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On circulant and r-circulant matrices with Ducci sequences and Lucas
numbers
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Abstract. A Ducci sequence is a sequence {S, DS, D?S,...}, where the map D : Z" — Z" takes each

S = (51,52,53,-,5n-1,52) to (Is1 — Sal, |2 — s3], ..., ISu—1 — Sul,ISw — s1l). In this paper, we study norms of r-
circulant matrices Circ,(DL) and Circ,(D?L), where L is an n-tuple of Lucas numbers. Then we examine
some properties of circulant matrices Circ(DL) and Circ(D?L).

1. Introduction

Matrices have extensive applications in various branches of mathematics and other scientific fields like
engineering, statistics, physics, and economics. Therefore, researchers have defined different types of ma-
trices and extensively studied their diverse properties. One of these matrices is called the Toeplitz matrix.

A Toeplitz matrix [20, 33], also known as a diagonal-constant matrix, is named after Otto Toeplitz. It
is characterized by having constant values along each descending diagonal from left to right. A circulant
matrix [14], a particular kind of Toeplitz matrix, is a square matrix where all row vectors consist of the same

elements. What makes it remarkable is that each row vector is shifted one element to the right compared
to the previous row vector. An n X n circulant matrix C is of the form

Co C1 Cr ... Cy—2 Cyu—
Ch-1 C0 C1 ... Cp-3 Cp=2
Ch—2 Cp-1 C0 ... Cn-4 Cp-3
C = Circ(co, €1,€2, +ey C—, Cn—1) = .
Co C3 Cqy ... Co C1
C1 Co C3 ... Cp— Co

Letr € C\ {0}. An n X n r-circulant matrix [12] C, is of the form
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Co C1 Co . Cp-2 Cn-1
rCu— Co C1 oo Cp—3  Cyp-—2
'Cp—2 1Cp-1 Co ... Cp4a Cp-3
Cy = Circy(co, €1, €2 vy Cn-2,Cn-1) =
rcp res rcy ... Co C1
rcq rcay rcg ... TrCy—1 Co

Note that an r-circulant matrix, for r = 1, is a circulant matrix. Circulant and r-circulant matrices find
wide applications in various scientific areas, including coding theory, signal processing, image processing,
time-series analysis, etc. (see, for instance, [3, 9, 16, 25, 36]).

The Fibonacci sequence is a well-known sequence of integers that is defined recursively by the relation

Fo=0F =1F,=F,1+F,,,n>2. (1)
Another well-known sequence, called the Lucas sequence, is defined recursively by the relation
Ly=2L1=1,L,=L, 1+L,»,n>2. (2)

For further information about Fibonacci and Lucas numbers, we refer to [21]. Let F, be the nth Fibonacci
number and L, be the nth Lucas number. The following properties hold [18, 21]:

Loy =(-1)"Ly, ©)
Fuo1+Fp =Ly, (4)
L, + Lyyp = 5F 41, ()
Lﬁ + Lfl_l = 5F,1, (6)
LuLy+1 = Lops1 + (-1)", 7)
n
Y L2 = LuLt +2 = Logar +(=1)" +2. ®
=0

In recent years, there have been several papers focusing on circulant and r-circulant matrices that contain
special entries like Fibonacci-type numbers. These matrices” norms have been extensively studied. Solak
[28, 29] introduced the n X n circulant matrices A = [a;;] such that a;; = Fuoa(j-in) and B = [b;;] such that
bij = Linod(j-iny- In other words, the matrix A has the form Circ(Fo, Fy, F», ..., Fy-2, Fy-1), where F,,_; is the
(n — 1)th Fibonacci number. Also, the matrix B has the form Circ(Lo, L1, Ly, ..., Ly—2,L,—1), where L,_; is
the (n — 1)th Lucas number. The author also gave some bounds for the spectral norms of the matrices A
and B. Then, in [26], Shen and Cen gave upper and lower bounds for the spectral norms of r-circulant
matrices Circ,(Fo, F1, Fa, ..., Fu-2, Fy—1) and Circ,(Lo, L1, Ly, ..., Ly—2, Ly—1). Thus, the authors generalized Solak’s
findings [28, 29] by applying them to r-circulant matrices. For some other related studies, see, for example,
[1,2,13,22,23,27, 34, 35].

Ducci sequences were first introduced in 1937 [10]. Ducci sequences’ discovery is attributed to Italian
mathematician Enrico Ducci. From then on, Ducci sequences have been examined in several papers. We
refer to [4-8, 11, 15, 17, 30, 31] and the references given therein. A Ducci sequence is defined as follows:
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Let n be a positive integer, and S = (s1, 52, S3, ..., Sn—1,S») be an n-tuple of integers. A Ducci sequence
generated by S = (s1, 52,53, ..., Sn—1, 54) is a sequence {S, DS, D35, ...} obtained by iterating the map (called the
Ducci map) D : Z" — Z" defined by

DS = D(s1,52,53, -+, Su=1,51) = (Is1 = S2l, 52 = 83, ..., [Sn=1 = 8ul, 51 = 1)

A cycleis formed by every Ducci sequence {S, DS, D?S, .., meaning that there exist integers 7 and j with
0 <i< jwith D'S = DJS. When i and j are as small as possible, a Ducci sequence is said to have a period

(j—1) [4].

In [30], Solak and Bahsi applied the Ducci map to each row of the circulant matrix Circ(ay, az, a3, ..., An-1, an)-
Moreover, the authors established relationships between the Frobenius (or Euclidean) norm, spectral norm,
I, norm, determinant, and eigenvalues of the matrix Circ(ay, a2, a3, ..., 4,1, a,) and its image under the Ducci
map. Also, the authors gave a numerical example in terms of Fibonacci numbers (see [30] for details). After,
Solak et al. [31] examined some properties of circulant matrices Circ(F), Circ(DF), and Circ(D>F), where
F = (Fy,F;,Fs, ..., Fy—1, F,) such that F,, denotes the nth Fibonacci number.

Let L = (Ly,Ly, L3, ...,Ly-1,Ly) € Z", where L, denotes the nth Lucas number. Then, considering Egs. (2)
and (3), we have
DL = (L1 — Ly, |ILy — Lg|,|L3 — Ly}, ..., ILy—1 = Ly|, IL, — L)
= (Lo, L1, L2, o) Ly—2, Ly = 1)
and
D*L = D(DL)
= (ILo = L1l,IL1 = L2, IL2 = Lal, ..., ILy—2 = (Lyy = 1), |ILy — 1 = Lol)
=(1,Ly,Ly,..., Ly—g, Ly-1 — 1,L, = 3).

In the present study;, let

Li Ly Ly ... Ly L,
TL,Z Ll L2 e Ln—Z Ln—l
) tLy-1 rLy, Ly Lys Ly
Circ,(L) = ) ) .
1’L3 1’L4 I’L5 e Ll L2
TLZ TL3 T’L4 e TLn L1
(see [26]),
Lo L Lo ... Lyo L,—1
V(Ln - 1) L() L1 . Ln_3 Ln_z
‘ Ly r(Ln—1) Lo Ly-4 Ly
Circ,(DL) = . . .
T’Lz VL3 1’L4 - LO L1
TLl 7’L2 T’L3 . T(Ln - 1) L()
and
1 Loy Ly ... Lyh-1 L,-3
T’(Ln - 3) 1 LO e Ln_4 Ln_1 -1
. 5 T(Ln_l - 1) V(Ln - 3) 1 e Ln_5 Ln_4
Circ,(D°L) = . . . . .
I’Ll T’Lz I’L3 e 1 LO

rLo rLq rLy ... r(L,—3) 1
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be r-circulant matrices. Note that if we take » = 1, we obtain circulant matrices Circ(L), Circ(DL) and
Circ(D?L), respectively.

The main idea of this paper is to present upper and lower bounds for the spectral norms of the r-circulant
matrices Circ,(DL) and Circ,(D?L). Furthermore, we establish relationships between the Frobenius norms,
I, norms, and determinants of the circulant matrices Circ(DL) and Circ(D?L) in a similar way to Solak et al.
[31].

Below are some preliminaries that are relevant to our study. Let A be any m X n matrix.

The I, (1 < p < o0) norm of matrix A is

m

Ziwf-

i=1 j=1

I1All, =

When we take p = 2 in the [, norm, we have the Frobenius (or Euclidean) norm of matrix A as

m n
2
2 il

i=1 j=1

Al =

The spectral norm of matrix A is

IAll =, /maxAi(AFA),
1

where 1;,(A"A) are eigenvalues of AFA and AF is conjugate transpose of matrix A. The following relation
between spectral norm and Frobenius norm holds [32]:

1
—Allg < llAll; < 1Al 9
\/ﬁll lE < llAll2 < Al ©)

Let A = [a;j] and B = [b;;] be two m X n matrices. Then the Hadamard product [19] of matrices A and B,
denoted by A o B, is defined by
Ao B = [ajjb;].
Lemma 1.1. [19, 24] Let A and B be two m X n matrices. Then we have
lA o Blly < r1(A)cr(B),

where

n
2
n(A) = max | )" la;
1<i<m -
j=1
m
2
c1(B) = max Z |bijI”.
1<j<n P

Lemma 1.2. [30] The determinant of the circulant matrix Circ(DA) satisfies

and

1
|detCirc(DA)| < —||Circ(DA)|I,
n2

where A = (a1,a2,a3, ..., An—1, ay) is an n-tuple of integers, and D denotes the Ducci map.
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2. Main Results
Let us first give the following lemma that will be used in the proofs of the next theorems.

Lemma 2.1. For r-circulant matrices Circ,(DL) and Circ,(D?L), we have

n-2 n-2
| Circ,(DL)|[? = Z (n— L2 + Z HAPL2 + (n = DALy — 12 + (L, — 1)?
t=0 t=1
and
) n—4 n—4
I Circ,(DL)IIs = n + Z (n—-1-HL2+ Z (t + DIPLE + (1 = 2)|rP(Lyey — 1)% + 2Ly — 1)
t=0 t=0

+ (1= DI (Ly = 3)° + (Ly — 3)%.
Proof. The proof is readily obtained by the definition of the Frobenius norm. [

The following theorem gives us the upper and lower bounds for the spectral norm of the r-circulant
matrix Circ,(DL).

Theorem 2.2. Let Ay = L,_»L,_1 + (L, — 1)? + 2. For the r-circulant matrix Circ,(DL), we have

(i) If|r] = 1, then

VA, < |Circ/(DL)|l, < \/(lrlz(n —1)+ 1A.
(ii) If |r| < 1, then

1l VA1 < ||Cire,(DL)|l, < v/nA.

Proof. (i) Let |r| > 1. From Lemma 2.1 and Eq. (8), we have

N

e
ICirc,(DL)I[F > Y nL? + n(L, — 1)*> = n(Ly-2Ln—1 + (L, — 1)* + 2).
t

1l
o

It follows that

1 .
—||Circ,(DL)llg > VLy—aLu—1 + (Ly — 1)2 +2.
Vi

From Eq. (9), we get

ICirc,(DL)|l, > v/Ly-aLy-1 + (Ly = 1)? + 2

that is
VA1 < ||Circ,(DL)|l,. (10)
In order to find an upper bound, let matrices A and B be as

111 ...11 Lo Li L, ... Li» L,-1
r 1 ... 11 Ln -1 LQ L1 . Ln_3 Ln—Z
r r 1 ... 11 Ln—2 Ln -1 L() Ln_4 Ln_3

A=|. . . . . .| and B= . . ) .
r r 1 Lz L3 L4 Ce L() Ll

<
-
—_

Ll Lz L3 Ln—l LO
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such that Circ,(DL) = A o B, where A o B is the Hadamard product of A and B. Then we obtain

n n
r1(A) = max Jagi* = lanl® = \IrP(n=1) +1
1<i<
“ = \=

and

n n n-2
_ 2= L2 = _ _
c1(B) —ﬁ%\;lbul = \Zlbﬂ' = J L2+ (L, - 1) = VAL

i=1 k=0

Considering Lemma 1.1, we can write

ICire (DL, < y/(r6n — 1) + DA, (11)

Hence, from Egs. (10) and (11), we have

VA; < ICirc (DLl < J(irn — 1) + DAy,
(ii) Let |7| < 1. From Lemma 2.1 and Eq. (8), we have

n-2
\|ICirc,(DL)||* > Z nlrPL2 + nlr (L, — 1)? = nlrP(Lu—aLa-q + (L, — 1)% +2).
t=0

It follows that

1 .
—ICire(DL)llp > [l Y Eu-aLyt + (L — 17 + 2.
Vi

From Eq. (9), we can write

ICirc,(DL)|ly = [ VLy—aLn—1 + (Ly — 1)2 + 2 = [r| /A1 (12)

Since Circ,(DL) = A o B for the matrices A and B defined as in part (i), we obtain

r1(A) = max Z laiil* = Vn

1<i<
=\ =

and

-2

C1(B)=max\Z|bij|2=J L2 + (L, —12—\/A_1.

1<ij<
SIE N k=0

!t

From Lemma 1.1, we can write

||Circ,(DL)||, £ \nA;. (13)
From Egs. (12) and (13), we have

1l VA1 < ||Circ,(DL)|l, < v/nA.
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The following theorem gives us the upper and lower bounds for the spectral norm of the r-circulant
matrix Circ,(D?L).

Theorem 2.3. Let Ay = L,_4L,3 + (L,_1 — 1)*> + (L,, — 3)*> + 3. For the r-circulant matrix Circ,(D?L), we have

(i) If Il > 1, then

VAs < ICire (DAL, < (201 — 1) + D)o,
(ii) If |r| < 1, then

1| VA < |ICire(DL)|l, < v/nA,.
Proof. (i) Let || > 1. From Lemma 2.1 and Eq. (8), we have

n—4
ICirc(DL)|I> > n + Z nL2 + n(Ly—1 — 1)* + n(L, — 3)* = n(Ly-aLy—3 + (Lyo1 — 1)* + (L, — 3)* + 3).
t=0

It follows that

1 )
—|ICirc,(D*L)|lr = VLy—aLn_3 + (Ly_1 — 1)2 + (L, — 3)2 + 3.
\n
From Eq. (9), we can write
VA, < |[Circ,(D?L)|l,. (14)
In order to find an upper bound, let matrices C and D be as

111 ... 11 1 Lo Ly ... Lya—1 L,-3
r1 1 .01 1 L,-3 1 Ly ... Lys4 Lyqi-1
rr 1 ... 11 Ln,l—l Ln—3 1 Ln,5 Ln,4

c=|. . . . . .| and D= ) : . ) :
r r r 1 L1 L2 L3 Ce 1 L()
r r r 1 L() L1 Lz Ln—3 1

such that Circ,(D?L) = C o D. Then we obtain

1(C) = max JZ jijf? = JZ eajl? = P =1) +1

1<i<n n
j=1

=1

n n—4
_ 12 = —_1\2 _2\2 2
c1(D) = max y ;W J1+(Ln_1 12 + (L, - 3) +§Lk N

Considering Lemma 1.1, we can write

and

ICirc (DLl < (1 = 1) + Do, (15)

Thus, from Egs. (14) and (15), we have

VA, < |Cire(D*L)ll, < \/(lrlz(n —1) + DAs.
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(ii) Let |r] < 1. From Lemma 2.1 and Eq. (8), we have

n—4
. 2
ICirc (DDl = nir? + Y nlrPL? + nlrP Ly = 1% + nlrP(Ly - 3)%
t=0
= nIrIZ(Ln—ALLn—?; + (Ly-1— 1)2 +(Ln - 3)2 +3).

It follows that

1
TIICircr(DZL)IIF > || VLy—aLy_3 + (L1 — 1)2 + (L, — 3)2 + 3.
n

From Eq. (9), we can write

|ICirc,(D?L)ll, > Irl VA (16)

On the other hand, since Circ,(D?L) = C o D for the matrices C and D defined as in part (i), we get

n
2
Z leijl” = Vn
=1

r1(C) = max
1<i<n

n n—4
c1(D) = max Z i = [T+ Y L2+ Loy — 12 + (L, = 32 = YAy
1<j<n pacy =

From Lemma 1.1, we obtain

|Circ(D*L)l, < nA.. 17)
Considering Egs. (16) and (17), we have

Ir| VA2 < |ICirc(D*L)|l, < nAs.

and

o

O

Now, we consider the circulant matrices

Lo L4 L, ... L,» L,-1
L,-1 Lo Li ... L, L, >
i Ln—2 Ln -1 LO Ln— Ln—3
Circ(DL) = . . . .
L, Ls Ly ... Ly L1
L1 Ly Ly ... L,-1 Lo
and
1 Lo L, ... L,,-1 L,-3
L,-3 1 Ly ... L4 L,.1-1
L,,-1 L,-3 1 ... L,s L4
Circ(D?L) = _ ) ; i _
L4 L Ly ... 1 Lo

Lo Ly L, ... L,-3 1
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Theorem 2.4. For the Frobenius norms of the matrices Circ(DL) and Circ(D?L), we have
ICire(DL)|2 ~ |ICire(D*L)llf = n(L2 ~ 5Lan3 — 2Ly + 10F 1 — 10),
where F,1 is the (n + 1)th Fibonacci number, and L,, is the nth Lucas number.

Proof. By virtue of the definition of the Frobenius norm, we have

n-2
ICire(DL)|2 = n (Z 12+ (L, - 1)2J (18)
k=0
and
n—4
ICire(DL)|I> = n[l + ) L2+ (Lyr — 1> + (L - 3)2]. (19)
k=0

Then, from Egs. (1), (2) and Egs. (4)-(8), we get

n—2 n—4
. . 2
ICire(DL)|2 - ||Circ(D*L)llz = n [Z L2 (L =12 =1= Y L2 = Lyt = 1) = (Ly - 3)°
k=0 k=0

=n(Ly—2Ly-1 — Ly-sLy—3 —L2_| + 4L, + 2L,y — 10)
= n(L3 + Lou-3 — Lon—7 — 2Ly — 5F24-1 + 10,41 — 10)
n(L2 — 2L, + 5F,_5 — 5F2,_1 + 10F .41 — 10)

n(L2 - 5Ly,_3 — 2L, + 10F,.1 — 10).

So the proof is completed. [
Theorem 2.5. For the I, norms of the matrices Circ(DL) and Circ(D?L), we have

|ICirc(DL)If, - ||Circ(D2L)||Z =n(l)_+L ,+ Ly =1 = Ly =1 = (L, =3) - 1).

Proof. By virtue of the definition of the lp norm, we have

n-2
ICire(DL)I; = n (Z L+ (L, - 1)P] (20)
k=0
and
n—4
||Circ(D2L)||§ =n [1 + Z L+ Ly = 1) + (Ly — 3)vJ. (21)
k=0

Using Egs. (20) and (21), we get

n-2 n—4
ICirc(DL)Il, — ||Circ(D2L)||§ = n( L} + (L, — 1) = Z L, — (Lyr = 1Y = (L, - 3y - 1]
k=0 k=0

—4 n—4
= ZLZ + 1P+, + (L, —1)P—ZL’; —(Lyoy = 1) = (L, = 3Y —1]

k=0 k=0
=nll ;+L ,+Ly— 1 = (Lp1 -1 = (L, —3Y - 1).
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Theorem 2.6. For circulant matrices Circ(DL) and Circ(D?L), we have
(detCirc(DL)| < (L2 + Lauos — 2Ly + (<1)" +3)’
and
|detCirc(D?L)| < (Lan7 + 5Fan-1 — 10F 41 + (=1)" +13)2.

Proof. Considering Lemma 1.2 and Egs. (7), (8), and (18), we get

1
7 |ICirc(DL)|[
n2

: J
:—u n
n2

1 n
-1 ( (L3 + Lo = 2L, + (1) + 3))
nz

|detCirc(DL)| <

n-2

L2+ (L, — 1)2]
k=0

= (L2 + Lon-3 — 2L, + (-1)" +3)".

On the other hand, considering Lemma 1.2, Egs. (4)-(8), and Eq. (19), we get

1
|detCirc(D?L)| < E||Circ(DZL)||1’1

: $
= m n
n2

1
= (Vi @ars +5F21 ~ 10F,0 + (-1 + 13))’

n—4
1+ Z Li+ Ly — 12+ (Lu - 3)2]
k=0

= (Lan—7 + 5F25-1 — 10F 41 + (=1)" +13)%.

O

Example 2.7. Let the Lucas sequence be L = (L1, Ly, L3, Ls) = (1,3,4,7) 4-tuple. Then

DL=D(@1,3,47)=(1-3,13-4[,14-7,17-1]) = (2,1,3,6)

and

DL = D(DL) = D(2,1,3,6) = (2~ 1|,[1-3|,13 - 6,16 - 2|) = (1,2,3, 4).

For considering circulant matrices

213 6 1 2 3 4
Circ(DL)zg 2 ; f and Circ(DzL):;1 i % ;
13 6 2 2 3 41

it is easy to obtain that detCirc(DL) = —624 and detCirc(D?L) = —160.
On the other hand,

1 . 4 2 4 2 2
E||<:zrc(DL)||F:(L4+L5—2L4+(—1) +3) = (49 +11 - 14 +1 +3)” = 2500

7076
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and
1. .. 2o \id 4 2 2
TelCirea(D*L)lly = (L1 +5F7 — 10F5 + (~1)* +13)" = (1 + 65 - 50 + 1 + 13)” = 900.

Clearly, | — 624 < 2500 and | — 160| < 900. Thus, |detCirc(DL)| < %IICirc(DL)II% and |detCirc(D?L)| <
EICire(D?L)|lf.
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