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Logarithmic coefficients for starlike functions associated with
generalized telephone numbers
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Abstract. The objective of the present paper is to study the logarithmic coefficients of the class S∗T(µ) of
starlike functions which is related with generalized telephone numbers, by using bounds on some coefficient
functional for the family of functions with positive real part. We give a special result of main theorem.

1. Introduction

LetA be the class of functions f which are analytic in the open unit discU = {z : |z| < 1} and normalized
by the conditions f (0) = f ′ (0)− 1 = 0. Let us denote by S the subclass ofA containing functions which are
univalent in U. An analytic function f is subordinate to an analytic function 1 (written as f ≺ 1) if there
exists an analytic function w with w (0) = 0 and |w (z)| < 1 for z ∈ U such that f (z) = 1 (w (z)) . In particular,
if 1 is univalent inU, then f (0) = 1 (0) and f (U) ⊂ 1 (U) . For arbitrary fixed numbers A and B satisfying
−1 ≤ B < A ≤ 1, denote by P [A,B] the class of analytic functions p such that p (0) = 1 and satisfy the
subordination p (z) ≺ (1 + Az)⧸ (1 + Bz) (z ∈ U) .Note that for 0 ≤ β < 1,P

[
1 − 2β,−1

]
is the class of analytic

functions p with p (0) = 1 satisfyingℜp (z) > β inU.We call the functions in P = P [1,−1] as Carathéodory
functions. The class S∗[A,B] consists of functions f ∈ A such that z f ′ (z)⧸ f (z) ∈ P [A,B] for z ∈ U. The
functions in the class S∗[A,B] are called the Janowski starlike functions, introduced by Janowski [18]. For
0 ≤ β < 1, S∗[1− 2β,−1] := S∗(β) is the usual class of starlike functions of order β. Note that S∗ = S∗(0) is the
classical class of starlike functions. Moreover the classesS∗[1−β, 0] := S∗β = { f ∈ A : |z f ′ (z)⧸ f (z)−1| < 1−β}

and S∗[β,−β] := S̃∗(β) = { f ∈ A : |z f ′ (z)⧸ f (z) − 1| < β|z f ′ (z)⧸ f (z) + 1|} has been studied in [1, 3]. In terms
of subordination, the class of starlike functions is given by z f ′(z)⧸ f (z) ≺ (1 + z)⧸(1 − z). Ma and Minda
[24] gave a unified presentation of various subclasses of starlike and convex functions by replacing the
subordinate function (1 + z)⧸(1 − z) by a more general analytic function φ with positive real part and
normalized by the conditions φ(0) = 1, φ′(0) > 0 and φ maps U onto univalently a region starlike with
respect to 1 and symmetric with respect to the real axis. They introduced the following general class that
envelopes several well-known classes as special cases: S∗[φ] =

{
f ∈ A : z f ′ (z)⧸ f (z) ≺ φ(z)

}
. In literature,

the functions belonging to this class is called Ma-Minda starlike function.
The logarithmic coefficients λn of f ∈ S are defined with the aid of the following series expansion:
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log
f (z)
z
= 2

∞∑
n=1

λnzn, z ∈ U. (1)

This coefficients play a important role for various estimates in the theory of univalent functions. In
particular, the Koebe function k(z) = z(1 − z)−2 has logarithmic coefficients λn =

1
n . It is clear that |λ1| ≤ 1

for each f (z) ∈ S. The problem of the best upper bounds for |λn| is still open. In fact even the proper order
of magnitude is still not known, however, for the starlike functions that the best bounds is |λn| ≤

1
n and

that this is not true in general [13]; [14]; [2] and [15]. In the paper [11] it is pointed out that the inequality
|λn| ≤ An−1 log n (A is an absolute constant) which holds for circularly symmetric functions. In a recent
paper [16], it is presented that the inequality |λn| ≤

1
n holds also for close-to-convex functions. However, it

is pointed out in [29] that there are some errors in the proof and, hence, the result is not substantiated. It is
proved in [17] that there exist a close-to-convex function such that |λn| > 1

n . Furthermore, it is proved in [35]
that the inequality |λn| ≤ An−1 log n holds for close-to-convex functions, where A is an absolute constant.

During the 1960’s, Kayumov [19] solved Brennan’s conjecture for conformal mappings with the help of
studying the logarithmic coefficients. The significance of the logarithmic coefficients follows from Lebedev-
Milin inequalities [25–27], where estimates of the logarithmic coefficients were applied to obtain bounds on
the coefficients of f .Milin [25] conjectured in the inequality

j∑
i=1

i∑
n=1

(
n |λn|

2
−

1
n

)
≤ 0 ( j = 1, 2, 3, ...)

that implies Robertson’s conjecture [33] and hence Bieberbach’s conjecture [6], which is the well-known
coefficient problem in univalent function theory. De Branges [7] proved the Bieberbach’s conjecture by
establishing Milin’s conjecture.

Recall that we can rewrite 1 in the series form as follows:

2
∞∑

n=1

λnzn = a2z + a3z3 + a4z4 + ... −
1
2

[a2z + a3z2 + a4z3 + ...]2 +
1
3

[a2z + a3z2 + a4z3 + ...]3 + ..., z ∈ U,

and considering the coefficients of zn for n = 1, 2, 3... it follows that

2λ1 =a2,

2λ2 =a3 −
1
2

a2
2,

2λ3 =a4 − a2a3 +
1
3

a3
2,

2λ4 =a5 − a2a4 + a2
2a3 −

1
2

a2
3 −

1
4

a4
2.

(2)

The geometry of analytic functions related with some familiar sequences of numbers has been explored
by some researchers working in the theory. Especially, H. M. Srivastava and his co-authors have investigated
the coefficient problem for some special generating functions. For example, Kumar et al. [22], Shafiq et
al. [34] and Deniz [12] have studied the coefficient problem for certain classes related with Bell numbers,
Fibonacci numbers and generalized Telephone numbers, respectively. The generating function for Van Der
Pol numbers was recently used to introduce a subclass of starlike functions (see [31]), while the generating
function for Bernoulli numbers is considered in [8] to investigate a subclass of S∗[φ]. Recently, Kazımoğlu
et al. [20] have studied starlike functions related with Gregory numbers.

In the present paper, our main focus on finding the upper bounds of logarithmic coefficients for starlike
functions associted with generalized telephone numbers defined by 3.
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Motivated by the above-cited works, we consider the function φ for which φ(U) is starlike with respect
to 1 and whose coefficients is the general telephone numbers. The classical telephone numbers, also known
as involution numbers, are given by the recurrence relation T(n) = T(n − 1) + (n − 1)T(n − 2) for n ≥ 2 with
initial conditions T(0) = T(1) = 1. Relationships of these numbers with symmetric groups were observed for
the first time in 1800 by Heinrich August Rothe, who pointed out that T(n) is the number of involutions (self-
inverse permutations) in the symmetric group (see, for example, [10, 21]). Because involutions correspond
to standard Young tableaux it is clear that the nth involution number is also the number of Young tableaux
on the set {1, 2, · · · ,n} (for details see [4]). According to John Riordan, above recurrence relation, in fact,
produces the number of connection patterns in a telephone system with n subscribers (see [32]). In 2017,
Włoch and Wołowiec-Musiał [36] introduced generalized telephone numbers T(µ,n) defined for integers
n ≥ 0 and µ ≥ 1 by the following recursion; T(µ,n) = µT(µ,n − 1) + (n − 1)T(µ,n − 2) with initial conditions
T(µ, 0) = 1, T(µ, 1) = µ, and studied some properties. In 2019, Bednarz and Wołowiec-Musiał [5] introduced
a new generalization of telephone numbers by Tµ(n) = Tµ(n − 1) + µ(n − 1)Tµ(n − 2) with initial conditions
Tµ(0) = Tµ(1) = 1 for integers n ≥ 2 and µ ≥ 1. They gave the generating function, direct formula, and
matrix generators for these numbers. Moreover, they obtained interpretations and proved some properties
of these numbers connected with congruences. In their paper, authors derived the exponential generating
function and the summation formula for generalized telephone numbers Tµ(n) as follows:

e
(
x+µ x2

2

)
=

∞∑
n=0

Tµ(n)
xn

n!
(µ ≥ 1). (3)

As we can observe, if µ = 1, then we obtain classical telephone numbers T(n). Clearly, Tµ(n) for some
values of n as Tµ(0) = Tµ(1) = 1, Tµ(2) = 1+µ, Tµ(3) = 1+3µ, Tµ(4) = 1+6µ+3µ2, Tµ(5) = 1+10µ+15µ2 and

Tµ(6) = 1+15µ+45µ2+15µ3.We now consider the functionΨ(z) := e
(
z+µ z2

2

)
with its domain of definition as the

open unit diskU. Very recently, Deniz [12] has defined the classS∗T(µ) :=
{
f : f ∈ S and z f ′(z)/ f (z) ≺ Ψ(z)

}
and obtained some coefficient estimates for this class. In this study, authors obtained upper bounds for
logarithmic coefficients λn (n = 1, 2, 3, 4) of functions belonging to the class S∗T(µ). In special case of µ = 1,
we write S∗T = S

∗

T(1).
We give following the lemmas that use in the next sections.

Lemma 1.1. [23] If p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P (p1 ≥ 0), then

2p2 = p2
1 + x(4 − p2

1) (4)

4p3 = p3
1 + 2(4 − p2

1)p1x − p1(4 − p2
1)x2 + 2(4 − p2

1)
(
1 − |x|2

)
y, (5)

for some x, y ∈ C with |x| ≤ 1 and
∣∣∣y∣∣∣ ≤ 1.

Lemma 1.2. [28] Let U = {z : |z| ≤ 1} . Also, for any real numbers a, b and c, let the quantity Y(a, b, c) =
maxz∈U

{∣∣∣a + bz + cz2
∣∣∣ + 1 − |z|2

}
. If ac ≥ 0, then

Y(a, b, c) =
{
|a| + |b| + |c| |b| ≥ 2(1 − |c|)

1 + |a| + b2

4(1−|c|) |b| < 2(1 − |c|) .

Furthermore, if ac < 0, then

Y(a, b, c) =


1 − |a| + b2

4(1−|c|)

(
−4ac(c−2

− 1) ≤ b2; |b| < 2(1 − |c|)
)

1 + |a| + b2

4(1+|c|) b2 < min
{
4(1 + |c|)2,−4ac(c−2

− 1)
}

R(a, b, c) (otherwise)
,

where

R(a, b, c) =


|a| + |b| − |c| (|c| (|b| + 4 |a|) ≤ |ab|))
− |a| + |b| + |c| (|ab| ≤ |c| (|b| − 4 |a|))

(|a| + |c|)
√

1 − b2

4ac (otherwise)
.
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Lemma 1.3. If p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P (p1 ≥ 0), then

pn ≤ 2 (6)

and if Q ∈ [0, 1] and Q (2Q − 1) ≤ R ≤ Q, then∣∣∣p3 − 2Qp1p2 + Rp3
1

∣∣∣ ≤ 2. (7)

also ∣∣∣pn+k − δpnpk

∣∣∣ ≤ 2 max {1, |2δ − 1| } (8)

= 2
{

1, for 0 ≤ δ ≤ 1,
|2δ − 1| , otherwise .

The inequalities (6), (7) and (8) are taken from [9, 23] and [30], respectively.

2. Logarithmic Coefficient Estimates

Our main result as follows.

Theorem 2.1. Let f (z) ∈ S∗T(µ) and log f (z)
z = 2

∞∑
n=1
λnzn. Then

|λ1| ≤
1
2
,

|λ2| ≤
µ + 1

8
,

|λ3| ≤

{ 1
6 ; 1 ≤ µ ≤ 5

3
3µ+1

36 ; 5
3 ≤ µ

,

|λ4| ≤


3µ2+30µ+25

192 ; 1 ≤ µ < µ4
3µ−1

16 ; µ4 ≤ µ ≤ µ5
3µ2+42µ−11

192 ; µ > µ5

,

where, µ4 ≈ 1.76208 and µ5 ≈ 9.54606 are positive roots of 3µ3 + 12µ2
− 35µ + 8 and 3µ2

− 30µ + 13, respectively.

Proof. Since f ∈ S∗T(µ), there exists an analytic function w with w(0) = 0 and |w(z)| < 1 inU such that

z f ′(z)
f (z)

= Ψ(w(z)) = e
(
w(z)+µ w2(z)

2

)
(z ∈ U). (9)

Define the functions p by

p(z) =
1 + w(z)
1 − w(z)

= 1 + p1z + p2z2 + · · · (z ∈ U)

or equivalently,

w(z) =
p(z) − 1
p(z) + 1

=
p1

2
z +

1
2

p2 −
p2

1

2

 z2 +
1
2

p3 − p1p2 +
p3

1

4

 z3 (10)

+
1
2

p4 − p1p3 +
3p2

1p2

4
−

p2
2

2
−

p4
1

8

 z4

+
1
2

(
p5 −

1
2

p3
1p2 +

3
4

p1p2
2 +

3
4

p2
1p3 − p2p3 − p1p4 +

1
16

p5
1

)
z5+ · · ·
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in U. Then p is analytic in U with p(0) = 1 and has positive real part in U. By using (10) together with

e
(
w(z)+µ w2(z)

2

)
, it is evident that

Ψ(w(z)) = 1 +
p1z
2
+

1
8

(
(−1 + µ)p2

1 + 4p2

)
z2 (11)

+
1

48

(
(1 − 3µ)p3

1 + 12(−1 + µ)p1p2 + 24p3

)
z3 +

+
1

384


(
1 + 6µ + 3µ2

)
p4

1 + 24(1 − 3µ)p2
1p2

+96(−1 + µ)p1p3 + 48
(
(−1 + µ)p2

2 + 4p4

)  z4

+


(
−19 + 10µ − 45λ2

)
p5

1 + 40
(
1 + 6µ + 3λ2

)
p3

1p2 − 240(−1 + 3µ)p2
1p3

−240p1

(
(−1 + 3µ)p2

2 − 4(−1 + µ)p4

)
+ 960

(
(−1 + µ)p2p3 + 2p5

) 
3840

z5 + · · · .

Since
z f ′(z)

f (z)
=1 + a2z +

(
−a2

2 + 2a3

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3 (12)

+
(
−a4

2 + 4a2
2a3 − 2a2

3 − 4a2a4 + 4a5

)
z4

+
(
a5

2 − 5a3
2a3 + 5a2a2

3 + 5a2
2a4 − 5a3a4 − 5a2a5 + 5a6

)
z5 + · · · ,

it follows by (9), (11) and (12) that

a2 =
p1

2
, (13)

a3 =
1

16

(
(1 + µ)p2

1 + 4p2

)
,

a4 =
1

288

(
(3µ − 1)p3

1 + 12(1 + 2µ)p1p2 + 48p3

)
,

a5 =

(
2 − 6µ + 9µ2

)
p4

1 + 24(µ − 1)p2
1p2 + 48(1 + 3µ)p1p3 + 72µp2

2 + 288p4

2304
.

By using 13 in 2, we can obtain

λ1 =
p1

4
,

λ2 =
1

32

(
(µ − 1)p2

1 + 4p2

)
λ3 =

1
288

(
(1 − 3µ)p3

1 + 12(µ − 1)p1p2 + 24p3

)
λ4 =

(
1 + 6µ + 3µ2

)
p4

1 + 24(1 − 3µ)p2
1p2 + 96(µ − 1)p1p3 − 48

(
−4p4 + (1 − µ)p2

2

)
3072

.

Using
∣∣∣pn

∣∣∣ ≤ 2,we can obtain

|λ1| ≤
1
2

and |λ2| ≤
µ + 1

8
.

We now investigate upper bounds of |λ3| and |λ4| .
By using Lemma 1.1 and supposing that s = p1 ∈ [0, 2], λ3 can be rewriten as follows:

λ3 =
4 − s2

24

[
(3µ + 1)s3

12 (4 − s2)
+

(µ + 1)s
2

x −
s
2

x2 + (1 − |x|2)y
]

:= H(s).
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We now investigate upper bound of the |H(s)| according to s.
Taking s = 0 and s = 2, respectively, we have

|H(s)| ≤
1
6

(14)

and

|H(s)| =
3µ + 1

36
. (15)

We now assume that s ∈ (0, 2). Then, we can write

|H(s)| ≤
4 − s2

24

[∣∣∣∣∣∣ (3µ + 1)s3

12 (4 − s2)
+

(µ + 1)s
2

x −
s
2

x2

∣∣∣∣∣∣ + 1 − |x|2
]

=
4 − s2

24

[∣∣∣a + bx + cx2
∣∣∣ + 1 − |x|2

]
,

where

a =
(3µ + 1)s3

12 (4 − s2)
, b =

(µ + 1)s
2

, c = −
s
2
.

In the next process of the proof, we use Lemma 1.2. Considering s ∈ (0, 2) and µ ≥ 1, it is obvious that

ac = − (3µ+1)s4

24(4−s2) < 0. Therefore, we use the second part of the Lemma 1.2.
Case I After some calculations, we see that the conditions −4ac(c−2

− 1) ≤ b2 and |b| − 2(1 − |c|) < 0 hold
true for all s ∈

(
0, 4
µ+3

)
. Not that, the inequality 4

µ+3 < 2 true for µ ≥ 1. Therefore, we conclude that

|H(s)| ≤
4 − s2

24

[
1 − |a| +

b2

4(1 − |c|)

]
(16)

=
1

24

[
(3µ2 + 1)s3

24
+

(µ + 3)(µ − 1)s2

4
+ 4

]
: = H0(s).

Since all the coefficients of powers of s are positive, H0 takes maximum value at 4
µ+3 . Thus, we have

max H0 (s) = H0

(
4
µ + 3

)
=

3µ3 + 24µ2 + 45µ + 28
9(µ + 3)3 := I0(µ). (17)

For all s ∈ (0, 2) the inequality b2 < min
{
4(1 + |c|)2,−4ac(c−2

− 1)
}

doesn’t satisfied.

Let
[

4
µ+3 , 2

)
. On the other hand, from some calculations we see that

|ab| − |c| (|b| + 4 |a|) =
s2

24(4 − s2)

[(
−3µ2 + 2µ − 3

)
s2 + 24

(
µ + 1

)]
≤ 0

holds true for s ∈ (s0, 2) ,where s0 =

√
24(µ+1)

3µ2−2µ+3 and 4
µ+3 < s0 < 2 for µ > 3. Therefore, we have

|H(s)| ≤
4 − s2

24
[|a| + |b| − |c|] =

1
288

[(
1 − 3µ

)
s3 + 24µs

]
:= H1(s).

The positive root of the equation H′1(s) = 1
288

[
3
(
1 − 3µ

)
s2 + 24µ

]
= 0 is s1 =

√
8µ

3µ−1 . We now consider the
situations s0 − s1 > 0 and s0 − s1 < 0.
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Let 3 < µ ≤ µ0 ≈ 3.85866, where µ0 is the root of the

√
24(µ+1)

3µ2−2µ+3 −

√
8µ

3µ−1 . Then we have s0 − s1 > 0 and

H1 takes maximum value at

√
24(µ+1)

3µ2−2µ+3 . Hence we conclude that

max H1(s) = H1 (s0) (18)

=
µ + 1

12
(
3µ2 − 2µ + 3

) (1 − 3µ
) √

24
(
µ + 1

)
3µ2 − 2µ + 3

+ 24µ

 := I1(µ).

Similarly, let µ0 ≤ µ. Thus s0 − s1 < 0 and H1 takes maximum value at s1. Hence, we get

max H1(s) = H1 (s1) (19)

=
µ

36
(
3µ − 1

) (1 − 3µ
) √

8µ
3µ − 1

+ 24µ

 := I2(µ).

We can easily see that

|ab| − |c| (|b| − 4 |a|) =
s2

24(4 − s2)

[(
3µ2 + 22µ + 11

)
s2
− 24

(
µ + 1

)]
≤ 0

holds true for s ∈
[

4
µ+3 , s2

)
, where s2 =

√
24(µ+1)

3µ2+22µ+11 and s2 < s0 for µ ≥ 1. Therefore, we have

|H(s)| ≤
(4 − s2)

24
[− |a| + |b| + |c|]

=
s
[
s2(−9µ − 13) + 24(µ + 2)

]
24

:= H2(s).

The positive root of the function H′2 is s3 =
√

8µ+16
9µ+13 . Simple calculations show that s3 − s2 > 0 for µ ≥ µ1 ≈

2.31227,where µ1 is positive root of 3µ3 + µ2
− 11µ − 17. Therefore, we have

max H2(s) = max
{

H2

(
4
µ + 3

)
,H2 (s2)

}
= H2 (s2) (20)

= 2

√
6
(
µ + 1

)
3µ2 + 22µ + 11

(
µ + 2 −

(
8µ + 13

) (
µ + 1

)
3µ2 + 22µ + 11

)
:= I3(µ).

On the other hand, the inequality s3 − s2 < 0 is true for µ < µ1. Therefore, we obtain

max H2(s) = H2 (s3)

=
4
√

2
(
µ + 2

)
3

√
µ + 2

9µ + 13
:= I4(µ)

for µ < µ1.
Finally, let s ∈ (s2, s0) . From Lemma 1.2 we have

|H(s)| ≤
4 − s2

24

(|a| + |c|)

√
1 −

b2

4ac


=

1

288
√

2
(
3µ + 1

) (
(3µ − 5)s2 + 24

) √(
−3µ2 − 1

)
s2 + 12

(
µ + 1

)2 := H3(s).
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The smallest positive root of the function H′3 is s4 = 2
√

2
√

3µ3−2µ2−7µ−6
9µ3−15µ2+3µ−5 for 1 ≤ µ < µ2 ≈ 1.66667 and

µ ≥ µ3 ≈ 2.16823.
Since µ1 < µ < µ0,we obtain s4 ∈ (s2, s0) . Then, H3 takes maximum value at s4 and we get

max H3(s) = H3 (s4) (21)

=
1

18

√
3µ3 + 7µ2 − 7µ − 3
2(3µ − 5)(1 + 3µ)

(
3µ3 + 7µ2

− 7µ − 3
)

1 + 3µ2 := I5(µ).

If 1 ≤ µ < µ2 and µ ≥ µ0, where µ2 is positive root of 9µ3
− 15µ2 + 3µ − 5, then we have

max H3(s) = H3 (s0)

=

(
µ − 1

) (
3µ2
− 2µ − 1

)
(
3µ2 − 2µ + 3

) √
18µ + 6

√
3µ2 + 4µ + 1
3µ2 − 2µ + 3

:= I6(µ).

If µ3 ≤ µ < µ1,where µ3 is positive root of 3µ3
− 2µ2

− 7µ − 6, then we have

max H3(s) = H3 (s2)

=

(
3 + µ

) (
3µ2 + 10µ + 3

)
(
3µ2 + 22µ + 11

) √
18µ + 6

√
3µ2 + 4µ + 1

3µ2 + 22µ + 11
:= I7(µ).

Consequently, from (14), (15) and I0(µ) − I7(µ) we obtain bound of |λ3| .
Finally, we investigate the upper bound of |λ4| .
Let 1.76208 ≈ µ4 ≤ µ ≤ µ5 ≈ 9.54606, where µ4 and µ5 are positive roots of the 3µ3 + 12µ2

− 35µ + 8 and
3µ2
− 30µ + 13, respectively.
After some calculations for λ4 we have

λ4 =

(
µ − 1

)
p1

32

p3 −

(
3µ − 1

)
4
(
µ − 1

)p1p2 +

(
1 + 6µ + 3µ2

)
96

(
µ − 1

) p3
1

 + 4p4 +
(
µ − 1

)
p2

2

64

and thus

|λ4| ≤

(
µ − 1

)
p1

32

∣∣∣∣∣∣∣p3 −

(
3µ − 1

)
4
(
µ − 1

)p1p2 +

(
1 + 6µ + 3µ2

)
96

(
µ − 1

) p3
1

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣4p4 +

(
µ − 1

)
p2

2

64

∣∣∣∣∣∣ .
If we take

Q =
3µ − 1

8(µ − 1)

and

R =
3µ2 + 6µ + 1

96(µ − 1)

in (7), from (6) we obtain

|λ4| ≤
3µ − 1

16
. (22)

On the other hand if we rearrenge the λ4,we can write

λ4 =

(
µ − 1

)
p1

32

[
p3 −

(
3µ − 1

)
4
(
µ − 1

)p1p2

]
+

(
1 + 6µ + 3µ2

)
3072

p4
1 +

4p4 +
(
µ − 1

)
p2

2

64
.
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For 1 ≤ µ < 3 and µ ≥ 3 in (8) and from (6) we have

|λ4| ≤
3µ2 + 30µ + 25

192
(23)

and

|λ4| ≤
3µ2 + 42µ − 11

192
, (24)

respectively. Consequently, from (22), (23) and (24) we obtain the result for |λ4| .

For µ = 1 in Theorem 2.1 we obtained the following result.

Corollary 2.2. Let f (z) ∈ S∗T(1). Then

|λk| ≤
1
2k
, (k = 1, 2, 3)

|λ4| ≤
29
96
.

References

[1] R.M. Ali, R. Chandrashekar, V. Ravichandran, Janowski starlikeness for a class of analytic functions, Appl. Math. Lett., 24 (2011)
501–505.

[2] J. Anderson, K. Barth, D. Brannan, Research problems in complex analysis, Bull. Lond. Math. Soc., 9 (1977) 129–162.
[3] R.M. Ali, V. Ravichandran, N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci., 2007 (2007) Article

ID 62925, 7 pages.
[4] J.S. Beissinger, Similar constructions for Young tableaux and involutions, and their applications to shiftable tableaux, Discrete Math., 67

(1987) 149–163.
[5] U. Bednarz, and M. Wołowiec-Musiał, On a new generalization of telephone numbers, Turkish J. Math., 43 (2019) 1595–1603.
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