(1,)Ms(u, ) = B, for e € Ey;

vee

H Mg (v, epiur}) = B, fore € Ep U Ey;

vee){ur}

(7) Me(u1,e) = B, fore € Es.

. X,
For e; € E1, let vy € e; and d(vy) = 1. For convenience, we set Mg(u1,e1) = :j{ —- := yo. Note that
lll
Xup Xup X557 Xy Xy
Ms(vg,e1) = PTU = plx_uoz =1, and Xmax = Xy, Xmin = Xy, by Lemma 2.1, then

0
k-2

xblzxv xvo k _ 1 k

Yo = =(=)' =)

Xuy V4

Ml

Lete] = e;\uz and fo;}’zb’c’d”l(k, k=1)= Dfl7ff2’d7 (k,k—1) —e; +¢]. Construct a weighted incidence matrix

M of D77 Voedr+l (e k — 1) as following:

nn—2

Mg(v,¢’), fore’ ¢ S(e)),

, e =e A}, v=uyfori=1,...,k-2,
Mo, =17, pltal v =

ﬁzl e _el(k 1){ } v:ulr

1, vee €S(e)do) =1

Similar to Theorem 3.1, we have
k-2 2.1 k=2 2 &
& Prip = e
k-2

IA

2 (ky" b

k(k 1)

= (k= 2k Kty D 4 g1y
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k-2 2
Jek+1 Y + k§+17/
< vy =

Now for ¢/, it has

1% 2 k-2 2
(1) % ;‘M’G(Lil/@i,m{ul}) + EMé(ul’ei,(k—l){ul}) = Tﬁ + E‘[gé < Yo = My(111,€1);
1 k-2 2
@ Y, M0+ Y [3 ) Milua,eolin) + Ml )] < 1
e€E, \ei ecEy =1
@) ] Mi@elm) =M, eplm) = for1 < j<k-2;
vee{m {u1}
@ [ M@ el gyl = My, e lmh) = .
veey o )

1,(k-1)

So M is strictly p-subnormal. By Lemma 2.3, p(D” 2! (k, k — 1)) < p(D"5" (k,k - 1)). O

nn-2 nn-2
Theorem 3.8. Among all {k, k — 1}-graphs in G, ,—>. The hypergraph D’:ﬁfﬁfo’o(k, k — 1) has uniquely the maximum
spectral radius, where cp = min{c|a(k —2) +b(k—3) +c(k—1) =n—2, a,b > 1} and by is the maximum solution of
congruence ((n —co(k—1)) = bo(k —3) — 2) =0 (mod k - 2).

Proof. Let H be the {k, k — 1}-hypergraph with maximum spectral radius in G, ,—>. By Lemma 3.6, the more
k'-edge, the bigger the spectral radius of H; By Lemma 3.5, the more (k — 1)!-edge, the bigger the spectral
radius of H. Thus H has as many k'-edge and (k — 1)!-edge as possible.

By Lemmas 3.4 and 3.6, we get H has as few k*-edge as possible. By Lemmas 3.3 and 3.7, we have

H= ij‘ffﬂ’;o'o(k, k—1), where ¢y = min{c|a(k —2) + b(k —3) + c(k—1) = n—2, a,b > 1} and by is the maximum
solution of congruence ((n = co(k — 1)) = bo(k - 3) =2) = 0 (mod k- 2). [J
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