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A new result on orthogonal factorizations in networks
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Abstract. Let m, n, v, A and k; (1 < i < m) be positive integers satisfying 1 <n <mand ky > kp > --+ >
kn = (3A —1)r — 1. Let G be a graph, and let H be an mA-subgraph of G and # = {Fy,F,,--- ,F,} be a (g, f)-
factorization of G. If for any partition {A;, A,, --- , A} of E(H) with |A;| = A, G admits a (g, f)-factorization
¥ = {Fy,F,,--- ,F,} satisfying A; C E(F;) for 1 < i < m, then we say that ¥ is randomly A-orthogonal to
H. Let Hy,Hy, -+, H, be r vertex-disjoint nA-subgraphs of a [0,k; + k, + -+ + k,, — n + 1]-graph G. In this
paper, it is proved thata [0, k; + k; + - - - + k,, — nn + 1]-graph G contains a subgraph R such that R possesses a
[0, k;]}-factorization randomly A-orthogonal to every H;, 1 <i <.

1. Introduction

Many real-world networks can be modelled by graphs or networks. An important example of such a
network is a communication network with nodes representing cities and links corresponding to communi-
cation channels. Other examples include an aviation network with nodes modelling aviation stations and
links representing air lines between two stations, or the World Wide Web with nodes corresponding to web
pages and links modelling hyperlinks between web pages. Many real-life problems on network design and
optimization, e. g. coding design, scheduling problems, the file transfer problems on computer networks,
building blocks and so on, are related to the factors, factorizations and orthogonal factorizations in graphs
[2]. A Room square of order 2n can be modelled as the orthogonal 1-factorization of K3, which was first
posed by Horton [9]. Euler [5] first discovered that a pair of orthogonal Latin squares of order # is related
to two orthogonal 1-factorizations of K, ,. A network can be represented by a graph, vertices of the graph
corresponds to nodes and edges of the graph corresponds to links between the nodes. Henceforth we use
the term graph instead of network.

The graphs discussed in this paper will be finite, undirected and simple. Let G be a graph with vertex
set V(G) and edge set E(G), and let g, f : V(G) — Z be two nonnegative functions satisfying g(x) < f(x)
for each x € V(G). Let dg(x) denote the degree of a vertex x in G. A spanning subgraph F of G with
g(x) < dr(x) < f(x) for every x € V(G) is called a (g, f)-factor of G. If G itself is a (g, f)-factor, then we
call G a (g, f)-graph. Especially, if g(x) = a and f(x) = b for each x € V(G), then a (g, f)-factor is called
an [a, b]-factor and a (g, f)-graph is called an [a, b]-graph. A (g, f)-factorization ¥ = {F1,F,,--- ,F,} of G
is a decomposition of the edge set E(G) of G into edge-disjoint (g, f)-factors Fy,Fy,--- ,Fp. A subgraph H
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of G is said to be an m-subgraph if H possesses m edges in total. Assume that H is an mA-subgraph of
Gand ¥ = {Fy,Fy,--- ,Fu} is a (g, f)-factorization of G. A (g, f)-factorization ¥ of G is A-orthogonal to H
if [E(H) N E(F})| = A for 1 <i < m. If for any partition {A1, A, --- , A} of E(H) with |Aj] = A, G admits a
(g, f)-factorization F = {Fq,F», - -+, F} satisfying A; € E(F;) for 1 <i < m, then we say that ¥ is randomly
A-orthogonal to H. Let ki, kz, - -,k be positive integers. A [0, k;]'-factorization ¥ = {Fy, F, -+ ,Fu} of G is
a decomposition of the edge set E(G) of G into edge-disjoint factors Fy, F5, - - - , F,,, where F; is a [0, k;]-factor,
1 < i < m. If for any partition {A1, Az, -+, An} of E(H) with |A;] = A, G admits a [0, k;]}"-factorization
¥ = {F1,Fy,--+ ,Fu} satisfying A; C E(F;) for 1 < i < m, then we say that ¥ is randomly A-orthogonal
to H. Note that randomly 1-orthogonal is equivalent to 1-orthogonal, and 1-orthogonal is simply called
orthogonal.

Egawa and Kano [4] presented some sufficient conditions for graphs admitting (g, f)-factors. Zhou
et al. [35, 38, 43-46], Wang and Zhang [26, 27], Wu [31] derived some results on [1,2]-factors in graphs.
Kouider and Lonc [13], Wang and Zhang [29] studied the existence of [a, b]-factors in graphs. Kano
[10] derived some results on [a, b]-factorizations of graphs. Cai [3] showed some sufficient conditions
for graphs having [g, b]-factorizations. Yan, Pan, Wong and Tokuda [33] put forward some sufficient
conditions for a graph admitting a (g, f)-factorization. Ma and Gao [20] obtained some results for the
existence of (g, f)-factorizations in graphs. The interested reader can discover many relevant results on
factors and factorizations in graphs [1, 8, 11, 12, 21, 23, 28, 30, 34, 36, 37, 39-42]. Alspach, Heinrich and
Liu [2] presented the following problem: Given a subgraph H of G, does there exist a factorization ¥ of
G of certain type orthogonal to H? Li and Liu [16] claimed that every (mg + m —1,mf — m + 1)-graph G
admits a (g, f)-factorization orthogonal to any given m-subgraph of G. Lam et al. [14] verified that every
(mg+m—1,mf —m + 1)-graph G admits a (g, f)-factorization orthogonal to k vertex-disjoint m-subgraphs
of G. Feng [6] proved that every (0, mf —m + 1)-graph G possesses a (0, f)-factorization orthogonal to any
given m-subgraph of G. Feng and Liu [7] showed that every [0,k; + k, + - - - + k;, — m + 1]-graph G admits a
[0, k;]{"-factorization orthogonal to any given m-subgraph of G. Wang [25] demonstrated that there exists a
subgraph R in an (mg + k, mf — k)-graph such that R has a (g, f)-factorization orthogonal to n vertex-disjoint
k-subgraphs of R. Wang [24] studied the existence of subgraphs with orthogonal [0, k;]{-factorizations in
[0,ky + ko + -+ + kyy, — n + 1]-graphs. Zhou, Zhang and Xu [47] claimed that there exists a subgraph R in a
[0,k +ka + -+ + ki —n+ 1]-graph such that R possesses a [0, k;]{-factorization orthogonal to r vertex-disjoint
n-subgraphs of R. Some other results on orthogonal factorizations can be discovered in [15, 17-19, 22, 32].
The following results on orthogonal factorizations of graphs are known.

Theorem 1.1 (Wang [24]). Let Gbe a [0,k + k» + - -+ + k;, — n + 1]-graph, where m,n and k; (1 < i < m) are
positive integers with n < m and k; > k, > --- > k,,. Let H be an arbitrary n-subgraph of G. Then there
exists a subgraph R of G such that R has a [0, k;]{-factorization orthogonal to H.

Zhou, Zhang and Xu [47] extended Theorem 1.1, and verified the following theorem.

Theorem 1.2 (Zhou, Zhang and Xu [47]). Let Gbe a [0, k1 + k, +- - - + k;, —n + 1]-graph, and let Hy, Hy, - - - , H,
be vertex-disjoint n-subgraphs of G, where m, n, r and k; (1 < i < m) are positive integers with n < m and
ky > ky > --- > ky, > 2r — 1. Then there exists a subgraph R of G such that R possesses a [0, k;]{-factorization
orthogonal to every H;, 1 <i <.

We shall consider the following problem: Given r vertex-disjoint nA-subgraphs Hy, Hy, - - - , H, of G, does
there exist a factorization # randomly A-orthogonal to every H; for 1 < i < #? The purpose of this paper is
to verify that for any r vertex-disjoint nA-subgraphs Hy, Hy,--- ,H, of a [0,k + kp + - -+ + k;, — nn + 1]-graph
G, there exists a subgraph R such that R admits a [0, k;]{-factorization randomly A-orthogonal to every
H;for1 <i <r, wherem, n, v, A and k; (1 < i < m) are positive integers satisfying 1 < n < m and

ki>ky>-- >k, >22QA-1)r—-1.

2. Preliminary Lemmas

Let G be a graph. For a vertex subset S of G, we denote by G[S] the subgraph of G induced by S, and
write G — S = G[V(G) \ S]. For two disjoint vertex subsets S and T of G, we use Eg(S, T) to denote the set of
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edges in G joining S and T, and use e¢(S, T) to denote the cardinality of E¢(S, T). For convenience, we write
@(S) = Z @(x) and ¢(0) = 0 for any function ¢. In particular, dg_s(T) = Z dg_s(x).
Let S and T be two disjoint subsets of V(G), and E; and E; be two dls]omt subsets of E(G). Put
U=V(G)\(SUT), ES)=1{xyeEG):x,yeS)
and
E(T)={xy € E(G): x,y € T}.

Set
El =E1NE(S), Ef =EiNEg(SU),

E, = E, NE(T), EJ = E, N EG(T,U),
ac(S, T; Ey, Eo) = 2|E]| + [EY|,
Bc(S, T; Eq, Ep) = 2|E5| + |ES|.

With no danger of confusion, we use a and 8 to denote a(S, T; E1, E») and B(S, T; Eq, E,), respectively.
We easily see that @ < dg_7(S) and B < dg—s(T).

The proof of our main result in this paper depends heavily on the following result, which was first
derived by Lam, Liu, Li and Shiu [14].

Lemma 2.1 (Lam, Liu, Li and Shiu [14]). Let G be a graph, and let g, f : V(G) — Z be two functions with
0 < g(x) < f(x) < dg(x) for every x € V(G), and E; and E; be two disjoint subsets of E(G). Then G possesses
a (g, f)-factor F satisfying E; C E(F) and E; N E(F) = 0 if and only if

YG(S/ T/ 9, f) = f(s) + dG—S(T) - g(T) 2 CYG(S, T/ Ell EZ) + ﬁG(Sr T/ El/ EZ)

for any two disjoint subsets S and T of V(G).
Next, we assume that m, 7,7 and k; (1 < i < m) are positive integers satisfying 1 <n <mand k; > kp >
>k, 2BA-1)r-1,and Gisa [0,k + kp + --- + k;, — n + 1]-graph. For every isolated vertex x of G
and every [0, ki]-factor F;, we admit dr,(x) = 0. Let I be the set of all isolated vertices of G. If G — I admits
a [0, ki]-factor, then G possesses also a [0, k;]-factor. Consequently, we may assume that G does not admit

isolated vertices. In what follows, we define

g(x) = max{0,dg(x) — (k1 + ko + -+ + ko1 — 11+ 2)}

and
f(x) = min{ky, dc(x)}
for all x € V(G). According to the definitions of g(x) and f(x), we possess the following result.

Lemma 2.2. Let m be an integer with m > 2. Then
0 < g(x) < f(x) = minfk,, dc(x)} < dg(x)

for every vertex x of G.
We verify the following lemma, which will be used in the proof of our main theorem.

Lemma 2.3. Let Gbe a [0,k; + ko + --- + ky]-graph, and let Hy, Hy, - - - , H, be r vertex-disjoint A-subgraphs
of G, where m, r, A and k; (1 < i < m) are positive integers withky >k > --- >k, > 221 —1)r — 1. Then G
possesses a [0, ki ]-factor F; with E(H;) € E(F;) for1 <i<r.

Proof. Set E; = U E(H;) and E; = 0. We define « and B as before for two disjoint vertex subsets S and T of

i=1
G. In light of the definitions of a and f, we derive

a < min{2Ar, A|S|} and = 0.
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Consequently, we admit
v6(S5, T;0,k1) = kilS| + dg_s(T) =0 |T| > 2RA = 1D)r = 1)IS| 2 AlS| > a =a +

by A>1,r>1and k; > 2(2A — 1)r — 1. Then it follows from Lemma 2.1 that G possesses a [0, k1 ]-factor F;
with E(H;) € E(F;) for 1 <i <r. Lemma 2.3 is verified. O

3. Main Result and its Proof

In what follows, we pose our main theorem in this paper.

Theorem 3.1. Let G be a [0,k; + kp + -+ + k;, — n + 1]-graph, and let Hy, Hy, - -+, H, be r vertex-disjoint
nA-subgraphs of G, where m, n, r, A and k; (1 < i < m) are positive integers satisfying 1 < n < m and
ky > ky =2 -+ = ki = 224 = 1)r — 1. Then there exists a subgraph R of G such that R admits a [0, k;]{-
factorization randomly A-orthogonal to every H;, 1 <i <r.

Proof. In terms of Theorem 1.2, Theorem 3.1 holds for A = 1. Next, we may assume that A > 2.

We apply induction on m and n. According to Lemma 2.3, Theorem 3.1 holds for n = 1. Hence, we
may consider that n > 2 in the following. For the inductive step, we assume that Theorem 3.1 holds for
any [0,k; + kp + -+ + kyy — 1’ + 1]-graph G’ with m’ <m, n’ <nand 1 < n’ < m’, and any r vertex-disjoint
n’A-subgraphs H/, H),--- ,H; of G’. Next, we discuss a [0,k + ko + -+ + k;, — n + 1]-graph G and any r
vertex-disjoint nA-subgraphs Hy, Hy, - - - , H; of G.

We select any A; € E(H;) with [Aj] = A, 1 <i<r. Write E; = |[JA;and E; = ( U E(Hi)) \ E;. Obviously,
i=1 i=1

|E1| = Ar and |E;| = (n — 1)Ar. For two disjoint subsets S and T ofR/(G), we define }5’, EY,E}, EJ, a and f as
in Section 2. Thus, we derive
a < min{2Ar, A|S|}

and
B < min{2(n — 1)Ar, (n — 1)AIT]}.

The definitions of g(x) and f(x) are identical to that in Section 2. Now, we select disjoint subsets S and T of
V(G) such that
(@) 76(S, T;g, ) - ac(S, T Ex, Ea) - Bo(S, T; Er, Ez) is minimum.
(b) |S|is minimum subject to (a).
We now demonstrate the following claim.
Claim 1. If S # 0, then f(x) < dg(x) — 1 for every x € S, and so f(x) =k, for every x € S.
Proof. SetSi ={x€S: f(x) > dg(x)}. Next, we verify 5; = 0.
Assume that S; # 0. Then setting Sp = S\ S1. Hence, we admit

v6(5,T;g,f) = f(S) +dc-s(T) — g(T)
= f(So) + f(S1) + da(T) — ec(So, T) — (51, T) — g(T)
= f(So) + dg-s,(T) — g(T) + f(S1) —ec(51, T)
=v6(S0, T; 9, f) + f(S1) —ec(51,T)
> 76(S0,T; 9, f) +dc(51) —ec(51,T)
=76(S0,T; g, f) +dc-1(51). )

Note that
(XG(S/ T/ Elr EZ) + ,BG(S/ Tr El/ EZ) < OKG(S(), Tr El/ EZ) + ﬁG(SOI Tr El/ EZ) + (XG(Sl, T/ Elr EZ)

and
dc-1(51) = ag(51, T; E1, Ep).
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Combining these with (1), we derive

vc(S,T;g,f) —ac(S, T, E1, E2) — Bg(S, T; Eq, E)
vc(So, T; 9, f) + dc-1(51) — ac(So, T; E1, Ez) — Bc(So, T; E1, Ez) — ag(51, T; Eq, E)
yG(SO/ Tr g, f) - aG(SOI Tr El/ EZ) - ﬁG(SOI T/ El/ EZ)/

vV v

which conflicts the choice of S. Hence, S1 = 0. And so if S # 0, then f(x) < dg(x) — 1 for every x € S.
Furthermore, we derive f(x) = k;, for every x € S. Claim 1 is verified. ]
The remaining of the proof is dedicated to proving that G possesses a (g, f)-factor F, with E; € E(F,) and
E,NE(F,) = 0. According to Lemma 2.1 and the choice of S and T, it suffices to claim that y¢(S, T; g, f) > a+p.
Next, weletp=ki+ky +---+ky1—n+2,Ti ={x:dg(x) —p>0,x€T}and Ty = T \ T1. We easily see
that

g(x)=0 2)

for every x € Ty, and

g9(x) = ds(x) = p 3)
for every x € Ty. In terms of the definition of (S, T; E1, E;), we get
Bc(S, To; E1, Ez) + Bc(S, T1; E1, Ez) = Bc(S, T; E1, Eo). 4)
Note that @ < min{2Ar, A|S|} < A|S| and g < dg-g(T). If T; = 0, then we have

vc(S, T;9,f) f(S) +dc-s(T) — g(T)

kSl + dc-s(T) — g(To) — 9(T1)
kS| + dg-s(T)

2R2A = 1Dr—=1)|S| + dg_s(T)
AlS| + dg-s(T)

a+p

vV IV IV

by (2), Claim 1 and A > 2.
IfS = 0,thena = 0. Itfollows from (2), (3), (4),r 2 1,A >2,2<n<mandk; > ky > --- > k,, > 22A-1)r-1
that

vc(S,T; 9, f) f(8) +dg-s(T) — g(T)

dg(T) — 9(T1)

dg(To) +dc(T1) — (dc(T1) — plT1l)

dc(To) + plT1|

dg(To) + ((m = 1)(22A = Dr —1) = n + 2)|T|
dg(To) + (n — 1D(2QRA —1)r — 1) —n + 2)|T4|
dc(To) + (n = DAITA]

Bc(0, To; E1, E2) + (0, T1; Eq, E2)
Bc@,T;E1,E) =B =a+p.

vV IV IV IV

In what follows, we always assume that S # @ and T; # 0. To demonstrate Theorem 3.1, we shall
consider two cases.
Casel. |S| < |Tq|-1.
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Using (2), (3) and Claim 1, we get

VG(S, T; ng)

namely,

f(S) +dc-s(T) — g(T)

f(S) +dg-s(To) + dc-s(T1) — g(T1)

km|SI + dc-s(To) + dc(T1) — ec(S, T1) — g(T1)
kmlS| + dc-s(To) + pIT1| — ec(S, T1),

vc(5,T; 9, f) = kmlS| + dg-s(To) + p|T1| — ec(S, T1).

Subcase 1.1. |Tq| < k,, — A.
According to (4), (5),r>21,A>2,2<n<mandky >k > -+ > ky, = 2(2A —1)r — 1, we have

VG(S, T; g’f)

vV

IV IV IV IV IV IV

km|SI + dg-s(To) + pIT1| — ec(S, T1)

km|SI + dc-s(To) + p|T1| — ISIIT1|

(ke = IT1DIS| + dg-s(To) + pIT1]

MS| + dg-s(To) + plT1]

MS| + dg-s(To) + ((m — Dk — n + 2)|T4|

AlS| 4+ dg_s(Ty) + (m — 1D(2QRA = 1)r = 1) — n + 2)|T4|
AIS| +dg_s(To) + (n — 1)(2Q2A = 1)r = 1) — n + 2)|T4|
MS| + dg-s(To) + (n — 1)AITA|

a+pc(S,To; E1, Ez) + Bg(S, T1; Eq, Eo)
a+Bc(ST;E,E)) =a+p.

Subcase 1.2. |T1| >k, — A+ 1.
Subcase 1.2.1. |S| < 2n —4.
We easily prove that p —|S| > 0. Then it follows from (5),r > 1,A >2,2<n <mandky 2 ky > --- >k, >

2(2A = 1)r — 1 that

yC(S/ Tr gr f)

vV

vV vV

vV vV I v v v v

kS| + dc-s(To) + p|T1| — ec(S, T1)

kmlSl+ p|T1| = ISIIT1]

kulSI + (p = 1SDITA]

kSl + (p = ISk — A + 1)

kil S+ (p = 1SNk — A)

MSI+ (km — A)p

AS|+ (ky — A)(m — Dk — 1+ 2)
ASI+2RA-1r—=1-A)((n-1)Q2RA-1)r—-1)—n+2)
AMSl+((dr—DA-2r—1)(n-1)RRA-=1)r—-1)—n+2)
AS|+ Ur—-1)—2r—1)((n —1)4A - 3) —n + 2)
ASI+@6r—=3)((n—1DA+3n-1)(A-1)—n+2)
AMS|+3r(n—1DA+3n—-1)—n+2)

AlS| +3r((n — 1A +2n —1)

AlS|+2(n — DAr

a+p.

Subcase 1.2.2. |S| > 2n — 3.

7240
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Note that Gisa [0, k; +ky+ - - +k,, —n+1]-graph. Thus, we getdg(S) < (k1 +ka+---+ky—n+1)|S| = (p+kn—
1)S|. In terms of (2), (3), Claim 1, |S| < |Th|-1,r>1,A>2,2<n<mandk; 2k, > --- >k, 22QA-1)r—-1,

we derive

VG(S, T; ng)

v

[\

vV VvV IV IV

Case 2. |S| > |T4].
Note that Gisa [0, ki +ko+- - -+k,,—n+1]-graph. Thus, we getd(T1) < (ki+ko+- - -+ky,—n+1)|T1| = (p+ku—
1)|T1]. According to (2), (3), Claim 1, |S| > |T1|, ¥ >1,A >2,2<n<mand ky > ky > --- >k, 22Q2A -1)r-1,

we derive

VG(S/ T/ !7/ f)

that is,

v

vV IV IV

f(S) +dg-s(T) — g(T)

f(8) +dg(T) —ec(S,T) — g(T1)
klSl+ dc(T) = ec(S, T) — (dc(T1) — pIT4l)
kulSI + pIT1| = ec(S, T)

p(T1l = IS)) + (kn + p)IS| = ec(S, T)
p +15S|+dg(S) —ec(S,T)

p + 18I+ dg-1(S)
m-Dky—n+2+2n-3+a
m-1DR22A-D)r-H+n—-1+a
a+2n—-1Ar

a+p.

f(S) +dc-s(T) — g(T)

f(S) +dc-s(T) — g(T1)

kilS| + dc-s(T) — dg(T1) + plT1]

kn(ISI = 1T11) + (ki + p)IT1| + dg-s(T) — dc(T1)
kn(ISI = T1]) + do(T1) + |T1| + dg-s(T) — dg(T1)
kn(ISI = T1l) + |T1| + d-s(T)

(Q2A = 1Dr = 1)(IS| = |T1]) + |T1| + dg-s(T)

(4A =3)(IS| = IT1]) + |T1| + dg-s(T)

A+ D)(S| = IT1l) + |T1| + dg-s(T),

ve(S,T; g, f) = (A + 1)(IS| = |Tal) + [T1] + de-s(T). (6)

Subcase 2.1. |S| > 2Ar.
It follows from (6) and |S| > |T4| that

vc(S,T;q,f)

vV IV IV IV

(A + 1)(IS| = [Ta]) + [T1] + dg-s(T)
IS+ dg-s(T)

2Ar + dc_s(T)

a+p.

Subcase 2.2. |S| < 2Ar—1.
Note that T; # 0. Hence, we consider the following two subcases.
Subcase 2.2.1. |T4| =1.
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We write T1 = {x}. Using (3), (4), (6), Claim1,r >1,A >2,2<n <mandk; 2k, > --- >k, 22Q2A-1)r-1,

we have

yC(S/ Tr gr f)

V IV IV IV IV I

v

A+ D(S| = IT1l) + |T1| + dg-s(T)

AMS| = A|T| + 1S + dg-s(T1) + dg-s(To)
AlS| + 18| + dg-s(x) + dg-s(To) — A
MS|+dg(x) + dg-s(Tp) — A
AMSI+p+1+dc-s(To) - A

AS|+(m =Dk, —n+3+dg_s(Tg) — A
AMS|+dg_s(To) + (n—1DRRA-1r—-1)-n+3-A
AS| +dg-_s(Ty) + (n — DA

AS| + dg-s(To) + (n — DA|T|

a+ Bg(S, To; Ev, E2) + (S, T1; Eq, E2)
a+ Bc(S,T; E1, Ez)

a+p.

Subcase 2.2.2. |Ty| > 2.
Claim 2. 4(n —1)(2A = 1)r —4n + 9 — 2Ar > 2nAr.
Proof. Byr>1,1>2and n > 2, we admit

4n—-1)Q2A - 1r—4n+9 —2Ar — 2nAir
= 8mn—-DAr—4(n—1)r—4n+9 - 2Ar - 2nAr
Bn-8-2-2mAr—4(n—-1)r—4n+9

v

\%

namely,

Claim 2 is proved.

(6n —10)Ar —4(n—1)yr—4n+9
26n—10)yr—4(n—1)r—4n+9
Bn—-16)r—4n+9
m—-16—-4n+9
dn-7>1>0,

4n—-1DRA = 1Dr—4n+9 - 2Ar > 2nAr.

[m]

Since |T1| > 2, there exist x,y € T;. It follows from (3), (6), Claim 2, |S| > |T4|, [S| < 2Ar =1, v > 1, A > 2,
2<n<mandk; >ky >--- >k, >2(2A —1)r — 1 that

yC(S/ T/ gr f)

vV IV IV IV IV IV IV

\

\%

(A +1)(S| = ITaD) + [T + do-s(T)
S| + dg-s(T1)

2|S| + dg-s(T1) = 2Ar + 1

do(x) +dc(y) —2Ar + 1
20+2-2Ar+1

2(m— Dk, —n+2)—2Ar+3
2(n—1D)RCA-1)r—-1)—n+2)-2Ar+3
4n-1)2A-1Dr—4n+9 - 2Ar
2nAr

2Ar +2(n — DAr

a+p.
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In conclusion, y¢(S,T; g, f) = ac(S,T; E1, Ez) + Bc(S, T; E1, E2). According to the choice of S and T, we
derive y(S',T"; 9, f) = ag(S’,T’; E1, E2) + Bc(S’, T'; Eq, Ey) for any disjoint vertex subsets S” and T’ of G.
Using Lemma 2.1, G has a (g, f)-factor F, with E; C E(F,) and E; N E(F,) = 0, and F, is also a [0, k,]-factor
of G. By the definitions of g(x) and f(x), we admit

dc-r,(x) = dg(x) — d,(x) > dg(x) — f(x) 2 0
and

dc-r,(x)

dg(x) = dr,(x) < dc(x) — g(x)
de(x) = (de(x) = (ky + k2 + -+ + k1 =1 +2))
ki+ky+ - +ky1—-(n-1)+1

IA

forany x € V(G). Therefore, G—F,isa [0, ki +ka+- - +ky—1 —(n—1)+1]-graph. Write H! = H;—A;for1 <i <r.
Obviously, H, Hy, -+, H; are r vertex-disjoint (n — 1)A-subgraphs of G — F,. By the induction hypothesis,
there exists a subgraph R’ of G — F,, such that R admits a [0, k;]?~!-factorization randomly A-orthogonal to
every H!, 1 <i <r. Let R be the subgraph of G induced by E(R") U E(F,). Consequently, R is a subgraph of
G such that R possesses a [0, k;]{-factorization randomly A-orthogonal to every H;, 1 <i < r. We finish the
proof of Theorem 3.1. ]

If we set r =1 and A = 1 in Theorem 3.1, then we promptly derive Theorem 1.1. If we let A = 1 in
Theorem 3.1, then instantly gain Theorem 1.2. Consequently, Theorem 3.1 is a generalization of Theorems
1.1 and 1.2. If we set r = 1 in Theorem 3.1, then we get the following corollary.

Corollary 3.1. Let Gbe a [0,k + ko + - - - + k;, —n + 1]-graph, and let H be an nA-subgraph of G, where m, n,
Aand k; (1 < i < m) are positive integers satisfying 1 <n <mand ky >k > --- > k;, > 414 — 3. Then there
exists a subgraph R of G such that R admits a [0, k;]{-factorization randomly A-orthogonal to H.
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